Skip to main content
Log in

A Frontier: Dependable, Reliable and Secure Machine Learning for Network/System Management

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Modern networks and systems pose many challenges to traditional management approaches. Not only the number of devices and the volume of network traffic are increasing exponentially, but also new network protocols and technologies require new techniques and strategies for monitoring controlling and managing up and coming networks and systems. Moreover, machine learning has recently found its successful applications in many fields due to its capability to learn from data to automatically infer patterns for network analytics. Thus, the deployment of machine learning in network and system management has become imminent. This work provides a review of the applications of machine learning in network and system management. Based on this review, we aim to present the current opportunities and challenges in and highlight the need for dependable, reliable and secure machine learning for network and system management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted with changes from [5])

Similar content being viewed by others

References

  1. Dua, S., Du, X.: Data Mining and Machine Learning in Cybersecurity. Auerbach Publications, Boca Raton (2016)

    Book  MATH  Google Scholar 

  2. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  3. Kalmbach, P., Zerwas, J., Babarczi, P., Blenk, A., Kellerer, W., Schmid, S.: Empowering self-driving networks. In: Proceedings of the afternoon workshop on self-driving networks, pp. 8–14. ACM, New York (2018)

  4. Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehous. 5(4), 13–22 (2000)

    Google Scholar 

  5. Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J.: Machine learning for networking: workflow, advances and opportunities. IEEE Netw. 32(2), 92–99 (2017)

    Article  Google Scholar 

  6. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016). https://doi.org/10.1109/COMST.2015.2494502

    Article  Google Scholar 

  7. Alpaydin, E.: Introduction to Machine Learning. The MIT Press, Cambridge (2014)

    MATH  Google Scholar 

  8. Tiwana, M.I., Tiwana, M.I.: A novel framework of automated RRM for LTE son using data mining: application to LTE mobility. J. Netw. Syst. Manag. 22(2), 235–258 (2014)

    Article  Google Scholar 

  9. Aggarwal, C.C.: Outlier Analysis, 2nd edn. Springer Publishing Company, Incorporated, New York (2016)

    MATH  Google Scholar 

  10. Calyam, P., Dhanapalan, M., Sridharan, M., Krishnamurthy, A., Ramnath, R.: Topology-aware correlated network anomaly event detection and diagnosis. J. Netw. Syst. Manag. 22(2), 208–234 (2014)

    Article  Google Scholar 

  11. Vaton, S., Brun, O., Mouchet, M., Belzarena, P., Amigo, I., Prabhu, B.J., Chonavel, T.: Joint minimization of monitoring cost and delay in overlay networks: optimal policies with a Markovian approach. J. Netw. Syst. Manag. 27(1), 188–232 (2019)

    Article  Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996)

    Article  Google Scholar 

  13. Nawrocki, P., Sniezynski, B.: Adaptive service management in mobile cloud computing by means of supervised and reinforcement learning. J. Netw. Syst. Manag. 26(1), 1–22 (2018)

    Article  Google Scholar 

  14. Heywood, M.I.: Evolutionary model building under streaming data for classification tasks: opportunities and challenges. Genet. Program. Evol. Mach. 16(3), 283–326 (2015)

    Article  MathSciNet  Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  16. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Evolutionary computation as an artificial attacker: generating evasion attacks for detector vulnerability testing. Evolut. Intell. 4(4), 243–266 (2011)

    Article  Google Scholar 

  17. Breiman, L.: Random forests. Mach. Learn. (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  18. ISO/IEC: Information Processing Systems—Open Systems Interconnection—Basic Reference Model—Part 4 Management Framework. Standard International Organization for Standardization, Geneva (1989)

    Google Scholar 

  19. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 16 (2018). https://doi.org/10.1186/s13174-018-0087-2

    Article  Google Scholar 

  20. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using machine learning. IEEE Commun. Surv. Tutor. 10(4), 56–76 (2008). https://doi.org/10.1109/SURV.2008.080406

    Article  Google Scholar 

  21. Velan, P., Čermák, M., Čeleda, P., Drašar, M.: A survey of methods for encrypted traffic classification and analysis. Int. J. Netw. Manag. 25(5), 355–374 (2015). https://doi.org/10.1002/nem.1901

