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Abstract
Software-Defined-Networking (SDN) has been recently arising as a new technology 
in the IT industry. It is a network architecture that hopes to provide better solutions 
to most of the constraints in contemporary networks. SDN is a centralized control 
architecture for networking in which the control plane is separated from the data 
plane, the network services are abstracted from the underlying forwarding devices, 
and the network’s intelligence is centralized in a software-based directly-pro-
grammed device called a controller. These features of SDN provide more flexible, 
programmable and innovative network’s architecture. However, they may pose new 
vulnerabilities and may lead to new security problems. In this paper, we propose 
the application-aware firewall mechanism for SDN, which can be implemented as 
an extension to the network’s controller. In order to provide more control and vis-
ibility in applications running over the network, the system is able to detect network 
applications that may at some point affect network’s performance, and it is capable 
to dynamically enforce constraint rules on applications. The firewall architecture is 
designed as four cooperating modules: the Main Module, the Filtering Module, the 
Application Identification Module, and the Security-Enforcement Module. The pro-
posed mechanism checks the network traffic at the network, transport, and applica-
tion levels, and installs appropriate security instructions down into the network. The 
proposed solution features were implemented and tested using a Python-based POX 
controller, and the network topology was built using Mininet emulation tool.
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1  Introduction

It is hard to find a facet of our life that does not involve a computer system, at 
least on some levels. In modern business climate, computer networks have 
become a key element in providing important connections for an organization to 
run its applications and provide services. In today’s world, there are thousands 
of applications that use the Internet to provide different services, such as online 
shopping, data transfer, instant messaging, or video conferencing. They use a 
wide range of different communication protocols. Knowledge of the application 
protocols running in the network is very important for network operators. With 
this knowledge, they are able to properly configure networks and provide fine-
grained security.

For instance, identifying Layer 7 protocol lets network operators to sort traffic 
according to which application or application service the traffic is trying to reach, 
and what the specific contents of that traffic are. Instead of simply blocking all 
traffic on a particular port, they can use an application-aware firewall to generally 
accept traffic on that port but block any traffic that contains a known vulnerability 
(like an SQL injection attack or a malicious telnet command).

Over the last few years, SDN has been one of the trending topics in network 
technologies. It has received a considerable attention from, both, researchers and 
IT industry, believing that SDN can provide creativity, invention and best solu-
tions to most chronic problems experienced by existing networks [1]. The key 
feature of the SDN model is the physical separation between the control plane and 
the data plane [2]. Whereas, the control plane of all network devices is migrated 
from the forwarding elements and grouped into a software-based device known as 
a “controller”. Typically, SDN architecture encompasses three distinct planes: the 
data plane, the control plane, and the application plane.

The data plane involves network devices connected to each other [3]. This 
plane is responsible for data forwarding as well as gathering local information 
and statistics. The control plane contains one or more connected controllers. It 
strives to behave like a network operating system. It represents the brain of the 
network in which the network intelligence is centralized. The controller’s com-
prehensive view of the entire network helps to make forwarding decisions for the 
underlying network elements. For further liberation, rapid innovation, and high 
scalability, network services are extracted from basic network elements; they are 
clearly presented as a separate application plane.

Typically, the SDN Controller handles traffic (Sect.  2.1) with respect to low 
level traffic identifiers (e.g., header field values) and physical identifiers (e.g., 
an interface identifier) [4]. Thus, the SDN Controller has no insight into rela-
tions between flows. Due to the lack of high-level traffic identifiers, it is not pos-
sible to directly and consistently specify policies for all flows belonging to a spe-
cific application or to define policies for specific persons that are the parties of 
communication.

Motivation: On the one hand, greater reliance on software, direct program-
ming capability, and centralized logical network intelligence of the SDN-based 
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network can support rapid updating and provides different ways and opportuni-
ties to enhance and protect the network [5]. On the other hand, these features 
bring new vulnerabilities related to security, scalability, and flexibility [6, 7]. Fur-
thermore, the primary design of the SDN architecture does not sufficiently take 
into account security requirements what makes security issues a real challenge. 
Thus, it is essential to build a robust security mechanism to protect the network 
from internal and external malicious activities while respecting the objective of 
the SDN network. In other words, one must build a mechanism with application-
aware capabilities to inspect the network traffic, which can have a plane-like fire-
wall that creates additional boundaries within the network, and which provides 
“defense-in-depth” usually considered as a good solution for networks with dif-
ferent levels of trust.

