
Vol.:(0123456789)

Journal of Network and Systems Management
https://doi.org/10.1007/s10922-018-9482-z

1 3

OpenFlow Compatible Key‑Based Routing Protocol: 
Adapting SDN Networks to Content/Service‑Centric 
Paradigm

Adrian Flores‑de la Cruz1 · Pilar Manzanares‑Lopez1  · 
Juan Pedro Muñoz‑Gea1 · Josemaria Malgosa‑Sanahuja1

Received: 24 March 2018 / Revised: 25 October 2018 / Accepted: 8 November 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
The host-to-host/content/service communication instead of the host-to-host com-
munication offered by traditional Internet Protocol (IP) routing solutions has been 
demanded in the last few years. Nowadays, getting this type of communication 
directly at network level is an increasing demand in the framework of new network-
ing scenarios, such as Internet of Things and data center scenarios. Inspired by 
Key-Based Routing (KBR) solutions which, in conjunction with Distributed Hash 
Tables, have offered a way of providing content-sharing solutions in overlay net-
works on the top of the Internet for years now, we propose OFC-KBR (OpenFlow 
Compatible Key-Based Routing) solution. OFC-KBR is a key-based routing solu-
tion directly implemented at network layer that makes use of the potential of Soft-
ware Defined Networking. In this solution, end-points are identified by virtual iden-
tifiers. These virtual identifiers are obtained from a descriptive textual name, whose 
format is not fixed and can be defined depending on the requirements of the service 
that is going to use the proposed OFC-KBR solution. OFC-KBR is totally compat-
ible with the current OpenFlow standard and can co-exist with other L2/L3 proto-
cols. The proposal has been implemented and evaluated by simulation considering 
real topologies.

Keywords Distributed Hash Tables · Switching · Non-IP routing

 * Pilar Manzanares-Lopez 
 pilar.manzanares@upct.es

 Adrian Flores-de la Cruz 
 adrian.flores@upct.es

 Juan Pedro Muñoz-Gea 
 juanp.gea@upct.es

 Josemaria Malgosa-Sanahuja 
 josem.malgosa@upct.es

1 Department of Information Technologies and Communications, Universidad Politecnica de 
Cartagena, Campus Muralla del Mar s/n, 30202 Cartagena, Spain

http://orcid.org/0000-0003-1296-7158
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-018-9482-z&domain=pdf


 Journal of Network and Systems Management

1 3

1 Introduction

The host-to-host/content/service communication instead of the host-to-host com-
munication offered by traditional IP routing solutions has been demanded in the 
last few years. In this sense, the concept of Information-Centric Networking (ICN) 
[1] proposes the change from a host-centric paradigm to a content-centric network 
architecture. Under its umbrella, Named Data Networking (NDN) [2] is one of the 
most popular projects. NDN decouples contents from locations and offers content 
retrieval using two types of packets (Interest and Data packets). NDN builds an in-
network caching architecture, where nodes maintain three data structures (Content 
Store, Pending Interest Table and Forwarding Information Base), and defines ade-
quate routing mechanisms to respond to content searches.

The idea of decoupling end-points from locations without requiring a new net-
work architecture is an increasing demand in the framework of new networking sce-
narios. Traditional routing protocols provided by the Internet Protocol allow each 
host to send data packets to other machines by knowing their IP addresses. This type 
of routing has been sufficient for most of the applications on the Internet. However, 
in recent years, applications developed in new network scenarios require a different 
type of routing. Cloud computing applications such as web caching solutions based 
on In-Memory Key-Value Storage (IMKVS) [3], data center applications based on 
the use of keys to identify data and users [4], or the Internet of Things (IoT) scenario 
where a great variety of devices are interconnected, require that routing tasks are 
associated to end-host names (or any other virtual identifier) instead of IP addresses.

Our proposal, OFC-KBR (OpenFlow Compatible Key-Based Routing), offers a 
routing solution in which end-points are identified by virtual identifiers (keys) and 
not just by IP addresses. In our implementation, the virtual identifier is obtained 
from the host name, but it is just a proposal. The definition of the host identifier 
could be changed depending on the application of OFC-KBR routing solution.

Unlike traditional key-based routing solutions that are defined at application level, 
the differentiating aspect of our proposal is the fact that OFC-KBR is completely 
implemented at network level, without the need of any additional infrastructure. 
This is possible thanks to the use of SDN (Software Defined Networking) archi-
tecture [5], which maintains a global view of the network and offers a wide control 
of the network devices. Using the well-known OpenFlow protocol [6], the network 
elements are configured to be able to route the packets adequately. An SDN control-
ler (or a distributed set of controllers) obtains and inserts in the flow table of the 
network elements the required set of entries to offer this key-based routing service.

The fact that the proposed solution does not require any modification of the 
OpenFlow standard nor the OpenFlow-based network elements enables OFC-KBR 
to co-exist with traditional L2/L3 protocols. For example, flow table entries associ-
ated with the OFC-KBR solution can co-exist with flow table entries that allow net-
work elements the routing based on standard IP or MAC addresses.

Packet classification is the key function of network devices in order to execute 
any routing protocol. Routers and switches operate by matching header fields of 
incoming packets against a set of rules and priorities. According to the matching 



1 3

Journal of Network and Systems Management 

rule with the highest priority, a given action is performed on the packet, such as 
forwarding to a specific output interface, dropping the packet, or altering the headers 
or payload. Packet classification is also required to implement many other network 
functions, such as filtering, security, load-balancing and virtual networks.

Nowadays, the use of the 5-tuple ruleset (source IP address, destination IP 
address, source port number, destination port number, and protocol type) is not suf-
ficient. Advanced network functions require a larger and more complex ruleset. For 
example, being able to express ranges of values in any of the matching fields is a 
desirable utility to allow the creation of advanced routing rules. In this regard, IP 
routers are Longest Prefix Match (LPM) compliant and therefore, it is not possible 
to specify some ranges without interfering the matching procedure.

Fortunately, SDN technology offers a powerful and flexible control of network 
devices, and OpenFlow switches offer a wide ruleset of 15 fields and the definition 
of different interconnected flow tables to perform packet classification. In this work, 
we implement a packet classification based on the definition of value ranges using 
the potential offered by OpenFlow.

The remainder of the paper is organized as follows. Sect. 2 presents some related 
works. Section  3 reviews the lookup mechanism of Chord and the prefix exten-
sion technique, two technologies closely connected with our proposal. In Sect.  4, 
the OFC-KBR solution is described in detail. The evaluation of the proposal is pre-
sented in Sect. 6. Section 7 suggests a useful enhancement of the OpenFlow stand-
ard to improve the performance of the solution. Finally, Sect. 8 concludes the paper.

2  Related Work

The concept of Key-Based Routing (KBR) was very common among the scientific 
community at the beginning of this century when structured P2P (peer-to-peer) net-
works were developed (Chord [7], Pastry [8], Tapestry [9] or Kademlia [10]). These 
networks offer a routing service at application level to send a message, with an asso-
ciated key, to a single node, responsible for that key. In [11] the authors developed 
a common API with the ability needed to interact with the KBR service offered by 
any structured P2P network. These are as follows: void route (key k, msg m), which 
routes a message, m, towards the responsible key node k; void forward (key k, msg 
m, nodehandle nesthopnode), which is invoked from the structured P2P network 
layer of each node that forwards message m during its routing; void deliver(key k, 
msg m), which is invoked from the structured P2P network layer of the node that is 
responsible for key k upon the arrival of message m.

Over the previous interface, the services offered by different kinds of applications 
can be implemented: Distributed Hash Tables (DHT) [12], Decentralized Object 
Location and Routing (DOLR) [13] and group anycast/multicast (CAST) [14]. The 
operations of these applications are implemented using the previous API to interact 
with the KBR service. For example, a DHT, which implements a simple store and 
retrieve functionality, where the value is always stored at the live overlay node(s) 
to which the key is mapped by the KBR layer, provides two operations: (1) put 



 Journal of Network and Systems Management

1 3

key,value), and (2) value = get(key). Both of them are implemented using the void 
route (key k, msg m) interface.