    Article  Google Scholar 

  22. Callado, A., Kamienski, C., Szabo, G., Gero, B.P., Kelner, J., Fernandes, S., Sadok, D.: A survey on internet traffic identification. IEEE Commun. Surv. Tutor. 11(3), 37–52 (2009). https://doi.org/10.1109/SURV.2009.090304

    Article  Google Scholar 

  23. Kim, H., Claffy, K.C., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.Y.: Internet traffic classification demystified: myths, caveats, and the best practices. In: Proceedings of 4th ACM international conference on emerging networking experiments and technologies, CoNEXT ’08, https://doi.org/10.1145/1544012.1544023 (2008)

  24. Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow classification. Comput. Commun. Rev. 36(5), 7–15 (2006). https://doi.org/10.1145/1163593.1163596

    Article  Google Scholar 

  25. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: stochastic packet inspection classifier for udp traffic. IEEE/ACM Trans. Netw. 18(5), 1505–1515 (2010). https://doi.org/10.1109/TNET.2010.2044046

    Article  Google Scholar 

  26. Alshammari, R., Zincir-Heywood, A.N.: Machine learning based encrypted traffic classification: identifying ssh and skype. In: 2009 IEEE symposium on computational intelligence for security and defense applications, pp. 1–8 (2009) https://doi.org/10.1109/CISDA.2009.5356534

  27. Sun, G., Xue, Y., Dong, Y., Wang, D., Li, C.: An novel hybrid method for effectively classifying encrypted traffic. In: 2010 IEEE global telecommunications conference GLOBECOM 2010, pp. 1–5 (2010). https://doi.org/10.1109/GLOCOM.2010.5683649

  28. Anderson, B., McGrew, D.: Machine learning for encrypted malware traffic classification: accounting for noisy labels and non-stationarity. In: Proceedings of the ACM SIGKDD international conference on knowledge discovery and data mining, vol. Part F1296, pp. 1723–1732 (2017). https://doi.org/10.1145/3097983.3098163

  29. Bar Yanai, R., Langberg, M., Peleg, D., Roditty, L.: Realtime classification for encrypted traffic. In: Festa, P. (ed.) Experimental Algorithms, pp. 373–385. Springer, Berlin (2010)

    Chapter  Google Scholar 

  30. Lotfollahi, M., Jafari Siavoshani, M., Shirali Hossein Zade, R., Saberian, M.: Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Comput. (2019). https://doi.org/10.1007/s00500-019-04030-2

    Article  Google Scholar 

  31. Meidan, Y., Bohadana, M., Shabtai, A., Guarnizo, J.D., Ochoa, M., Tippenhauer, N.O., Elovici, Y.: Profiliot: a machine learning approach for iot device identification based on network traffic analysis. In: Proceedings of the symposium on applied computing, pp. 506–509. ACM, New York (2017). https://doi.org/10.1145/3019612.3019878

  32. Khatouni, A.S., Zhang, L., Aziz, K., Zincir, I., Zincir-Heywood, N.: Exploring nat detection and host identification using machine learning. In: CNSM (2019)

  33. Montieri, A., Ciuonzo, D., Aceto, G., Pescapé, A.: Anonymity services tor, i2p, jondonym: classifying in the dark. In: 2017 29th international teletraffic congress (ITC 29), vol. 1, pp. 81–89. IEEE, New York (2017)

  34. Shahbar, K., Zincir-Heywood, A.N.: How far can we push flow analysis to identify encrypted anonymity network traffic? In: 2018 IEEE/IFIP network operations and management symposium, pp. 1–6 (2018). https://doi.org/10.1109/NOMS.2018.8406156

  35. Wang, P., Lin, S.C., Luo, M.: A framework for QoS-aware traffic classification using semi-supervised machine learning in SDNs. In: 2016 IEEE international conference on services computing (SCC), pp. 760–765. IEEE, New York (2016)

  36. DrAlconzo, A., Drago, I., Morichetta, A., Mellia, M., Casas, P.: A survey on big data for network traffic monitoring and analysis. IEEE Trans. Netw. Serv. Manag. (2019). https://doi.org/10.1109/tnsm.2019.2933358

    Article  Google Scholar 

  37. Dalmazo, B.L., Vilela, J.P., Curado, M.: Performance analysis of network traffic predictors in the cloud. J. Netw. Syst. Manag. 25(2), 290–320 (2017). https://doi.org/10.1007/s10922-016-9392-x