Contributions: In this paper, we use the advantages of the central control unit 
with its global network view, the benefit of sending the initial flow packets to the 
controller for routing information (reactive routing), and the SDN data plane pro-
grammability to propose a firewall mechanism able to recognize applications in 
order to ensure security in SDN networks. Such a firewall will act as an applica-
tion based on the controller’s API. Our proposed solution aims to set up application-
based traffic filtering mechanism, which is implemented as a modular application 
running at the top of the controller. The method is based on converting each for-
ward element to a defense point, making it easy to protect the network from external 
attacks as well as from internal malicious users. The network security policies are 
centralized in the controller, which is the unit responsible for deciding regarding how 
the switches should handle the packets. The proposed firewall can be implemented 
and deployed effectively on small, local, and lightly utilized networks, where it can 
detect network applications that may at some point affect network performance.

This paper is organized as follows. Section 2 describes the theoretical background 
of OpenFlow-based SDN networks and firewall technologies. The related work and 
state of the art of current SDN security solutions are presented in Sect. 3. Section 4 
highlights the proposed system’s architecture. Implementation and evaluation of the 
system are given in Sect. 5. Section 6 concludes the paper with a summary of its 
content and possible future enhancements.

2 � Background

To realize our proposal system and link it with other existing network solutions, we 
start with a brief description of the OpenFlow-based SDN architecture and firewalls 
technologies. Understanding the main characteristics and functionality of these com-
ponents plays a significant role when designing solutions to secure SDN networks.

2.1 � OpenFlow/SDN Network

The OpenFlow-based SDN architecture can be described as the formation of sev-
eral interrelated and collaborative planes, as shown in Fig.  1. SDN architecture 
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consists primarily of three basic planes known as the data plane, the control plane, 
and the application plane. Each plane performs specific functions and takes advan-
tage of information or services provided by other planes. Typically, two interfaces: 
the Northbound interface (NBI), and the Southbound Interface (SBI) are imple-
mented by the control plane to communicate with the application and data planes, 
respectively.

OpenFlow [8] is a widely used protocol in the Southbound in SDN framework. 
Open Networks Foundation (ONF) specifies OpenFlow as a standard communica-
tion protocol that defines the interaction between OpenFlow-enabled switches and 
the OpenFlow controller. Speaking broad, OpenFlow sets different messages that 
provide means for the remote controller to control the behavior of network switches 
by adding, deleting, or modifying flow table entries in these switches.

The control plan contains a central control software program, known as the 
OpenFlow-enable controller, has a network-wide view of the whole network and is 
responsible for making a forwarding decision. The data plan consists of OpenFlow-
enable switches that are basic forwarding devices which utilize a simple “Match-
Action” mechanism to perform flow-based packets forwarding according to their 
flow table. The flow table contains a set of flow entries (also called flow rules) each 
of which consists of headers fields, activity counters, priority, timeout, actions, 
cookie and flags.

In the OpenFlow 1.0.0 switch, the header fields (Match fields) are 12-tuples 
packet header to be matched against the incoming packet’s header. Counters fields 
are updated only when packets are matched and used to keep track of each flow, 
table and port and provide statistics to the Controller. The action fields contain data, 
where there is a set of zero or more actions that should be applied to the matched 
packets.

For each flow entry added to the switch, the priority field is linked to determine 
which flow should be specified if more than one flow entry matches the incoming 

Fig. 1   OpenFlow/SDN archi-
tecture
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packet, the idle timeout value refers to the time the input must be removed due to a 
lack of activity, and the hard time refers to when should remove the entry, regardless 
of the activity.

Each packet received by the switch, the packet’s header fields is matched to the 
flow table entries. The lookup process begins with the first flow table entry till the 
last flow table entry. If a match occurs, the relevant actions in the corresponding 
flow entry are performed on the packet. Otherwise, the packet being dropped or the 
packet_in message containing the packet (or only 128 bytes of the packet) is sent to 
the controller for processing.