In recent years, several applications developed in new networking scenarios 
also use the KBR concept. For example, in cloud computing applications, there 
are web caching solutions based on In-Memory Key-Value Storage (IMKVS) [3]. 
The basic commands that can be executed in these applications are: void set (key, 
value): ask a specific server to store a given value identified by a given key; value 
get (key): retrieve the value identified by the given key stored in a specific server. In 
[3] authors propose a Two-Phase Load Balancer for IMKVS system. The proposed 
solution aimed to reduce the load on both servers and network in a scalable and easy 
to deploy way, using a NFV (Network Function Virtualization) architecture. The 
second phase index of the load balancer is based on the Chord network, but other 
structured P2P networks could be used. Beyond this, many applications running in 
data center networks use keys to identify data or users, such as MapReduce [15], 
Amazon Dynamo [16], Microsoft Dryad [17], and Facebook Photos [18]. CamCube 
[19] is a prototype built by Microsoft to implement KBR in data centers. In addition 
to this, in [4] authors present a new data center network architecture, named Space 
Shuffle (S2), which also supports KBR. Finally, the Internet of Things scenario, 
where a great variety of devices are interconnected, also uses KBR to alleviate over-
head caused by flooding [20].

The idea of using the OpenFlow protocol in the context of information-centric 
networks has been applied in previous works. For example, in [21], the Openflow 
protocol is used to manage a sensor information network. There, based on context 
similarity, sensors are grouped into clusters, even if they are physically distant. Each 
cluster has its own SDN controller that performs the local processing for the cluster. 
Besides this, the local controllers are organized in the top-tier overlay in a Chord 
network and they form a logical controller for the entire network. In this work, the 
controllers (called sinks) are the destination point of the packet flows. Therefore, 
the proposal offers a specific solution to implement the sending of messages from a 
large group of sensors towards a certain sink. However, this solution is not suitable 
to implement solutions that require named-based routing service.

Information-Centric Networking (ICN) is a concept that relies on location-inde-
pendent naming of data to support data movement and replication [22]. This archi-
tecture requires a scalable name resolution system (NRS) to translate the object IDs 
into network addresses. Data are then accessed through these addresses. An NRS 
architecture can be a tree, a DHT or hybrid, and it is composed by NRS servers. In 
Tree-based NRS the root performing global name resolution can become a bottle-
neck. To alleviate this bottleneck, some proposals build a DHT-based system at the 
root level. For example, the MDHT system [23] is a heterogeneous DHT that con-
sists of multiple separate resolution domains that can each use a different structured 
P2P network internally such as Chord or Pastry.

The closest proposal to our work is VIRO (Virtual Id ROuting) [24]. The key 
idea behind VIRO is the introduction of a topology-aware, structured virtual id (vid) 
space onto which both physical identifiers (e.g., Ethernet MAC addresses) as well 
as higher layer addresses/names (e.g., IPv4/IPv6) are mapped. Taking advantage of 
such a topology-aware and structured vid space, VIRO employs a KBR algorithm 



1 3

Journal of Network and Systems Management 

to build routing tables, look up objects (names, addresses, vids, etc.) and forward 
packets.

VIRO and our proposal OFC-KBR differ in some aspects that affect significantly 
the implementation of the systems. As it is detailed throughout the paper, the distrib-
uted name resolution mechanism and the forwarding procedure of OFC-KBR do not 
require any additional infrastructure nor any modification of the OpenFlow-based 
network elements. In addition, OFC-KBR solution has been implemented without 
the need of any modification of the OpenFlow protocol.

By contrast, to be able to implement the address-name resolution defined by 
VIRO, each host-node needs to maintain a local table that maps the physical iden-
tifiers (pid) to virtual identifiers (vid). On the other hand, VIRO implementation 
requires that each VIRO node implements a local SDN controller to realize VIRO 
packets forwarding functions in addition to a remote SDN controller responsible for 
the management plane of VIRO.

VIRO forwarding is done by using the destination vid (via vid prefix matching) 
and a forwarding directive. For that reason, they have to redefine the structure of the 
standard Ethernet frame to be able to include the vids and forwarding directive fields 
in the frame. The standardized matching operations, header fields and the allowable 
actions defined by OpenFlow protocol are tied to Ethernet/IP/TCP protocol. There-
fore, the forwarding of VIRO, that requires to match source-vids, destination-vids 
and fd, cannot be implemented using the standard match-action functions of Open-
Flow. Due to the fact that VIRO has been implemented using Open vSwitch (OVS) 
[25], the authors needed to modify and extend the match and the actions of the Open 
vSwitch user and kernel spaces to be able to implement their solution.

As said before, unlike VIRO, our proposed OFC-KBR solution is fully compat-
ible with the current OpenFlow standard. Its implementation has not required any 
modification or extension of the OpenFlow protocol nor OpenFlow OVSs. In Sect. 7 
we describe how a simple extension of the set of actions allowed by the Open-
Flow standard would help to reduce the number of flow table entries in the network 
devices. However, this OpenFlow modification is not not mandatory for the imple-
mentation of OFC-KBR.

According to OpenFlow standard, values of matching fields of a flow entry can 
only be wildcarded (match any value) and in some cases bitmasked. As it will be 
described in detail in the following sections, our proposal is based on the obtaining 
of numerical intervals that will be used to configure adequately the routing tables of 
network elements. However, the obtained value ranges cannot always be expressed 
by bitmasked values.

To solve this problem, our proposal uses a range representation technology 
known as prefix expansion [26]. The keystone of this representation is turning 
each range into a set of subranges that can be bitmasked and, therefore, that can be 
included in an OpenFlow-based flow table by a flow entry. Applying this representa-
tion, the worst-case expansion ratio with ranges whose endpoints are w-bits numbers 
is 2w-2 entries per range.

In terms of flow entries, a more efficient solution to implement range search 
in OpenFlow switches is proposed in Orange [27], an OpenFlow adaptation of 
PIDR (Point Intersection Disjoint Ranges) [28]. PIDR is an algorithm for TCAMs 



 Journal of Network and Systems Management

1 3

(Ternary Content-Addressable Memories) that can be easily implemented in hard-
ware to solve the search operation problem for disjoint ranges. Most of the func-
tionality of Orange can be implemented using OpenFlow tables but it also depends 
on the use of a comparison table. The main drawback of Orange is the fact that this 
comparison table is not implemented using an OpenFlow table. In fact, what we pro-
pose in this work is a way to implement comparison tables just by using OpenFlow 
tables, because a direct way to compare two values is by using ranges.

3  Review of Required Technologies

In this section, we present a review of Chord protocol [7] and prefix expansion 
technology [26]. Both existing technologies have been used in the definition of our 
proposal.

3.1  Lookup Mechanism of Chord

The basic principle of DHT protocols is the association between nodes and objects, 
and the construction of distributed routing structures to locate the objects efficiently.

In Chord, nodes and object identifiers are located in a circle formed by 2m values 
( id ∈ [0, 2m − 1] ). Each node is responsible for a set of keys. In particular, a key 
k is assigned to the node whose identifier is equal to k, or, if it does not exist, it is 
assigned to the first node clockwise k. That node is called the key successor. For the 
routing strategy, each node n maintains its predecessor (the counterclockwise node 
in the ring), its successor (the clockwise node in the ring) and a list of extra nodes 
called finger table. The finger table is composed of m entries, where i-th table entry 
associates key n + 2i with the key successor.