    Article  Google Scholar 

  38. Cortez, P., Rio, M., Rocha, M., Sousa, P.: Internet traffic forecasting using neural networks. In: The 2006 IEEE international joint conference on neural network proceedings, pp. 2635–2642. IEEE, New York (2006)

  39. Oliveira, T.P., Barbar, J.S., Soares, A.S.: Computer network traffic prediction: a comparison between traditional and deep learning neural networks. Int. J. Big Data Intell. 3(1), 28–37 (2016)

    Article  Google Scholar 

  40. Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., Mizutani, K.: State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Commun. Surv. Tutor. 19(4), 2432–2455 (2017)

    Article  Google Scholar 

  41. Bantouna, A., Poulios, G., Tsagkaris, K., Demestichas, P.: Network load predictions based on big data and the utilization of self-organizing maps. J. Netw. Syst. Manag. 22(2), 150–173 (2014). https://doi.org/10.1007/s10922-013-9285-1

    Article  Google Scholar 

  42. Kim, H.G., Lee, D.Y., Jeong, S.Y., Choi, H., Yoo, J.H., Hong, J.W.K.: Machine learning-based method for prediction of virtual network function resource demands. In: 2019 IEEE conference on network softwarization (NetSoft), pp. 405–413. IEEE, New York (2019)

  43. Moradi, F., Stadler, R., Johnsson, A.: Performance prediction in dynamic clouds using transfer learning. In: 2019 IFIP/IEEE symposium on integrated network and service management (IM), pp. 242–250. IEEE, New York (2019)

  44. Jeong, Y.S., Byon, Y.J., Castro-Neto, M.M., Easa, S.M.: Supervised weighting-online learning algorithm for short-term traffic flow prediction. IEEE Trans. Intell. Transp. Syst. 14(4), 1700–1707 (2013)

    Article  Google Scholar 

  45. Zhang, Y., Zhou, Y.: Distributed coordination control of traffic network flow using adaptive genetic algorithm based on cloud computing. J. Netw. Comput. Appl. 119, 110–120 (2018)

    Article  Google Scholar 

  46. Yang, T., Hu, Y., Gursoy, M.C., Schmeink, A., Mathar, R.: Deep reinforcement learning based resource allocation in low latency edge computing networks. In: 2018 15th international symposium on wireless communication systems (ISWCS), pp. 1–5. IEEE, New York (2018)

  47. Mao, H., Alizadeh, M., Menache, I., Kandula, S.: Resource management with deep reinforcement learning. In: Proceedings of the 15th ACM workshop on hot topics in networks, pp. 50–56. ACM, New York (2016)

  48. Bachl, M., Zseby, T., Fabini, J.: Rax: deep reinforcement learning for congestion control. In: ICC 2019-2019 IEEE international conference on communications (ICC), pp. 1–6. IEEE, New York (2019)

  49. Li, W., Zhou, F., Chowdhury, K.R., Meleis, W.M.: Qtcp: adaptive congestion control with reinforcement learning. IEEE Trans. Netw. Sci. Eng. 6(3), 445–458 (2018)

    Article  Google Scholar 

  50. Tsai, C.F., Hsu, Y.F., Lin, C.Y., Lin, W.Y.: Intrusion detection by machine learning: a review. Expert Syst. Appl. 36(10), 11994–12000 (2009)

    Article  Google Scholar 

  51. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014). https://doi.org/10.1109/SURV.2013.052213.00046

    Article  Google Scholar 

  52. Sequeira, K., Zaki, M.: ADMIT: anomaly-based data mining for intrusions. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp. 386–395 (2002). https://doi.org/10.1145/775047.775103

  53. Jiang, S., Song, X., Wang, H., Han, J.J., Li, Q.H.: A clustering-based method for unsupervised intrusion detections. Pattern Recognit. Lett. 27(7), 802–810 (2006). https://doi.org/10.1016/j.patrec.2005.11.007

    Article  Google Scholar 

  54. Casas, P., Mazel, J., Owezarski, P.: Unsupervised network intrusion detection systems: detecting the unknown without knowledge. Comput. Commun. 35(7), 772–783 (2012). https://doi.org/10.1016/j.comcom.2012.01.016

    Article  Google Scholar 

  55. Kayacık, H.G., Zincir-Heywood, A.N., Heywood, M.I.: A hierarchical SOM-based intrusion detection system. Eng. Appl. Artif. Intell. 20(4), 439–451 (2007)