Depending on its policy rules, the controller will decide how the switch should 
handle this packet, then send it back to the corresponding switch using the packet_
out message. According to that decision, the switch will handle the packet and the 
controller may modify the switch’s flow table by adding new entry to help handling 
next similar packets [9].

2.2 � Firewall

Firewall is a fundamental security mechanism that controls the flow of traffic 
between a trusted network (i.e., a corporate LAN) and an unreliable or public net-
work (i.e., the Internet). It can be software-based solution, a hardware-based solu-
tion, or a combination of both, used to implement an enterprise security policy that 
governs network traffic [10]. Each firewall uses a database of policy rules that deter-
mine how the firewall handles inbound and outbound network traffic [11]. Firewalls 
can work (filter) at different levels of the TCP/IP protocol stack. Accordingly, there 
are different categories of the firewall: static packet filters, stateful firewalls, and 
application-level firewalls.

The packet filtering-based firewall (also known as a stateless firewall) works by 
allowing or dropping packets, based on their source or destination addresses or their 
port numbers. Each packet is maintained separately, and the firewall does not save 
the state of the packet to be used for processing the next packets in the same flow 
[12]. On the other side, stateful firewalls track the status of network connections 
when packets are filtered. They often store information about each traffic flow that 
passes through them in a table known as the state table. This state table consists of 
entries that represent the currently active connection session [13]. These firewalls 
are common because they are inexpensive, simple in operation and maintenance, 
and have a good throughput. However, these types of firewalls (stateless/stateful) do 
not needs to understand much about the traffic they are inspecting, since they filter 
packets basing on source and destination addresses and may look at UDP/TCP port 
numbers and flags. They are not smart enough to realize the application to prevent 
breaches and attacks occurring across the network.

Today most applications can be delivered via a web browser or through a com-
puter program. The vast majority of these applications must have an Internet con-
nection in order to function correctly. The application-aware firewall is a kind of 
technology that redefines the way the corporate networks are secured. The main 
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difference is that application-based firewalls can detect and restrict certain applica-
tions, whereas the traditional firewall can only block ports or addresses [14].

This is a major advance because the application blocking functionality is used to 
organize separate devices on the network. For example, most Web applications and 
websites are running over port 80, and an organization that uses a traditional firewall 
should allow the port to easily enable employees to access the Internet. If they want 
to block access to YouTube or prevent sending files via File Transfer Protocol (FTP) 
for example, they should use another part of technology, such as a web filter. Using 
the application-aware firewall, the organization can only restrict YouTube and iden-
tify and block malware detection in an attempt to disguise port 80 traffic.

3 � Related Work

With regard to network security, many previous works and contributions have been 
presented that offer different ideas for securing the SDN environment [15]. Some 
studies have focused on building firewalls solutions, while others have dedicated 
efforts to provide traffic classification and application-aware framework attended for 
SDN-based networks.

3.1 � Firewall Solutions in SDN

SDFS [16] introduces Stateful Distributed Firewall provided as a service in SDN. In 
order to ensure more reliability, SDFS automatically exchanges the state from global 
(controller) to the switches along the path of the traffic. In [17], the authors proposes 
a stateful firewall for SDN to be implemented in the data plane. In implementation, 
they make use of the OpenFlow protocol version 1.5.0 that enables TCP flag match-
ing capabilities, and proactively install rules entries in the SDN switch’s flow table. 
So, every switch maintain a local state of the active flows.

A lightweight Intrusion Prevention System (IPS) for SDN network is presented 
in the paper [18]. It is introduced to early detect and prevent a port scan attacks. 
The lifecycle of the suggested solution goes through three basic stages: Collection, 
Detection, and Prevention. The proposed system collect the required data by period-
ically requesting the flow’s counter from the switches. This information is analyzed, 
and according to the predefined rules, the port scan is detected. Finally, it installs 
forwarding rules in the switches to react to the attack. A Cloud-Clustered Firewall 
[19] presents a novel algorithm to distribute the security policies into distributed 
SDN devices maintained by cloud-clustered firewall. The presented rule-placement 
algorithm implemented to provide a better performance and resolve the TCAM 
memory limit of SDN data plane.