When node n searches for a key k, it checks if k is located between itself and its 
successor. If so, the successor is the searched node. Otherwise, it checks its finger 
table from bottom to top to locate the immediate predecessor of k. Then, node n 
requires that node to deal with the lookup. This procedure is recursively done by dif-
ferent nodes until the node responsible of key k is found. The number of nodes that 
must be contacted to find a successor of a given key is O(log2N) , where N is the cur-
rent number of active nodes. Figure 1 shows a lookup example in a Chord system, 
where m = 6 bits.

3.2  Range Representation Based on Prefix Expansion

OpenFlow specification 1.3 [29] defines that switches must support the match fields 
listed in Table  1. Some of them can be arbitrary bitmasked. However, OpenFlow 
does not define the assignment of range values that cannot be expressed just by a 
bitmasked range.

To solve this problem, the range representation technology known as prefix 
expansion [26] could be used. The keystone of this representation is turning each 
range that cannot be expressed by a bitmasked value into a set of subranges that 



1 3

Journal of Network and Systems Management 

can be bitmasked and, therefore, that can be included in an OpenFlow-based flow 
table by a flow entry.

The algorithm to obtain the subranges from a certain range is described in 
Table 2. It consists in obtaining the Longest Common Prefix (LCP) of the range, 
and the extended LCPs (ELCPs) named 0-ELCP and 1-ELCP. The ELCPs are 

Fig. 1  A lookup example in a Chord system, where m = 6 bits. Node 8 is looking for an object whose 
key-identifier is 53

Table 1  Match fields. From OpenFlow 1.3 specification [29]

Field Bits Description

OXM_OF_IN_PORT 32 Ingress port
OXM_OF_ETH_DST 48 Ethernet destination port. Can arbitrary bitmask
OXM_OF_ETH_SRC 48 Ethernet source port. Can arbitrary bitmask
OXM_OF_ETH_TYPE 16 Ethernet type of the OpenFlow packet payload, after VLAN tags
OXM_OF_IP_PROTO 8 IPv4 or IPv6 protocol number
OXM_OF_IPV4_DST 32 IPv4 destination address. Can be subnet mask or arbitrary bitmask
OXM_OF_IPV4_SRC 32 IPv4 source address. Can be subnet mask or arbitrary bitmask
OXM_OF_IPV6_DST 128 IPv6 destination address. Can be subnet mask or arbitrary bitmask
OXM_OF_IPV6_SRC 128 IPv6 source address. Can be subnet mask or arbitrary bitmask
OXM_OF_TCP_SRC 16 TCP source port
OXM_OF_TCP_DST 16 TCP destination port
OXM_OF_UDP_SRC 16 UDP source port
OXM_OF_UDP_DST 16 UDP destination port



 Journal of Network and Systems Management

1 3

calculated from the LCP by adding one more bit. For a LCP P, P0 is 0-ELCP and 
P1 is 1-ELCP.

Then, by using the corresponding 0-ELCP, 1-ELCP and the start and end val-
ues, the original range is split into two subranges. For each subrange, the pro-
cess is repeated until a set of bitmasked subranges are obtained.

As an example, the range [32, 54] = [00100000, 00110110] can be 
expressed by the following set of bitmasked ranges: [32, 47] = [0010 ∗∗∗∗] , 
[48, 51] = [001100 ∗∗] , [52, 53] = [0011010 ∗] and [54] = [00110110] . Conse-
quently, the original range could be included in a flow table by the insertion of 
four bitmasked flow entries.

4  OpenFlow Compatible Key‑Based Routing Protocol

In this paper, we propose OFC-KBR (OpenFlow Compatible Key-Based Rout-
ing), a key-based routing solution directly implemented at network layer that 
makes use of the potential of Software Defined Networking. Unlike other solu-
tions, there is no need to use caches or additional databases on the network ele-
ments to store information about end-hosts. In addition, all the required func-
tionality is fully compatible with the current SDN OpenFlow standards, and it 
is not required to modify nor extend the OpenFlow switch architecture. Finally, 
OFC-KBR protocol can coexist with traditional L2/L3 protocols.

Unlike traditional IP routing protocols that offer a host-to-host communica-
tion, where host and routers are identified by IP addresses, this solution is based 
on the definition of virtual identifiers (vids). Each network element, and each 
host, content, or service involved in the communication will be identified by a 
virtual identifier. To simplify we will refer to hosts, contents, and services as 
end-points.

Table 2  Algorithm to obtain the bitmasked ranges using prefix expansion [26]
01: Input: [s, t] = [s0s1s2....sk−1, t0t1t2....tk−1]
02: Output: a set of valid ranges
03: function bitmasked ranges(s,t):
04: obtain the LCP=p0p1....pp−1
05: using 0-ELPC, determine the subrange [p0p1....pp−10sp+1....sk−1, p0p1....pp−101...1]
06: if the subrange can be bitmasked:
07: valid subrange identified
08: else:
09: new subrange [s’,t’]=[p0p1....pp−10sp+1....sk−1, p0p1....pp−101....1]
10: bitmasked ranges(s’,t’)
11: using 1-ELPC, determine the subrange [p0p1....pp−110....0, p0p1....pp−11tp+1....tk−1]
12: if the subrange can be bitmasked:
13: valid subrange identified
14: else:
15: new subrange [s’,t’]=[p0p1....pp−110....0, p0p1....pp−11tp+1....tk−1]
08: bitmasked ranges(s’,t’)



1 3

Journal of Network and Systems Management 

4.1  Virtual Identifier Assignment

Virtual identifiers (vids) of network elements and end-points are defined as L-bits 
strings that comprise two parts of L/2 bits. In the case of a network element, the first 
L/2 bits are the result of applying a hash function to its OpenFlow datapath identifier 
and the last L/2 bits are set to 1. In the case of end-points, the first L/2 bits are the 
result of applying the hash function to the switch datapath to which the end-point 
is connected, and the last L/2 bits are the result of applying the hash function to its 
name. The definition of the name of an end-point is not fixed. It could be a flat or a 
hierarchical textual name, depending on the requirements of the service that is going 
to use the proposed OFC-KBR solution.

In our implementation of the OFC-KBR proposal, we have used the 32-bits of 
the IPv4 address field to contain the virtual identifier, which allows the use of OFC-
KBR in networks of up to 216 network elements. If larger networks were required, 
the 128-bits IPv6 address field could be used.

Figure 2 shows the physical topology of a SDN network and the corresponding 
virtual identifier assignment. For the sake of clarity and simplicity in representation, 
vids are 10 bits long. By way of example, we consider that end-points are hosts. In 
this way, the virtual identifier of host h1 is 1010100110. The first 5 bits would cor-
respond to the hash value of the datapath identifier of switch dp3, and the last 5 bits 
would correspond to the hash value of the textual name associated to h1. The virtual 
identifier of switch dp3 is 1010111111. The first 5 bits would correspond to the hash 
value of the datapath identifier and the last 5 bits are set to 1.

4.2  Key‑Based Routing Information

OFC-KBR is inspired by the lookup mechanism of DHT solutions. Although it 
could be considered any of the existing DHT solutions, we have chosen as a refer-
ence the Chord protocol [7] due to its simplicity and widespread use in research. A 
Chord node maintains its own table formed of L entries (finger table), a successor 
and a predecessor, and uses this information to perform the lookup process as sum-
marized in Sect. 3.1.

In our work, we have taken inspiration from the lookup mechanism of Chord (a 
P2P overlay solution) to implement an in-network routing solution. However, we 
do not implement a finger table nor the Chord lookup procedure directly. A design 
requirement of our proposal determines that OFC-KBR must be totally compatible 
with the current architecture of OpenFlow switches. Thus, network elements will 
only make use of the OpenFlow tables to perform the routing decisions. Therefore, 
it is necessary to translate the finger table content that would be defined in node by 
Chord, into a set of flow table entries that will be stored in a network element, and to 
convert the Chord lookup procedure into an OpenFlow entry matching-based opera-
tion. The match fields of each entry determine a range of virtual identifiers, and the 
action fields indicate what to do when a packet that is destined to a value included in 
this range is received.