    Article  Google Scholar 

  56. Perdisci, R., Gu, G., Lee, W.: Using an ensemble of one-class svm classifiers to harden payload-based anomaly detection systems. In: Sixth international conference on data mining (ICDM’06), pp. 488–498 (2006). https://doi.org/10.1109/ICDM.2006.165

  57. Veeramachaneni, K., Arnaldo, I., Korrapati, V., Bassias, C., Li, K.: \(\text{AI}^{\wedge{}}2\): training a big data machine to defend. In: 2016 IEEE 2nd international conference on big data security on cloud (BigDataSecurity), pp. 49–54. IEEE, New York. (2016). https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.79

  58. Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., Garant, D.: Botnet detection based on traffic behavior analysis and flow intervals. Comput. Secur. 39, 2–16 (2013)

    Article  Google Scholar 

  59. Aburomman, A.A., Reaz, M.B.I.: A novel SVM-kNN-PSO ensemble method for intrusion detection system. Appl. Soft Comput. 38, 360–372 (2016)

    Article  Google Scholar 

  60. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

    Article  Google Scholar 

  61. Lopez-Martin, M., Carro, B., Sanchez-Esguevillas, A.: Application of deep reinforcement learning to intrusion detection for supervised problems. Expert Syst. Appl. 141, 112963 (2020)

    Article  Google Scholar 

  62. Khanchi, S., Vahdat, A., Heywood, M.I., Zincir-Heywood, A.N.: On botnet detection with genetic programming under streaming data label budgets and class imbalance. Swarm Evolut. Comput. 39, 123–140 (2018)

    Article  Google Scholar 

  63. Haddadi, F., Le, D.C., Porter, L., Zincir-Heywood, A.N.: On the effectiveness of different botnet detection approaches. In: International conference on information security practice and experience, pp. 121–135. Springer, New York (2015)

  64. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network traffic for protocol- and structure-independent botnet detection. In: Proceedings of the 17th USENIX security symposium, pp. 139–154 (2008)

  65. Khan, I.A., Pi, D., Khan, Z.U., Hussain, Y., Nawaz, A.: Hml-ids: a hybrid-multilevel anomaly prediction approach for intrusion detection in SCADA systems. IEEE Access 7, 89507–89521 (2019)

    Article  Google Scholar 

  66. Makanju, A., Zincir-Heywood, A.N., Kiyomoto, S.: On evolutionary computation for moving target defense in software defined networks. In: Proceedings of the genetic and evolutionary computation conference companion, pp. 287–288. ACM, New York (2017)

  67. Sengupta, S,, Chakraborti, T., Kambhampati, S.: Mtdeep: boosting the security of deep neural nets against adversarial attacks with moving target defense. In: Workshops at the thirty-second AAAI conference on artificial intelligence (2018)

  68. Le, D.C., Khanchi, S., Zincir-Heywood, A.N., Heywood, M.I.: Benchmarking evolutionary computation approaches to insider threat detection. In: Genetic and evolutionary computation conference (GECCO ’18), pp. 1286–1293 (2018). https://doi.org/10.1145/3205455.3205612

  69. Rashid, T., Agrafiotis, I., Nurse, J.R.: A new take on detecting insider threats: exploring the use of hidden markov models. In: Proceedings of the 8th ACM CCS international workshop on managing insider security threats, pp. 47–56 (2016). https://doi.org/10.1145/2995959.2995964

  70. Chau, M., Chen, H.: A machine learning approach to web page filtering using content and structure analysis. Decis. Support Syst. 44(2), 482–494 (2008)

    Article  Google Scholar 

  71. Xie, J., Yu, F.R., Huang, T., Xie, R., Liu, J., Wang, C., Liu, Y.: A survey of machine learning techniques applied to software defined networking (sdn): research issues and challenges. IEEE Commun. Surv. Tutor. 21(1), 393–430 (2018)

    Article  Google Scholar 

  72. Zhang, C., Patras, P., Haddadi, H.: Deep learning in mobile and wireless networking: a survey. IEEE Commun. Surv. Tutor. 21(3), 2224–87 (2019)

    Article  Google Scholar 

  73. Amiri, R., Almasi, M.A., Andrews, J.G., Mehrpouyan, H.: Reinforcement learning for self organization and power control of two-tier heterogeneous networks. IEEE Trans. Wirel. Commun. 18(8), 3933–3947 (2019)