In [20] the authors propose a new authentication system for the SDN network, 
which is used to verify the identity of a host upon connection to the network. The 
proposed mechanism denies the access of unauthorized hosts and defines different 
levels of privileges for each user.
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Table  1 summarizes and compares the security functions (and system perfor-
mance) proposed with other SDN-based security solutions known in the literature. 
The table clearly shows that the solutions currently available try to protect the net-
work by inspecting the traffic packets up to Layers 2, 3 or 4 of ISO/OSI stack of 
protocols. Such solutions are not smart enough to be conscious of the application 
and fail to prevent Application Layer-based (per the Open System Interconnection 
(OSI) model) breaches and attacks occurring over the network. On the other hand, 
in this paper we provide a solution that inspects the packets based on Layer 7 char-
acteristics; it is an application-aware firewall system that dynamically reconfigure 
security rules and redistributes them to the underlying devices. Layer 7 intrusion 
prevention system is introduced in [21] called SDN-Defense. Similar to our method-
ology, their system Leveraging the react behavior to inspect the first k packet at the 
controller side. However, our approach differs from their proposed system, yet they 
utilize snort [22] the open-source, and signature-based IDS in order to detect and 
prevent malicious flows. While we propose an application-aware firewall mecha-
nism, the system is able to detect network applications that may at some point affect 
network performance.

3.2 � Application‑Aware and Traffic Classification Solutions in SDN

Previous efforts to classify the network traffic to provide application-aware solutions 
for SDN networks have been investigated in several works and project’s deliverable. 
In [23] the authors come up with SDN-based Application-Aware approach capable 
of identifying YouTube Streaming. It is based on Deep Packet Inspection (DPI) and 
direct information collected from the applications. In contrast, our system inspects 
packet headers to do extract the application signature.

The distributed denial-of-service (DDoS) detection solution was introduced by 
Braga et  al. [24]. The proposed idea uses flow features to classify network traffic 
flows as normal and abnormal. It extracts a set of flow characteristics and passes 
flow statistics as parameters for an unsupervised artificial neural network (e.g., Self-
Organizing Maps). This system differs from our proposed system; it relies on an 
artificial neural network to detect any abnormal behavior. However, our solution 
relies on multiple classification methods, and therefore can be described as a multi-
ple classifier.

Another work [25] represents a design of an SDN-based traffic classification plat-
form for an enterprise network. The main difference to our work is that it focuses 
on port-based and deep packet inspection for traffic classification, while we classify 
network flows basing on port-based and deep packet inspection and additionally on 
information extracted from packet headers.

In [26], the authors presented a general framework for the end-host of SDN net-
works that are integrated into the NEAT transport structure. The framework pro-
vides communication interfaces between applications and external controllers. It 
also includes a system of expressive policies capable of meeting a wide range of 
requirements.
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Extending the data plane devices to provide Application-aware processing in 
SDN appears in the paper [27]. In order to provide the application-aware capabil-
ity, the data plane devices are extended to include new actions based on informa-
tion from L4 to L7 of the packet header. Thus, the switch will be able to keep some 
application’s logic locally (instead of limiting the application’s logic to the con-
troller only). It utilizes a new application table to maintain the application-specific 
packet-processing actions which are installed by the controller. Implementing the 
traffic classifier in the data plane side (flow entry classifiers) has the advantage of 
being relatively fast (no more controller-switch communications), but it may face 
many capacities and capability constraints. Because the processing occurs within the 
data plane, its capabilities are dependent on the particular switch implementation, 
which is often limited due to constraints of the ASICs on which it is built. Having 
classifiers located in the controller side, they are slower than their switch implemen-
tation, but they are likely to have better support for more features besides a network-
wide view for traffic classification in networks. In addition, such an implementation 
brings the processing back to the data plane side which goes against the spirit of 
SDN architecture that leave the data plane devices simple match-action forwarding 
elements. However, to follow the main point of SDN, the traffic in our system is 
classified at the controller side.

In this paper, we have expanded our previous SDN-oriented stateful firewall 
mechanism [28, 29] to an application-aware firewall to protect SDN networks. It is 
implemented as an extension of the controller. The firewall functionality is imple-
mented through four collaborating units: the Main Module, the Filtering Module, 
the Application Identification Module, and the Security-Enforcement Module. The 
latter presents a mechanism that checks network traffic at the application level, and 
dynamically installs the appropriate security guidelines down into the forwarding 
elements.