 Journal of Network and Systems Management

1 3

The SDN controller will use its global knowledge of the network to perform this 
translation, and will configure the flow table of each network element accordingly. 
Figure  3 details the set of ranges that are obtained for a network element whose 
virtual identifier is n and whose finger table would be the left part of the figure. 
ft(n + 2i) refers to the value of the finger table entry n + 2i , that is, the vid of the 
network element responsible of value n + 2i , and → x corresponds to the action send 
to switch x.

As an example, turning again to Fig.  2, the boxes at the bottom of the figure 
show the ranges and corresponding actions obtained for network elements dp2 
( vid = 0010111111b = 191d ) and dp6 ( vid = 0100011111b = 287d ). As can be 
seen, some different ranges involve the same action. Depending on the obtained 
ranges and actions, they could be merged. In the example, the obtained ranges can 
be reduced to just 4.

Once the equivalent ranges and the associated actions are obtained, the controller 
will instruct each network element to install the adequate flow entries. The current 

Fig. 2  The upper part of the figure shows the physical topology of an SDN network and the correspond-
ing vid assignment, where vids are 10 bits long. The intermediate part of the figure shows the corre-
sponding virtual topology according to OFC-KBR. Boxes in the lower part of the figure show, as an 
example, the obtained ranges corresponding to switches dp2 and dp6



1 3

Journal of Network and Systems Management 

implementation of OFC-KBR uses the IPv4 address fields to include the vid values. 
Consequently, the destination IPv4 field is the matching field of the flow entries that 
are used for routing tasks.

Due to the fact that some obtained ranges could not be expressed by just a bitmas-
ked value, the prefix expansion algorithm (Sect. 3.2) will be used. This algorithm 
offers an efficient solution fully compatible with current OpenFlow switch architec-
tures to express any obtained range as a limited set of bitmasked subranges, each of 
which will correspond to a flow entry.

As can be deduced from table (b) in Fig.  3, the minimum number of ranges 
obtained by the SDN controller for a certain network element is 2. This case hap-
pens when all the entries of the finger table of the node point to the succesor of 
the node. The maximum number of ranges for a switch is L + 1 . This case happens 
when each entry of the finger table of the node points to a different node.

In this work, we have developed a mathematical model that let us know the prob-
ability that the number of ranges obtained for a certain switch is k depending on the 
total number of network elements. We considered interesting to develop this study to 
be able to verify the feasibility of our proposal, and to be able to check if the number 
of ranges remains at limited and acceptable values. The mathematical model, which 
is detailed in “Appendix A”, has been validated by simulation. In addition, it has 
been used to compare the results obtained in Sect. 6.

4.3  Virtual and Physical Paths

Location of network elements in the virtual topology depends on their virtual identi-
fiers, and it is not linked to the physical topology. Therefore, virtual paths may do 
not be identical to physical paths.

Turning again to Fig. 2, as an example, consider the third range obtained for dp6 
( [543, 799[→ 703 ). The action ’send toward 703 (dp3)’ has to be translated into an 
OpenFlow-compatible action. Concretely, the action should indicate the adequate 
output port to forward the packet. However, there is not a direct physical connection 
between dp6 and dp3.

Fig. 3  Table (a) shows the finger table of a node. Table (b) shows the obtained ranges and the corre-
sponding actions. f .t.(n + 2i) refers to the value corresponding to finger table entry n + 2i , that is, the 
switch responsible of the vid n + 2i



 Journal of Network and Systems Management

1 3

A simple solution might be sending the packet through the output port deter-
mined by the optimal physical route to the destination. Due to the fact that the con-
troller has a complete knowledge of the network topology, the optimal physical route 
can be obtained applying an adequate routing algorithm, such as Dijkstra. In the for-
mer example, the action associated to the range would be to forward to dp7, because 
the shortest route toward dp6 is through that switch. However, this solution is not 
ideal because loops may appear. After receiving the message, dp7 will use its own 
flow table to forward the packet. If the matching flow entry in dp7 determines that 
the message has to be sent to a network element whose shortest physical path passes 
through dp6, a loop is created.

To solve this problem, we propose the creation of a tunnel for the physical path 
associated to a virtual space hop using the MPLS technology [30], as described 
in Fig.  4. Each time the SDN controller inserts the flow entries corresponding to 
a certain range in a switch, it also inserts flow entries in all the switches forming 
the physical path between the switch and the destination of the virtual space hop. 
Actions of the flow entries installed on the source switch are the setting of an MPLS 
label into the packet and the forwarding through the adequate output port. On each 
intermediate switch except the last before the destination, the controller installs just 
a flow entry where the match fields are the packet type in order to detect MPLS 
packets and the MPLS label value. The action will be the forwarding throughout the 
adequate output port. Finally, on the last switch before the destination, the controller 
installs a flow entry whose matching fields are the packet type and the MPLS label 
value, and the actions will be two: first, to delete the MPLS label and then to for-
ward the packet through the adequate output port.

5  Joining of End‑Points and Distributed Name Resolution 
Mechanism

OFC-KBR protocol defines how network elements are able to route traffic 
towards the network element responsible of any virtual identifier. However, the 
objective of the proposal is to offer host/service/content-centric communication. 
Therefore, it is necessary to define a joining procedure for end-points and also, 
as it is going to be argued later, a name resolution service. Both mechanisms 

Fig. 4  Physical path implementation using MPLS technology



1 3

Journal of Network and Systems Management 

rely on the definition of the virtual identifiers of end-points and network ele-
ments, and make use of the DHT principles that substantiate OFC-KBR.

5.1  Joining Procedure

The joining of end-points to the network is solved by the definition of JOIN 
packets. In our implementation of the OFC-KBR solution, a JOIN packet is a 
packet whose source key is the virtual identifier of the joining end-point, and 
the destination key is the virtual identifier of the switch to which the end-point 
is connected. A joining end-point will send a JOIN packet to the directly con-
nected switch.

Any network element stores in the flow table an entry that allows them to iden-
tify the joining packets, based on the source key field and destination key field. 
The action associated to this entry is the sending of the packet towards the con-
troller by a Packet_In.

Once the controller receives the Packet_In, it will install the adequate flow 
table entries in certain network elements that will be necessary to implement the 
name resolution service, as detailed next.

5.2  Distributed Name Resolution Mechanism

A premise of our system is the fact that it is only known the name of the end-
points, but not their virtual identifiers. This feature will be useful to adapt our 
routing solution to scenarios where hosts are mobile devices, because the name of 
the end-points do not depend on their physical location.

Therefore, it is required a mechanism that deals with the resolution of the 
name of end-points into their virtual identifiers. We define a distributed name res-
olution mechanism that makes use of flow table entries installed in the switches 
during the joining process by the controller.

Thus, after receiving a Packet_In containing a JOIN packet, the controller will 
install a flow entry in this switch that generated the Packet_In, and another flow 
entry in the switch that will be in charge of solving the name resolution. Using 
DHT terminology, this last switch will be the network element responsible of the 
virtual identifier formed by the last L / 2 bits of the joining end-point (that is, the 
hash name) and the rest of bits set to 0. In our implementation, based on Chord, 
this switch will be the network element whose virtual identifier is the next exist-
ing clockwise value in the virtual identifier space.

The flow table entry installed in the switch that generated the Packet_In ena-
bles the sending of any received message destined to the direcly connected end-
point. The entry indicates the sending through the adequate output port. On the 
other hand, the flow table entry installed in the other switch implements the solv-
ing of the name resolution and instructs that switch as a forwarder towards the 
destination, by means of the corresponding actions.