    Article  Google Scholar 

  74. Moysen, J., Giupponi, L.: From 4G to 5G: self-organized network management meets machine learning. Comput. Commun. 129, 248–268 (2018)

    Article  Google Scholar 

  75. Roy, A., Saxena, N., Sahu, B.J., Singh, S.: Bison: a bioinspired self-organizing network for dynamic auto-configuration in 5g wireless. Wirel. Commun. Mobile Comput. (2018). https://doi.org/10.1155/2018/2632754

    Article  Google Scholar 

  76. Wang, H., Wu, Q., Chen, X., Yu, Q., Zheng, Z., Bouguettaya, A.: Adaptive and dynamic service composition via multi-agent reinforcement learning. In: 2014 IEEE international conference on web services, pp. 447–454. IEEE, New York (2014)

  77. Valadarsky, A., Schapira, M., Shahaf, D., Tamar, A.: Learning to route. In: Proceedings of the 16th ACM workshop on hot topics in networks, pp. 185–191. ACM, New York (2017)

  78. Kim, H.Y., Kim, J.M.: A load balancing scheme based on deep-learning in iot. Clust. Comput. 20(1), 873–878 (2017)

    Article  Google Scholar 

  79. Hajji, H.: Statistical analysis of network traffic for adaptive faults detection. IEEE Trans. Neural Netw. 16(5), 1053–1063 (2005)

    Article  Google Scholar 

  80. Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure monitoring. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp. 499–508. ACM, New York (2005)

  81. Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brewer, E.: Failure diagnosis using decision trees. In: International conference on autonomic computing, 2004. Proceedings, pp. 36–43. IEEE, New York (2004)

  82. Hashmi, U.S., Darbandi, A., Imran, A.: Enabling proactive self-healing by data mining network failure logs. In: 2017 international conference on computing, networking and communications (ICNC), pp. 511–517. IEEE, New York (2017)

  83. Zhang, S., Liu, Y., Meng, W., Luo, Z., Bu, J., Yang, S., Liang, P., Pei, D., Xu, J., Zhang, Y., Chen, Y., Dong, H., Qu, X., Song, L.: Prefix: switch failure prediction in datacenter networks. Proc. ACM Meas. Anal. Comput. Syst. 2(1), 2:1–2:29 (2018)

    Article  Google Scholar 

  84. Mismar, F.B., Evans, B.L.: Deep Q-learning for self-organizing networks fault management and radio performance improvement. In: 2018 52nd asilomar conference on signals, systems, and computers, pp. 1457–1461. IEEE, New York (2018)

  85. Alshammari, R., Zincir-Heywood, A.N.: Can encrypted traffic be identified without port numbers, IP addresses and payload inspection? Comput. Netw. 55(6), 1326–1350 (2011). https://doi.org/10.1016/j.comnet.2010.12.002

    Article  Google Scholar 

  86. Alshammari, R., Nur Zincir-Heywood, A.: A flow based approach for ssh traffic detection. In: 2007 IEEE international conference on systems, man and cybernetics, pp. 296–301 (2007). https://doi.org/10.1109/ICSMC.2007.4414006

  87. Zander, S., Nguyen, T., Armitage, G.: Automated traffic classification and application identification using machine learning. In: Proceedings of the ieee conference on local computer networks 30th anniversary, LCN ’05, pp. 250–257. IEEE Computer Society, Washington, DC (2005). https://doi.org/10.1109/LCN.2005.35

  88. Le, D.C., Zincir-Heywood, A.N., Heywood, M.I.: Data analytics on network traffic flows for botnet behaviour detection. In: IEEE symposium series on computational intelligence (SSCI ’16), pp. 1–7 (2016). https://doi.org/10.1109/SSCI.2016.7850078

  89. Bernaille, L., Teixeira, R.: Early recognition of encrypted applications. In: Lecture notes in computer science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4427 LNCS, pp. 165–175 (2007). https://doi.org/10.1007/978-3-540-71617-4_17

  90. Bacquet, C., Zincir-Heywood, A.N., Heywood, M.I.: Genetic optimization and hierarchical clustering applied to encrypted traffic identification. In: 2011 IEEE symposium on computational intelligence in cyber security (CICS), pp. 194–201 (2011). https://doi.org/10.1109/CICYBS.2011.5949391

  91. Silva, J.M.C., Carvalho, P., Lima, S.R.: A modular traffic sampling architecture: bringing versatility and efficiency to massive traffic analysis. J. Netw. Syst. Manag. 25(3), 643–668 (2017)