4 � System Overview

4.1 � System Architecture

The system architecture is depicted in Fig. 2. The functionality of the firewall appli-
cation that runs on top of the controller is implemented by four modules.

–	 Main Module: The Main Module plays the role of coordinator and administra-
tor of other units. It serves as a rendezvous point for other units so that they can 
interact with each other. This module listens to a Packet_in event on the control-
ler side.

–	 Application-Identification Module: The Application-Identification Module 
performs traffic classification. The classification relies on different informa-
tion of the traffic flows, including port numbers, application payloads, and sta-
tistical features of the flows. It adopts three methods for traffic identification 
processes to perform connection-level, packet-level, and flow-level classifica-
tions (Fig. 3). The first application detection approach requires to examine the 
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Fig. 2   The proposed system architecture for SDN

Fig. 3   Packet processing
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Transport Layer header of the packet (e.g. TCP/UDP port numbers) to learn 
the source and destination ports in order determine the application. Using a 
set of well-known ports, it maps the flow to the applications as defined by 
IANA (Internet Assigned Numbers Authority). This approach is accurate and 
could be effective for many well-known applications that use registered port 
numbers. However, it fails with some applications that use dynamic port nego-
tiation instead of standard port numbers. Aceto et al. study [30] reported that 
port-based classification is capable of identifying about 30% of network appli-
cation flows correctly. However, we apply it as an attempt to reduce packet 
processing delay caused by the following applied stage. If the flow is not posi-
tively identified in this stage, then it goes to other identification methods.

	   The second method inspects the packet payload seeking for well-known 
keywords (a signature) that uniquely identify the protocol. Usually the signa-
ture is a regular expression located in the payload of the Application Layer. 
For instance, HTTP packets begin with URL instruction followed by the pro-
tocol model. In case the signature is detected, this method matches it against 
the list of available signatures. The third method adopts the flow features iden-
tification. It is based on analyzing the flow basing on the size and direction of 
each packet of the first ’N’ packets in the flow as well as the source and desti-
nation ports and IP addresses to detect an application identity.

	   Our work relies more on the needs for prior knowledge of the protocols (super-
vised). Simply, by using primary network data, our algorithm classifies traffic 
into distinct protocols basing on the correlations between packet features. In this 
sense, our approach differs from the Hyunchul Kim et al. [31], (that is unsuper-
vised), yet they are similar in spirit, both suggest using the sizes of the first ten 
packets per session as an identifier of the protocol. Most of the flow character-
istics used are inspired by the features used in [31–33]. The features include: a 
protocol, source and destination ports, transferred bytes, the number of packets 
without Layer 4 (TCP/UDP) payload, number of TCP packets with FIN, SYN, 
RSTS, PUSH, ACK, URG, inter-arrival time statistics, and the size of the first 
ten packets.

–	 Filtering Module: The third unit is the Filtering Module; it is used to provide 
granular control over what traffic leaves or enters the network. The Filtering 
Module compares the determined application against a predefined application 
identification table. That is a hash table which contains match/id entries. Known 
applications are assigned as specific patterns in the application identification 
table. The match fields include a set of ports for well-known applications to be 
used by the first method (that is port-based), and a set of predefined signatures 
and identifiers that uniquely define the applications to be used by the second and 
third methods. Flows that could not be classified by the three processes are cat-
egorized as unknown.

–	 Security-Enforcement Module: The Security-Enforcement Module is used to 
enforce the required firewall services according to policy rule sets. It is used to 
translate and install the predefined action related to the identified application in 
the corresponding switch, using the OpenFlow modification message. The rules 
are removed from the switches using OpenFlow timeout mechanism. The abso-
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lute timeout means that if no packets reach the flow for a specific duration (called 
Idle timeout), then the flow is removed from the device.

The firewall modules maintain two lists: (1) a list of filtering rules to identify appli-
cations, and (2) a list of firewall rules for security policies on the entire network. The 
former list is implemented as a hash table. The latter list, for implementation sim-
plicity, is implemented as a CSV file that contains a multi-line of comma-separated 
values representing the network policy, as described later in Sect. 4.2. Both lists are 
stored on an SDN controller and are accessed by the firewall modules.