 Journal of Network and Systems Management

1 3

5.3  Example of Joining and Name Resolution

This section illustrates the processes described above. Referring to the network 
topology shown in Figs. 2 and 5 describes the joining of hosts h1 and h3, and name 
resolution process associated to the sending of a data message from h1 to h3, and 
from h3 to h1.

Host h1 ( vid = 1010100110 ) is connected to the switch dp3 ( vid = 101010000 ). 
Therefore, both values are used to create the JOIN message. Thanks to the first flow 
entry stored in switch dp3, whose matching fields are src_ipv4 = 10101 ∗∗∗∗∗ and 
dst_ipv4 = 1010111111 , the JOIN message is identified and forwarded to the con-
troller as a Packet_In message.

The controller installs a new flow entry in dp3 by means of a Flow_Mod mes-
sage. Due to this entry, any packet received by dp3 and destined to h1 will be for-
warded to h1 throughout the adequate port (in this case, it is pout).

On the other hand, messages sent by any host towards h1 will be destined to 
0011000000 (the concatenation of the hash of the name of h1 and 0s). Therefore, 
to implement the name resolution service, the controller installs a flow entry in 
dp6, the switch of the network responsible of that key. The flow table entry will 

Fig. 5  This timeline describes the joining of h1 and h3, and the name resolution involved in the sending 
of messages from h1 to h3 and from h3 to h1



1 3

Journal of Network and Systems Management 

match any message destined to 0011000000 and will perform the translation of the 
received destination key to the virtual identifier of h1 (1010100110). Then, d6 will 
forward the packet toward the destination using its OFC-KBR routing entries.

Similarly, the joining of host h3 is shown. Next, the timeline describes the send-
ing of a message from h1 to h3 (and from h3 to h1). In the first case, the destination 
key of the message is 10100000, that is the key obtained just from the name of h3. 
Using the OFC-KBR routing entries, the data message reaches the switch responsi-
ble of the solving the name resolution, in this case, itself. Then, the data message is 
forwarded using the OFC-KBR routing entries towards h3. In the second case, the 
destination key of the message is 0011000000, that is the key obtained just from 
the name of h1. Using the OFC-KBR routing entries, the data message reaches the 
switch responsible of the solving the name resolution, in this case, dp6. Finally, the 
data message is forwarded using the OFC-KBR routing entries towards h1.

6  Performance Evaluation

This section evaluates the performance of the proposed routing solution OFC-KBR. 
We conducted our simulations using Mininet [31], a testbed for Software Defined 
Networking. The solution has been implemented using the RYU controller [32]. We 
have used Mininet to generate three existing network topologies, from the Internet 
topology zoo [33]. The topologies Switch-L3 (39 nodes and 62 links), DFN (56 
nodes and 87 links) and GTSCe (148 nodes and 192 links) are showed in Fig. 6a–c, 
respectively.

6.1  Finger Table Conversion into Ranges

OpenFlow Compatible Key-Based Routing (OFC-KBR) relies on the conversion of 
the Chord finger tables into intervals that will be used to fill the OpenFlow tables of 
the network nodes. In this section, we are going to evaluate this conversion. For each 

Fig. 6  Topologies. SwitchL3 (39 nodes and 62 links), Dfn (56 nodes and 87 links) and GtsCe (148 nodes 
and 192 links). a SwitchL3. b Dfn. c GtsCe



 Journal of Network and Systems Management

1 3

network topology, 10 simulations have been carried out. By definition, the virtual 
identifier of each node is obtained from its OpenFlow datapath identifier by apply-
ing a hash function. Each simulation has been carried out assigning a different set of 
OpenFlow datapath identifiers to the nodes.

Figure  7a shows the probability distribution of the number of ranges obtained 
for each node obtained from the simulations. Figure 7b shows the theoretical values 
obtained using the mathematical model described in “Appendix A”. As expected, 
as the number of nodes in the topology increases, the chart moves to the right, giv-
ing rise to a higher mean number of entries for each node. As the number of nodes 
increases, the probability that the ranges obtained directly from the entries of the 
finger table can be merged is smaller, because the entries point to different nodes. In 
particular, the mean value of the number of ranges is 6.5743 for Switch-L3 topology 
(39 nodes), 7.1447 for DFN topology (56 nodes), and 8.5351 for GTSCe topology 
(148 nodes). These mean values are similar to log2(N) , where N is the number of 
nodes.

6.2  OpenFlow Table Occupation

Each obtained interval, which associates a range of values with a forwarding action, 
should be used to directly insert an entry into the OpenFlow table of the correspond-
ing switch. However, as explained in Sect. 3.2, this is not possible using the current 
OpenFlow standard. Instead, OFC-KBR makes use of the prefix expansion algo-
rithm to obtain a limited number of bitmasked subranges from each range.

Figure  8a shows the mean number of bitmasked subranges corresponding to 
the obtained intervals after the conversion, for each node of the Switch-L3 topol-
ogy. In the graph, it is also plotted the minimum and the maximum number of bit-
masked subranges corresponding to the simulations. Similarly, Figs. 9a and 10a 
show the results for the DFN and GTSCe topologies, respectively. From the mean 
number of obtained ranges and the mean number of bitmasked subranges for each 

Fig. 7  Probability distribution of the number of ranges obtained for a node. L = 32 bits. a By simulation 
using Mininet [31]. b Using the mathematical model described in “Appendix A”



1 3

Journal of Network and Systems Management 

node, it can be calculated the expansion factor as the ratio of both values. The 
obtained expansion factors corresponding to the topologies are 21.550, 22.005 
and 22.603.

At this point, we can compare the obtained results with the number of entries 
required by Orange [27], an alternative solution to implement range search in 
OpenFlow switches, cited in Sect. 2. According to this work, the number of entries 
required to implement n ranges is 2n + 2L + 1 , where n is the number of ranges 
and L is the number of bits (in our case L = 32 ). Applying this expression, the 
mean number of entries required using Orange is 2 ∗ ⌈6.5743⌉ + 2 ∗ 32 + 1 = 79 
ranges for Switch-L3, 81 ranges for DFN and 83 ranges for GTSCe, respectively. 
However, the term 2L + 1 corresponds to a comparison table that, as said before, 
cannot be implemented using an OpenFlow table. In fact, the implementation of a 
comparison table in OpenvSwitch is just what we have solved.

With respect to the results, we would like to underline that the obtained expan-
sion factor is much lower than 62, the maximum expansion factor of the prefix 
expansion technique (that is, 2L − 2).

Finally, we are going to evaluate the final occupation of the OpenFlow tables. 
As can be seen in Figs. 8b, 9b and 10b, the number of OpenFlow entries in each 

Fig. 8  SwitchL3 topology (39 nodes and 62 links). a Number of bitmasked ranges. b Number of Open-
Flow table entries

Fig. 9  DFN topology (56 nodes and 87 links). a Number of bitmasked ranges. b Number of OpenFlow 
table entries



 Journal of Network and Systems Management

1 3

switch is higher than the number of bitmasked ranges. This is due to the fact of 
transforming the virtual paths into physical paths, as described in Sect. 4.3. As 
expected, the increment between the number of ranges and the number of entries 
depends on the position and the connectivity of the switch. For example, in 
Fig. 8b switch 8 shows the most remarkable increment. Analyzing the Switch-L3 
topology, this node corresponds to Zurich ETH, that has the highest connectiv-
ity degree. It is likely that the physical path corresponding to a virtual path goes 
through this point. The same behavior can be observed in the other two topolo-
gies. In any case, the obtained results are acceptable considering that a routing 
table can support from 750 to few thousands of rules. Nonetheless, in Sect.  7 
we describe some proposals that would allow to reduce the number of required 
entries, if the OpenFlow technology evolved adequately.

6.3  Network Performance

To evaluate the network performance we will consider the routing optimization and 
the network throughput, as described in the following sections.