    Article  Google Scholar 

  92. Hardegen, C., Pfülb, B., Rieger, S., Gepperth, A., Reissmann, S.: Flow-based throughput prediction using deep learning and real-world network traffic. In: International conference on network and service management. IEEE, New York (2019)

  93. Mirza, M., Sommers, J., Barford, P., Zhu, X.: A machine learning approach to TCP throughput prediction. ACM SIGMETRICS Perform. Eval. Rev. 35, 97–108 (2007)

    Article  Google Scholar 

  94. Chen, Z., Wen, J., Geng, Y.: Predicting future traffic using hidden markov models. In: 2016 IEEE 24th international conference on network protocols (ICNP), pp. 1–6. IEEE, New York (2016)

  95. Kim, S., Kim, D.Y., Park, J.H.: Traffic management in the mobile edge cloud to improve the quality of experience of mobile video. Comput. Commun. 118, 40–49 (2018)

    Article  Google Scholar 

  96. Mijumbi, R., Gorricho, J.L., Serrat, J., Claeys, M., De Turck, F., Latré, S.: Design and evaluation of learning algorithms for dynamic resource management in virtual networks. In: 2014 IEEE network operations and management symposium (NOMS), pp. 1–9. IEEE, New York (2014)

  97. Yu, C., Lan, J., Xie, J., Hu, Y.: Qos-aware traffic classification architecture using machine learning and deep packet inspection in SDNS. Procedia Comput. Sci. 13(1), 1209–1216 (2018)

    Article  Google Scholar 

  98. Zhu, G., Zan, J., Yang, Y., Qi, X.: A supervised learning based QoS assurance architecture for 5G networks. IEEE Access 7, 43598–43606 (2019)

    Article  Google Scholar 

  99. Dainotti, A., Pescapé, A., Ventre, G.: A cascade architecture for DoS attacks detection based on the wavelet transform. J. Comput. Secur. 17(6), 945–968 (2009)

    Article  Google Scholar 

  100. Otey, M.E., Ghoting, A., Parthasarathy, S.: Fast distributed outlier detection in mixed-attribute data sets. Data Min. Knowl. Discov. 12(2–3), 203–228 (2006). https://doi.org/10.1007/s10618-005-0014-6

    Article  MathSciNet  Google Scholar 

  101. Le, D.C., Zincir-Heywood, A.N.: Evaluating insider threat detection workflow using supervised and unsupervised learning. In: IEEE security and privacy workshops (SPW ’18), San Francisco, CA, USA, pp. 270–275 (2018). https://doi.org/10.1109/SPW.2018.00043

  102. Le, D.C., Zincir-Heywood, A.N.: Machine learning based insider threat modelling and detection. In: IFIP/IEEE international symposium on integrated network management, Washington DC, USA (2019)

  103. Alrawashdeh, K., Purdy, C.: Toward an online anomaly intrusion detection system based on deep learning. In: 2016 15th IEEE international conference on machine learning and applications (ICMLA), pp. 195–200. IEEE, New York (2016)

  104. Hofstede, R., Jonker, M., Sperotto, A., Pras, A.: Flow-based web application brute-force attack and compromise detection. J. Netw. Syst. Manag. 25(4), 735–758 (2017)

    Article  Google Scholar 

  105. Haddadi, F., Zincir-Heywood, A.N.: Benchmarking the effect of flow exporters and protocol filters on botnet traffic classification. IEEE Syst. J. 10(4), 1390–1401 (2016)

    Article  Google Scholar 

  106. Abubakar, A., Pranggono, B.: Machine learning based intrusion detection system for software defined networks. In: 2017 seventh international conference on emerging security technologies (EST), pp. 138–143. IEEE, New York (2017)

  107. Deshpande, P., Sharma, S.C., Peddoju, S.K., Junaid, S.: Hids: a host based intrusion detection system for cloud computing environment. Int. J. Syst. Assur. Eng. Manag. 9(3), 567–576 (2018)

    Article  Google Scholar 

  108. Nobakht, M., Sivaraman, V., Boreli, R.: A host-based intrusion detection and mitigation framework for smart home iot using openflow. In: 2016 11th international conference on availability, reliability and security (ARES), pp. 147–156. IEEE, New York (2016)