4.2 � Firewall Policy

In order to achieve the core functionality of the network, that is packets delivery, the 
behavior of network’s elements can be defined by two types of policies:

•	 Routing policy to specify the path of the packet to traverse the network from 
ingress to egress.

•	 Firewall policy to describe whether those packets are permitted or dropped.

Firewall policies are modeled as a list of priority rules. This is compatible with 
the matching tables (Flow table) in the OpenFlow switches, in which each rule is 
a tuple of matching fields and a binary decision field serving as the action field. 
The decision field has one bit to specify if this rule drops or permits the packet 
(this is also supported by OpenFlow).

In this paper, we are primarily concerned with building an application-aware 
firewall for small localized SDN networks. Therefore, we have basically adopted 
a simple implementation of how to places the rules in the switches to accomplish 
a specific firewall policy.

In our centralized firewall policy, the switches are named using indexes, see 
the relevant notation that is listed in Table 2. Each switch has a set of ports. Some 
of the ports are used to connect the switches to each other, the other ports may be 

Table 2   Firewall policy notation Symbol Description

Si The switches index in the network, switch i
Pi,j The policy attached to switch i ingress port j
Ri,j,k A single rule where Rk ∈ Pij

mi,j The matching field of Ri,j,k rule
di,j The decision of the Ri,j,k rule
ti,j The priority of the Ri,j,k rule
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the entry/exit points for the network. All firewall rules are placed on the ingress 
switches to ensure the least network traffic.

4.3 � Example Scenario

Now, let us discuss the function of the firewall application, and how it interacts 
with the controller and the OpenFlow-enabled switches. Suppose, we have a net-
work that relies on the SDN architecture, as shown in Fig. 4, and initially, all flow 
tables in the OpenFlow-enabled switches are empty. Assume that Client 1 wants 
to communicate with Client 2. Therefore, Client 1 transfers the packets addressed 
to Client 2. When the first packet (say pkt1) is reached to the switch (say S1), 
and because there is no rule in the flow table of S1 to process such a flow, pkt1 
(full packet) is encapsulated in the Packet_in message and forwarded to the Con-
troller. On the controller side, a Packet_in event will trigger the event listener in 
the Main Module, which responds by parsing the packet and invoke other mod-
ules. The application-identification module attempts to identify the application, it 
checks the packets information against a list of firewall rules, Sect. 3.2. It works 
by allowing or dropping packets, basing on their source or destination addresses 
or their port numbers.

In case the application is not determined for some reason (e.g., traffic with 
unknown port number), the next approaches are performed.

Here the other two methods are invoked, and the OpenFlow-enabled switch is 
instructed to mirror the first 10 packets to the application detection function. The 
first 10 packets carry valuable information to recognize the applications as well 
as it ensures that the controller/firewall does not get overwhelmed of information 
passed to it when processing new type of applications.

Application signature and Packet size learner are methods implemented to 
determine the application that issued traffic on the network. Application signature 
inspects the payloads of the packets looking for the well-known keywords that 
identify the application.

As the features of known applications are mapped to specific patterns in the appli-
cation identification database. Packet size learner extracts the features of the first 10 
packets. The extracted signature is compared to the content of the database. If it 
matches occur, then the application of the traffic is detected. If this stage also fails 

Fig. 4   The layout of the experi-
mental testbed
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(i.e., unknown flow), the default rules for drop or permit with further inspections are 
applied. After then the Filter module applies the appropriate action to the flow.

Finally, the Security-Enforcement Module translates the policy rules related 
to the matched signature to be installed by the Controller into the correspond-
ing switch using the OpenFlow modification message. Accordingly, the switch 
will handle the remaining packets in the flow basing on the taken and installed 
decision.

5 � Implementation and Performance Evaluations

5.1 � Implementation

We validate and evaluate our proposed system by utilizing the logical experimenta-
tion setup delineated in Fig. 4 to build the entirely virtualized test environment. The 
testbed consists of the following virtual machines (VMs): 

1.	 The application-aware firewall is implemented as a modular application running 
on the top of the POX SDN controller framework [34]. The controller is installed 
on the Ubuntu Desktop 18.04 LTS VM.