Fig. 10  GtsCe topology (148 nodes and 192 links). a Number of bitmasked ranges. b Number of Open-
Flow table entries



1 3

Journal of Network and Systems Management 

6.3.1  Routing Optimization

The routing optimization is measured by means of the routing stretch. Routing stretch 
(RS) is defined as the ratio of the number of physical hops using OFC-KBR and the 
number of physical hops using the Shortest Path (SP) between any two switches i and j, 
as defined in Eq. (1):

Considering that the maximum path length of Chord is log2(N) , the average of the 
maximum routing stretch can be obtained as follows:

First row of Table 3 shows the average routing stretch corresponding to the simula-
tions. It can be seen that the obtained values are always higher than 1 (the ideal value). 
As in most of the key-based applications, this is the price to be paid for using a DHT 
solution. However, the RS is limited by log2(N).

6.3.2  Routing Throughput

The stability of the proposed solution and also the network throughput depends directly 
on the performance of the switches. To achieve a high network throughput, switches 
have to route incoming packets as fast as possible. There are two factors that have a sig-
nificant influence on this performance: the switching architecture and the lookup delay. 
However, as far as our proposal concerns, only the lookup delay has to be taken into 
account.

The lookup delay can be defined as the time that a switch takes to find a match 
entry in the flow table. As hardware-based Ethernet switches and IP routers, OpenFlow 
switches take advantage of the TCAM technology to fetch a wildcard entry in the only 
one clock cycle, which is the minimum possible. In fact, a TCAM memory works as a 
cache of the flow table storing the most recently used entries, and updates the list when 
a mismatch occurs.

In a network virtualized (NV) scenario, the lookup process has to be done neces-
sarily by software. In this case, Open vSwitch (ovs) is the most outstanding solution, 

(1)RSij =
LOFC−KBR
ij

LSP
ij

(2)RSmax =
log2(N) ∗ LSP

LSP
= log2(N)

Table 3  Routing stretchs Switch-L3 DFN GTSCe

RS 2.748 2.9278 4.2038

RSmax 5.2854 5.8074 7.2095



 Journal of Network and Systems Management

1 3

since it has been designed to minimize the lookup delay [34]. To minimize the lookup 
delay, an Open vSwitch has a specialized kernel module that it is defined as kernel-
based datapath. When a packet arrives on a port, the kernel module processes it by 
extracting its flow key and looking it up in the flow table. If there is a matching flow, it 
executes the associated actions. If there is no match, it queues the packet to userspace 
for processing. In this process, the kernel module caches an entry handle further pack-
ets of the same type. This kernel module speeds up the lookup process by means of 
using a tuple space search classifier and flow caches [25]. The throughput and latency 
of OpenvSwitch have been accurately studied in [35], showing that Open vSwitch is the 
best option to reach high network throughput in NV scenarios.

As described above, as traffic is generated by hosts and the network elements for-
ward the packets, entries are cached in the kernel module of the OpenvSwitches. By 
way of example, we are going to evaluate the kernel memory consumption by the 
following experiment in the implemented OFC-KBR system. We consider that there 
is a host connected to each switch. Each host randomly selects a destination among 
the rest of hosts in the network and then transmits a packet flow of 8 packets/second 
for 30 s. Figure 11 shows the results for SwitchL3 and DFN topologies. As can be 
seen, although the number of OpenFlow table entries is higher (see Figs. 8, 9), the 
number of entries that are used and, consequently are cached is substantially lower.

7  Proposed Expansion of OpenFlow Standard to Improve 
the OFC‑KBR Performance

A key and distinguishing feature of OFC-KBR solution is the fact that the proposal 
is totally compatible with the current version of the OpenFlow standard. This fact 
determines and conditions some performance results such as the occupation of the 
OpenFlow tables. In this section, we are going to describe how this parameter could 
be improved if the OpenFlow standard evolved adequately allowing some simple 
additional actions.

 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35  40

N
um

be
r o

f c
ac

he
d 

en
tri

es
 in

 th
e 

ke
rn

el
 s

pa
ce

Switch

 0

 50

 100

 150

 200

 250

 0  10  20  30  40  50  60

N
um

be
r o

f c
ac

he
d 

en
tri

es
 in

 th
e 

ke
rn

el
 s

pa
ce

Switch

Fig. 11  Number of cached entries in the kernel space. As commented in Sect. 6.2, the increase of entries 
of switches 49 to 52 with respect to the rest of switches of the DFN topology is due to the position and 
the high connectivity degree of these switches. a SwitchL3 topology. b DFN topology



1 3

Journal of Network and Systems Management 

The relatively high number of entries of the OpenFlow tables of switches is 
caused by the technical impossibility of expressing most of the obtained ranges by 
just a bitmasked value. However, this problem is solved when the virtual identifier 
of the switch is 0. As can be deduced from table-(b) shown in Fig. 3, if n = 0 , the 
last (L − 1) obtained ranges can always be expressed by a bitmasked value each.

Using this feature, the number of entries in the OpenFlow tables could be reduced 
if, once the controller obtains the ranges and the forwarding actions for a switch, it 
makes a translation of the ranges, by subtracting the vid of the switch to each range 
limit. This subtraction would be equivalent to the shifting of the node (and range 
values) until the vid of the switch that matches the initial value 0. The shifting or 
subtraction is applied to the ranges but not to the actions.

If the ranges that are going to be used by a switch to forward a message are 
obtained as described, when the switch receives a message to be routed toward a 
destination, it will have to subtract its vid to the value of the destination before find-
ing out the adequate range that determines the actions to be applied. Once the ade-
quate flow entry matches, the associated actions will include adding the vid value 
that was subtracted. Each switch belonging to the logical path will do the same.

To be able to implement this proposal, which reduces the number of flow entries 
significantly, it should be necessary to modify the OpenFlow protocol to broaden 
the set of actions that can be associated to a flow entry. In particular, the set of new 
required actions should allow the modification of the source or destination IP fields 
by means of the adding or subtracting a certain value that should be included in the 
message next to the action as a parameter.

Some parts of the network could be optical and, at the same time, compliant with 
the Software Defined Optics (SDO) paradigm. In this case, there are lots of Open-
Flow expansions available to SDO [36]. However, most of them are focused on man-
aging the circuit switching mode, where the management is done by tuning trans-
ceivers and selecting wavelength but not by setting values in a flow table. Therefore, 
our proposed expansion should be applied in those points where the optical nodes 
perform packet -or burst of packets- switching rather than circuit switching. This 
mainly happens in the optical access network points, where the traffic granularity is 
still affordable for processing at optical rates. Fortunately, some of the solutions pro-
posed in the literature for optical packet switching [37], are managed throughout the 
standard OpenFlow protocol and therefore, they are ready to incorporate our expan-
sion directly.

8  Conclusions

In this paper, we have proposed a non-IP key-based routing mechanism that can 
co-exist with L2/L3 protocols. Among its main objective, the proposed OFC-KBR 
solution wants to extend SDN networks to non-host centric paradigm. To reach this 
objective, we have proposed a routing protocol inspired by KBR-DHT solutions, 
widely deployed in overlay networks. A KBR-DHT solution is a distributed sys-
tem that stores (key, value) pairs, and where any participating node can efficiently 
retrieve the value associated with a given key.



 Journal of Network and Systems Management

1 3

In order to adapt this kind of mechanisms to be executed in a network level imple-
mentation, it is necessary that switches are able to make routing decisions based 
on numerical ranges. However, current OpenFlow switches are only able to make 
decisions based on matching and bitmasking. In this paper, it has been proposed an 
OpenFlow compatible mechanism to define ranges using several bitmasks, making it 
possible the implementation of the Chord routing mechanism.

We have evaluated the performance of our proposal in different topologies from 
real networks, showing that the implementation is viable. Alternatives are also pro-
posed that reduce the size of the routing tables at the cost of modifications to the 
form of the OpenFlow switches.