  109. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: Finding bots in network traffic without deep packet inspection. In: Proceedings of the 8th international conference on emerging networking experiments and technologies, pp. 349–360. ACM, New York (2012)

  110. Guzella, T.S., Caminhas, W.M.: A review of machine learning approaches to spam filtering. Expert Syst. Appl. 36(7), 10206–10222 (2009)

    Article  Google Scholar 

  111. 5GPPP (2017) Cognitive network management for 5G. White paper, 5GPPP Working Group on Network Management and QoS

  112. Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: a reinforcement learning approach. Advances in Neural Information Processing Systems, pp. 671–678. Morgan Kaufmann Publishers, San Mateo (1994)

    Google Scholar 

  113. Gomez, C., Shami, A., Wang, X.: Machine learning aided scheme for load balancing in dense iot networks. Sensors 18(11), 3779 (2018)

    Article  Google Scholar 

  114. Qader, K.: The computer network faults classification using a novel hybrid classifier. Ph.D. thesis, University of Portsmouth (2019)

  115. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: Investigating event log analysis with minimum apriori information. In: Proceedings of the IFIP/IEEE international symposium on integrated network management (IM). IEEE, New York (2013)

  116. Zakeri, H., Antsaklis, P.J.: A data-driven adaptive controller reconfiguration for fault mitigation: a passivity approach. arXiv preprint arXiv:190209671 (2019)

  117. Konecný, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. CoRR abs/1610.05492, arxiv:1610.05492 (2016)

  118. Jayaraman, B., Evans, D.: Evaluating differentially private machine learning in practice. In: 28th USENIX security symposium (USENIX Security 19), USENIX Association, Santa Clara, CA, pp. 1895–1912, https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman (2019)

  119. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. Stoc 9, 169–178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  120. Le, D.C., Zincir-Heywood, N.: Big data in network anomaly detection. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies, pp. 1–9. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8_161-1

    Chapter  Google Scholar 

  121. Kim, B.: Interactive and interpretable machine learning models for human machine collaboration. Ph.D. thesis, Massachusetts Institute of Technology (2015)

  122. Warde-Farley, D., Goodfellow, I.: Adversarial perturbations of deep neural networks. In: Hazan, T., Papandreou, G., Tarlow, D. (eds.) Perturbations, Optimization, and Statistics. The MIT Press (2016). https://doi.org/10.7551/mitpress/10761.003.0012

  123. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. In: 2016 IEEE European symposium on security and privacy (EuroS&P), pp. 372–387. IEEE, New York (2016)

  124. Rigaki, M., Garcia, S.: Bringing a gan to a knife-fight: Adapting malware communication to avoid detection. In: 2018 IEEE security and privacy workshops (SPW), pp. 70–75. IEEE, New York (2018)

  125. Bronfman-Nadas, R., Zincir-Heywood, N., Jacobs, J.T.: An artificial arms race: could it improve mobile malware detectors? In: 2018 network traffic measurement and analysis conference (TMA), (2018). https://doi.org/10.23919/TMA.2018.8506545

  126. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:170606083 (2017)

  127. Verma, G., Ciftcioglu, E., Sheatsley, R., Chan, K., Scott, L.: Network traffic obfuscation: An adversarial machine learning approach. In: MILCOM 2018-2018 IEEE military communications conference (MILCOM), pp. 1–6. IEEE, New York (2018)

  128. Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., Funaya, K.: Robust online time series prediction with recurrent neural networks. In: 2016 IEEE international conference on data science and advanced analytics (DSAA), pp. 816–825. IEEE, New York (2016)

  129. Le, D.C, Zincir-Heywood, N.: Learning from evolving network data for dependable botnet detection. In: International conference on network and service management (CNSM 2019), Halifax, Canada (2019)

Download references

Acknowledgements

This research is supported by Natural Science and Engineering Research Council of Canada (NSERC). Duc C. Le gratefully acknowledges the supports of the Killam Trusts and the province of Nova Scotia. The research is conducted as part of the Dalhousie NIMS Lab at: https://projects.cs.dal.ca/projectx/. The authors would like to thank the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nur Zincir-Heywood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, D.C., Zincir-Heywood, N. A Frontier: Dependable, Reliable and Secure Machine Learning for Network/System Management. J Netw Syst Manage 28, 827–849 (2020). https://doi.org/10.1007/s10922-020-09512-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10922-020-09512-5

Keywords

Navigation