2.	 To implement the switch functionality, Ubuntu Desktop 18.04 LTS VM runs the 
network emulator Mininet Network [35] to create Open vSwitch (OVS) [36]. This 
OpenFlow-enabled switch is used at L2 / L3 layers and provides a connection to 
the upper layers. It helps to link different entities for the purpose of testing.

3.	 Finally, two client nodes are represented by Ubuntu Desktop 18.04 LTS VMs.

The Controller and each Client got a dedicated interface connected to the OVS 
switch directly. The firewall controller VM node is connected to the OVS switch 
(Open vSwitch 2.9.0) node via a 1 Gbps link, while the clients VM nodes are con-
nected to the OVS switch node via 100 Mb/s links. The controller and OVS switch 
communicate via an OpenFlow 1.0.0 (the only version supported currently by the 
POX controller).

This setting will certainly not show any bottleneck, since the capacity of the link 
for the firewall is many times greater than the overall traffic, which is unusual in 
real-life scenarios. However, the main concern here is to observe how much time is 
required by the proposed firewall to process the packet_in and then install packet_
mod down into the switch for new connections.

For this experiment, we selected the list of default ports basing on information 
from IANA database [37]. The dataset which consists of labeled flows with a rich 
set of features is prepared from the public data that the MAWI Working Group has 
gathered [38].
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5.2 � Performance Evaluations

In order to prove effectiveness, to present behavior, and to analyze the system’s per-
formance, different scenarios are conducted and tested. The experiment settings of 
the used testing tools are presented in Table 3.

As the firewall is expected to handle a vast number of traffic packets and maintain 
a large number of firewall rules, in the first experiment we evaluate the performance 
of the system by focusing on the scaling firewall rules and checking out how it could 
affect the generated latency. The number of firewall rules varies from 25 to 1000 
rules.

In this test, one Client runs a script that uses the ping utility, which is imple-
mented to send multi ICMP packets simultaneously to the other Client. The relations 

Table 3   The simulation settings parameters

Parameter Value Value

Tool D-ITG [39] Ping
Protocol UDP ICMP
Sender port, destination port 9400, 9500 –
Packet size 64, 128, 256, 512, 768, 

1024, 1280, 1470 bytes
56 bytes

Concurrent streams per second 50 , 100, 150 , 200, 250, 
300, 350, 400

25, 50, 100, 150, 200, 250, 300

Firewall rules size 500 25, 50, 100, 250, 500, 1000

Fig. 5   The relation between the number of concurrent flows, number of firewall rules and an average 
latency
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between the number of flows, number of firewall rules and an average latency are 
shown in Fig. 5, where we can observe that when the number of firewall rules is 
small (e.g., 25 rules), the average latency is still small for different numbers of 
arrival rates of flows. If there are 50 rules in the firewall base, the average latency is 
increased linearly according to the number of access rate for the new traffic.

After that, we increase the rule base size of the firewall to be 100, 250 and 
500, respectively. We note that the average latency shows sudden increases under 
higher rates of flow arrival. Furthermore, we observe that the average latency 
stops the continuous rise and stays almost steady when the simultaneous connec-
tions are greater than 100 parallel connections. This could be because of many 
new traffic streams may match the rule entries in the flow table in the switch.

The following series of experiments shows the proposed system effectiveness. 
To evaluate the overall system performance, we observe and compare the dif-
ference in throughput in two different testbed setup settings. In the first setting, 
the OVS switch is connected to the POX controller acting as a Layer 3 learning 
switch (i.e., a baseline for the comparison). In the second configuration, we run 
the application firewall with the POX controller and deactivate the l3_learning 
switch module.

In both cases, we use Distributed-Internet Traffic Generation (D-ITG) tool 
[39], where one Client creates and sends the same number of concurrent UDP 
flows over the same time period, while the other Clients’ nodes receive traffic 
flow and report the results.

Fig. 6   Frame forwarding rates at different frame sizes
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To determine the maximum throughput, the frames-per-second sending rate is 
altered to find the highest rate for a given frame size. The Ethernet frame sizes 
used in the tests are shown in Table 3.