Acknowledgements This research has been supported by the AEI/FEDER, UE Project Grant TEC2016-
76465-C2-1-R (AIM). Adrian Flores de la Cruz also thanks the Spanish Ministry of Economy, Industry 
and Competitiveness for the FPI (BES-2014-069097) pre-doctoral fellowship.

Appendix A

Mathematical Model

Let us suppose a Chord network of size 2L , and composed of N nodes. Without 
loss of generality, it is assumed that the vid assigned to one of the nodes is 0. We 
are interesting in calculating the probability distribution of the number of ranges 
obtained from the finger table of a node, assuming that the rest of the N − 1 nodes 
are randomly distributed in the vid space [0, 2L − 1].

By definition, the finger table of a node is made up of L entries and the prede-
cessor. The information of the finger table can be used to obtain L + 1 ranges and 
the corresponding actions. The entry i associates the range [2i, 2i+1[ with first node 
clockwise 2i in the virtual space. If more than one consecutive entries of the finger 
table point to the same node, these ranges can be merged into a single range. Under 
these assumptions, we are going to obtain the probability that the number of differ-
ent ranges obtained for a node is k, where 2 ≤ k ≤ L + 1 when the total number of 
nodes in the network is N.

From now on, the interval [2i, 2i+1[ defined from the finger table of node 0 (the 
reference node) before merging will be called the i-th interval. If the first node 
clockwise 2i (that is, finger table value associated to this entry) is not within the ith 
interval, we define this i-th the interval as an empty interval. As can be seen, an i-
th interval is an empty interval if any of the existing N nodes are located within the 
associated interval. On the other hand, an i-th interval is a non-empty interval if one 
or more than one of the N nodes are located within the interval. Thus, all the con-
secutive empty intervals will be merged with the following non-empty interval. As 
a conclusion, if there are k − 1 non-empty intervals and the rest are empty intervals, 
then, the finger table will produce k different ranges. As shown in Fig. 3, the range 
]predecessor, n] that points to the own node will always be present.

Therefore, there will be k different ranges if the distribution of the N nodes in 
the virtual space allows node 0 to have k − 1 non-empty intervals and l − (k − 1) 



1 3

Journal of Network and Systems Management 

empty intervals. However, due to the fact that each i-th interval has its own capac-
ity (2i) , not all the k − 1 combinations of k − 1 non-empty intervals are valid. In 
these not valid cases, the total capacity is less than N − 1 , and it is not possible to 
distribute the N − 1 nodes among them.

As an example, consider l = 6 , N = 10 , and k = 3 . There are 15 different com-
binations of 2 non-empty intervals and 4 empty intervals, but some of them are 
not valid. For example, if the non-empty intervals are the 0-th and 1-st intervals, 
the capacity is 20 + 21 = 3 , not enough to locate N − 1 = 9 nodes. The same hap-
pens with the combinations 0, 2, 0, 3, 0, 4, 0, 5, and 1, 2. In the end, only 9 out of 
15 combinations have enough capacity to locate N-1 nodes: 1, 3, 1, 4, 1, 5, 2, 3, 
2, 4, 2, 5, 3, 4, 3, 5, and 4, 5.

Now, let us consider a valid combination of intervals of the above example 
(2, 3). Both intervals have the capacity to locate up to 22 + 23 = 12 nodes. There-
fore, there are 4 possibilities to distribute the N − 1 = 9 nodes within the inter-
vals: n2 = 1 , n3 = 8 , n2 = 2 , n3 = 7 , n2 = 3 , n3 = 6 and n2 = 4 , n3 = 5.

Consequently, among all the valid combinations of intervals, it should also be 
considered those that meet the following equation:

where ni is the number of nodes in the interval i-th. Thus, the probability that the 
finger table of a node causes k different ranges is:

where P(ni) is the probability that ni of the total number of nodes N − 1 are located 
in the interval i-th (with capacity to hold up to li nodes).

Finally, the probability can be easily obtained using combinatorial numbers as 
follows:

Validation

The mathematical model has been validated using a simulation tool programmed 
in C language. The simulator considers the reference node (node 0) and randomly 
selects other N − 1 nodes in a virtual of 2L − 1 values ( ]0, 2L − 1] ). Then, the sim-
ulator calculates the number of different ranges associated to node 0 (the refer-
ence node) accordingly to the procedure proposed in OFC-KBR solution, taking 
into account the existing nodes. This simulation is repeated 106 times in order to 
reach steady state probabilities.

(3)� ∈ i, j,… , k|ni + nj +⋯ + nk = N − 1

(4)P(k) =
∑

�

P(n1)P(n2)P(nk−1)

(5)P(k) =
∑

�

(
l1
n1

)(
l2
⋯

)(
lk−1
nk−1

)

(
2l − 1

N − 1

)



 Journal of Network and Systems Management

1 3

Figure 12a shows the probability distribution of the number of ranges associated 
to a node, obtained by simulation, when L = 6 (that is, a virtual space = [0, 26 − 1] , 
and the number of nodes is N = 6, 12, 19, 25 and 32 , which corresponds to 10%, 
20%, 30%, 40% and 50% of the capacity of the network.

As can be seen, as the number of nodes (N) increases, the probability distribu-
tion moves to the right. As the number of nodes increases, the probability that the 
ranges obtained directly from the entries of the finger table can be merged is smaller, 
because the entries point to different nodes. In particular, in the present study, the 
mean number of ranges are 3.8, 4.8, 5.4, 5.8 and 6.2 for N = 6, 12, 19, 25 and 32, 
respectively.

On the other hand, Fig. 12b shows the probability distribution of the number of 
ranges associated to a node, obtained by the mathematical model. The exact match 
between both figures clearly validates the model.

References

 1. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of information-cen-
tric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

 2. Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters, D.K., Zhang, B., Tsudik, G., 
Claffy, K., Krioukov, D., Massey, D., Papadopoulos, C., Abdelzaher, T., Wang, L., Crowley, P., Yeh, 
E.: Named data networking (NDN) project, PARC Technical Report NDN-0001 (2010)

 3. Trajano, A.F.R., Fernandez, M.P.: Two-phase load balancing of in-memory key-value storages using 
network functions virtualization (NFV). J. Netw. Comput. Appl. 69, 1–13 (2016)

 4. Yu, Y., Qian, C.: Space shuffle: a scalable, flexible, and high-performance data center network. 
IEEE Trans. Parallel Distrib. Syst. 27(11), 3351–3365 (2016)

 5. McKeown, N.: Software-defined networking. In: INFOCOM Keynote Talk, vol. 17, no. 2, pp. 30–32 
(2009)

 6. McKeon, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., 
Turner, J.: OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput. Com-
mun. Rev. 38(2), 69–74 (2008)

Fig. 12  Virtual space=
[
0, 26 − 1

]
 and N = 6, 12, 19, 25 and 32, corresponding to 10%, 20%, 30%, 40% 

and 50%. a Probability distribution of the number of ranges obtained by simulation. b Probability distri-
bution of the number of ranges obtained using the mathematical model



1 3

Journal of Network and Systems Management 

 7. Stoica, I., Morris, R., Liben-Nowell, Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: a scal-
able peer-to-peer lookup service for internet applications. IEEE ACM Trans. Netw. 11(1), 17–32 
(2003)

 8. Rowstron, A., Druschel, P.: Pastry: scalable, distributed object location and routing for large-scale 
peer-to-peer systems. In: Proceedings of IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pp. 329–350 (2001)

 9. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.: Tapestry: a resilient 
global-scale overlay for service deployment. IEEE J. Sel. Areas Commun. 22(1), 41–53 (2004)

 10. Maymounkov, P., Mazires, D.: Kademlia: A peer-to-peer information system based on the XOR 
metric. In: Proceedings of the First International Workshop on Peer-to-Peer Systems, pp. 53-65 
(2002)

 11. Dabek, F., Zhao, B., Druschel, P., Kubiatowicz, J., Stoica, I.: Towards a common API for structured 
peer-to-peer overlays, In: Proceedings of the 2nd International Workshop on Peer-to-Peer Systems 
(IPTPS03), pp. 33–44 (2003)

 12. Dabek, F., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Wide-area cooperative storage with 
CFS. In: Proceedings of the 8th ACM Symposium on Operating Systems Principles (SOSP), pp. 
202–215 (2001)

 13. Hildrum, K., Kubiatowicz, J.D., Rao, S., Zhao, B.Y.: Distributed object location in a dynamic net-
work. In: Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pp. 41–52 (2002)

 14. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.I.T.: Scribe: a large-scale and decentralized 
application-level multicast infrastructure. IEEE J. Sel. Areas Commun. 20(8), 1489–1499 (2006)

 15. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 
51(1), 107–113 (2008)

 16. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubra-
manian, S., Vosshall, P., Vogels, W.: Dynamo: Amazons highly available key-value store. ACM 
SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

 17. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from 
sequential building blocks. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Confer-
ence on Computer Systems, pp. 59–72 (2007)

 18. Beaver, D., Kumar, S., Li, H.C., Sobel, J., Vajgel, P.: Finding a needle in haystack: Facebooks photo 
storage. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, pp. 1–8 (2010)

 19. Abu-Libdeh, H., Costa, P., Rowstron, A., OShea, G., Donnelly, A.: Symbiotic routing in future data 
centers. ACM SIGCOMM Comput. Commun. Rev. 41(4), 51–62 (2011)

 20. Sankaran, S., Sridhar, R.: Modeling and analysis of routing in IoT networks. In: Proceedings of the 
International Conference on Computing and Network Communications, pp. 649–655 (2015)

 21. Rahmani, R., Rahman, H., Kanter, T.: On performance of logical-clustering of flow-sensors. Int. J. 
Comput. Sci. Issues 10(5), 1–13 (2013)

 22. Xylomenos, G., Ververidis, C.N., Siris, V.A., Fotiou, N., Tsilopoulos, C., Vasilakos, X., Katsaros, 
V., Polyzos, G.C.: A survey of information-centric networking research. IEEE Commun. Surv. 
Tutor. 16(2), 1024–1049 (2014)

 23. DAmbrosio, M., Dannewitz, C., Karl, H., Vercellone, V.: MDHT: a hierarchical name resolution 
service for information-centric networks. In: Proceedings of ACM Workshop on Information-Cen-
tric Networking, pp. 7–12 (2011)

 24. Dumba, B., Mekky, H., Jain, S., Sun, G., Zhang, Z.L.: A virtual Id routing protocol for future 
dynamics networks and its implementation using the SDN paradigm. J. Netw. Syst. Manag. 24(3), 
578–606 (2016)

 25. Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, 
J., Shelar, P., Amidon, K., Casado, M.: The design and implementation of Open vSwitch. In: Pro-
ceeding of the 12th USENIX Symposium on Networked Systems Design and Implementation, pp. 
117–130 (2015)

 26. Srinivasan, V., Varghese, G., Suri, S., Waldvoguel, M.: Fast and scalable layer four switching. ACM 
SIGCOMM Comput. Commun. Rev. 28(4), 191–202 (1998)

 27. Schiff, L., Afek, Y., Bremler-Barr, A.: ORange: Multi field OpenFlow based range classifier. In: 
Proceedings of the ACM/IEEE Symposium on Architectures for Networking and Communications 
Systems, pp. 63–73 (2015)



 Journal of Network and Systems Management

1 3

 28. Panigrahy, R., Sharma, S.: Sorting and searching using ternary cams. IEEE Micro 23(1), 44–53 
(2003)

 29. OpenFlow switch specification: Version 1.3.5. https ://www.openn etwor king.org/softw are-defin ed-
stand ards/speci ficat ions/. Accessed 24 Oct 2018

 30. Rosen, E., Viswanathan, A., Callon, R.: RFC 3031: multiprotocol label switching architecture 
(2001)

 31. Mininet Team. Mininet: an instant virtual network on your laptop (or other PC). http://minin et.org/. 
Accessed 24 Oct 2018

 32. Ryu SDN Framework Community. Build SDN agilely. https ://osrg.githu b.io/ryu/index .html. 
Accessed 24 Oct 2018

 33. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology zoo. IEEE 
J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

 34. Linux Foundation Collaborative Projects: Open vSwitch. https ://www.openv switc h.org. Accessed 
24 Oct 2018

 35. Emmerich, P., Raumer, D., Gallenmller, S., Wohlfart, F., Carle, G.: Trhougput and latency of virtual 
switching with Open vSwitch: a quantitative analysis. J. Netw. Syst. Manag. 26(2), 314–338 (2018)

 36. Thyagaturu, A.S., Mercian, A., McGarry, M.P., Reisslein, M., Kellerer, W.: Software defined optical 
networks (SDONs): a comprehensive survey. IEEE Commun. Surv. Tutor. 18(4), 2738–2786 (2016)

 37. Lee, S.S.W., Li, K.Y., Wu, M.S.: Design and implementation of a GPON-based virtual OpenFlow-
enabled SDN switch. J. Lightwave Technol. 34(10), 2552–2561 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

Adrian Flores‑de la Cruz received the Telecommunication Engineering degree in 2014 from Universidad 
Politecnica de Cartagena (UPCT), Spain. He is a research worker at the Department of Information and 
Communication Technologies of the UPCT since 2015 and his research interest is focused on Software-
Defined Networks.

Pilar Manzanares‑Lopez received the Engineering degree in Telecommunications in 2001 from the Tech-
nical University of Valencia (UPV), Spain. She has worked as associated professor at the Department of 
Information Technologies and Communications (UPCT) since 2001, where she obtained her Ph.D. in 
2006. Her research work includes Software Defined Networking, P2P networks and distributed systems.

Juan Pedro Muñoz‑Gea received the M.S. and Ph.D. in Telecommunication Engineering from Univer-
sidad Politecnica de Cartagena (UPCT), Spain. He works as associated professor in the Department of 
Information and Communication Technologies at UPCT. His research interests are focused on software-
defined networking and large-scale distributed networks.

Josemaria Malgosa‑Sanahuja received the degree in Telecommunication Eng. in 1994 from the Techni-
cal University of Catalonia (Spain). In November 2000, he received the Ph.D. degree in Telecommuni-
cation from the University of Zaragoza. In September 1999, he joined the Universidad Politecnica de 
Cartagena as associated professor. His interests include switching technologies and distributed systems.

https://www.opennetworking.org/software-defined-standards/specifications/
https://www.opennetworking.org/software-defined-standards/specifications/
http://mininet.org/
https://osrg.github.io/ryu/index.html
https://www.openvswitch.org

	OpenFlow Compatible Key-Based Routing Protocol: Adapting SDN Networks to ContentService-Centric Paradigm
	Abstract
	1 Introduction
	2 Related Work
	3 Review of Required Technologies
	3.1 Lookup Mechanism of Chord
	3.2 Range Representation Based on Prefix Expansion

	4 OpenFlow Compatible Key-Based Routing Protocol
	4.1 Virtual Identifier Assignment
	4.2 Key-Based Routing Information
	4.3 Virtual and Physical Paths

	5 Joining of End-Points and Distributed Name Resolution Mechanism
	5.1 Joining Procedure
	5.2 Distributed Name Resolution Mechanism
	5.3 Example of Joining and Name Resolution

	6 Performance Evaluation
	6.1 Finger Table Conversion into Ranges
	6.2 OpenFlow Table Occupation
	6.3 Network Performance
	6.3.1 Routing Optimization
	6.3.2 Routing Throughput


	7 Proposed Expansion of OpenFlow Standard to Improve the OFC-KBR Performance
	8 Conclusions
	Acknowledgements 
	References