Each frame rate lasts for 30 s, with a controller killed and topology restarted 
between trials. We repeated each trial 5 times and the mean values of the results 
is calculated and considered. Our methodology approach is based on Sections 9.1 
and 26.1 of [40]. However, it differs from [40] in two ways: we kill the control-
ler and do restart the topology rather than wait for 60 seconds between trials, and 
we consider a unidirectional flow rather than a bi-directional flow. The relation 
between the frames per second performance against frame size for both test con-
figurations are highlighted in Figs. 6 and 7 shows the throughput in Mbps against 
the frame size.

As expected, the learning switch controller throughput outperforms the firewall 
(which requires more computations) in all frame sizes. Both configurations begin 
with low throughput at frame size 64 bytes, and then their performance is rapidly 
increased within the 128–256-bytes range, reaching the peak in performance with 
256–512-byte frames. There is no obvious indication for the cause of this behav-
ior, although it was common in both configurations. In the range of 512–1470-
bytes, the throughput stops the continuous rise and remains almost steady.

In general, the behavior and the performance of the learning switch controller 
do not appear to be significantly different with the firewall. The highest difference 
in throughput between them is reached with a frame size 256-bytes, while the 
lowest was at 1470-byte frame size.

Fig. 7   Throughput at different frame sizes
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One more test regarding the throughput is performed to show the relation 
between the amount of concurrent flows and the system throughput, Fig. 8. In this 
test, Client 1 sends simultaneous connections with randomly distributed packet 
size between 64- and 1470-bytes. Figure 8 clearly shows that the throughput is 
very high with the small number of simultaneous flows, for example, between 50 

Fig. 8   The relation between the amount of traffic and the maximum throughput

Fig. 9   The relation between the amount of traffic and the average jitter
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and 150 connections. However, the rapid decrease of throughput is observed with 
more connections, for example, more than 200 connections.

Next, we focused on the packet delay jitter, where the relation between the 
amount of traffic and the average jitter is observed.

Also, in this test, Client 1 sends simultaneous connections with random sizes. 
Figure 9 shows that the average jitter is increasing slowly as the number of con-
nections is increasing.

6 � Conclusion

Securing SDN networking is the key to the success of such a technology, but it is 
also a significantly challenging task. In this paper, tried to solve the problem of how 
to provide application-aware filtering capability for SDN controller using the fact 
that the SDN Controller handles traffic with respect to low level traffic identifiers 
and to physical identifiers. However, this makes that the Controller has no insight 
into the relations between flows. Such a lack of high-level traffic identifiers makes 
that it not possible to directly and consistently specify policies for all flows belong-
ing to a specific application or to define policies for specific persons that are the par-
ties of communication.

In this paper, we proposed an application-aware firewall approach for securing 
OpenFlow-based SDN networks. The solution does not impose any change on the 
SDN model in terms of design and behavior. Moreover, it tries to enhance program-
mable network’s security and simplifies security management.

This proposed solution attempts to protect the small localized network by detect-
ing applications such as FTP or blocking streams according to the predefined pol-
icy. The security policy is centralized in the controller side, the firewall application 
above the controller inspects the traffic flows and enforces the required policy, and 
the switches act as a distributed checkpoint that implements the controller instruc-
tions. Rather than using a gateway firewall with a low performance and a single 
point of failure, multi plane-like firewall creates layers of defense; “defense-in-
depth” can be used successfully for networks with different levels of trust.

The future work could increase the level of security provided to the network by 
building a system that can examine the contents of the packets to prevent any mali-
cious or somehow undesirable content. The system could be integrated with quan-
tum steganography-based authentication protocol that authenticates an embedded 
secret message [41]. The next step of the studies should be an improvement of the 
system by building a Layer 7 firewall with an unsupervised mechanism based on 
machine learning to identify the network traffic and to block unauthorized and mali-
cious packets. Our plan for improvement of the system is making it user-aware and 
application-aware, and as an effect, using application- and users-based security poli-
cies, rather than continuing the traditional methods that are based on ports and proto-
cols. Also, we will strive to integrate the system with a soft-methods-based security 
tool (a multi-tier trust and reputation system) which is a reasonable enhancement of 
a firewall in widespread and untrusted networks (see, e.g., [42]).
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