Skip to main content
Log in

QoS-DPSO: QoS-aware Task Scheduling for Cloud Computing System

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Dynamic provisioning of computational resources in cloud computing system is a challenging problem. With many VMs being deployed in clouds, managing so much resources to stable work becomes a critical problem. Therefore, how to meet the different quality of service (QoS), we consider the service quality requirements is very important. In this paper, we address this problem. We first establish a QoS scheduling model by incorporating the cloud characteristics, and then, we develop a task scheduling objects to ensure faults can be tolerated during the task exaction. Finally, we proposed a QoS-aware scheduling algorithm, QoS-DPSO, to satisfy the QoS required in cloud computing systems. For the target requirements of QoS requirement, we take the time, reliability and cost as a single object problem. Experimental results show that QoS-DPSO can effectively improve the performance and obtain the high reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Shojafar, M., Javanmardi, S., Abolfazli, S., Cordeschi, Nicola: FUGE: a joint meta-heuristic approach to cloud job scheduling algorithm using fuzzy theory and a genetic method. Cluster Comput. 18(2), 829–844 (2015)

    Article  Google Scholar 

  2. Sharma, A., Gupta, A.K., Goyal, D.: An optimized task scheduling in cloud computing using priority. In Proceedings of 3rd International Conference on Internet of Things and Connected Technologies (ICIoTCT) (2018)

  3. El Sibai, R., Gemayel, N., Abdo, J.B.: Jacques Demerjian: a survey on access control mechanisms for cloud computing. Trans. Emerg. Telecommun. Technol. 31(2), e3720 (2020)

    Google Scholar 

  4. Rao, J., Wei, Y., Gong, J., Xu, C.Z.: QoS guarantees and service differentiation for dynamic cloud applications. IEEE Trans. Netw. Serv. Manage. 10, 43–55 (2013)

    Article  Google Scholar 

  5. Xue, S., Zhang, Y., Xiaolong, X., Xing, G., Xiang, H., Ji, S.: QET: a QoS-based energy-aware task scheduling method in cloud environment. Cluster Comput. 20(4), 3199–3212 (2017)

    Article  Google Scholar 

  6. Jiang, B., Yang, J., Huifang, X., Song, H., Zheng, G.: Multimedia data throughput maximization in Internet-of-Things system based on optimization of cache-enabled UAV. IEEE Internet Things J. 6(2), 3525–3532 (2019)

    Article  Google Scholar 

  7. Javanmardi, S., Shojafar, M., Amendola, D., Cordeschi, N., Hongbo, L.:, Hybrid Job Scheduling Algorithm for Cloud Computing Environment. IBICA, Ajith Abraham pp. 43–52, (2014)

  8. Ralha, C.G., Mendes, A.H., Laranjeira, L.A., Araújo, A.P., Melo, A.C.: Multiagent system for dynamic resource provisioning in cloud computing platforms. Future Gener. Comput. Syst. 94, 80–96 (2019)

    Article  Google Scholar 

  9. Ma, A., Gao, Y., Huang, L., Zhang, Bin: Improved differential search algorithm based dynamic resource allocation approach for cloud application. Neural Comput. Appl. 31(8), 3431–3442 (2019)

    Article  Google Scholar 

  10. García, Á.L., del Castillo, E.F., Plasencia, I.C.: An efficient cloud scheduler design supporting preemptible instances. Future Gener. Comput. Syst. 95, 68–78 (2019)

    Article  Google Scholar 

  11. Gong, S., Yin, B., Zheng, Z., Cai, K.Y.: Adaptive multivariable control for multiple resource allocation of service-based systems in cloud computing. IEEE Access 7, 13817–13831 (2019)

    Article  Google Scholar 

  12. Dou, H., Qi, Y., Wei, W., Song, H.: A two-time-scale load balancing framework for minimizing electricity bills of internet data centers. Pers. Ubiquit. Comput. 20, 681–693 (2016a)

    Article  Google Scholar 

  13. Swain, C.K., Saini, N., Aryabartta, S.: Reliability aware scheduling of bag of real time tasks in cloud environment. Computing 102(2), 451–475 (2020)

    Article  MathSciNet  Google Scholar 

  14. Mao, Y., Chen, X., Li, X.: Max–min task scheduling algorithm for load balance in cloud computing. In: Advances in Intelligent Systems and Computing. Springer India, pp. 457–465 (2014)

  15. Chen, H., Wang, F., Helian, N., Akanmu, G.: User-priority guided min-min scheduling algorithm for load balancing in cloud computing. In: 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH), IEEE, New York, (2013)

  16. Khabbaz, M., Assi, C.M.: Modelling and analysis of a novel deadline-aware scheduling scheme for cloud computing data centers. IEEE Trans. Cloud Comput. 6, 141–155 (2018)

    Article  Google Scholar 

  17. Cirne, W., Brasileiro, F., Paranhos, D., Góes, L.F.W., Voorsluys, W.: On the efficacy, efficiency and emergent behavior of task replication in large distributed systems. Parallel Comput. 33, 213–234 (2007)

    Article  Google Scholar 

  18. Masdari, M., Zangakani, Mehran: Efficient task and workflow scheduling in inter-cloud environments: challenges and opportunities. J. Supercomput. 76(1), 499–535 (2020)

    Article  Google Scholar 

  19. Sun, Y., Meng, Lun: Yunkui Song:AutoScale: adaptive QoS-aware container-based cloud applications scheduling framework. TIIS 13(6), 2824–2837 (2019)

    Google Scholar 

  20. Zuo, X., Zhang, G., Tan, W., et al.: Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid IaaS cloud. IEEE Trans. Autom. Sci. Eng. 11(2), 564–573 (2014)

    Article  Google Scholar 

  21. Mardukhi, F., Nematbakhsh, N., Zamanifar, K., et al.: QoS decomposition for service composition using genetic algorithm. Appl. Soft Comput. 13(7), 3409–3421 (2013)

    Article  Google Scholar 

  22. Zhang, Y., Wei, Q., Chen, C., Xu, M., Yuan, X., Wan, Chundong: Dynamic scheduling with service curve for QoS guarantee of large-scale cloud storage. IEEE Trans. Comput. 67(4), 457–468 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhang, Y., Qingsong, W., Cheng, C., Mingdi, X., Xinkun, Y., Chundong, W.: Dynamic scheduling with service curve for QoS guarantee of large-scale cloud storage. IEEE Trans. Comput. 67(4), 457–468 (2018)

    Article  MathSciNet  Google Scholar 

  24. Jiang, B., Yang, J., Ding, G., Wang, Huihui: Cyber-physical security design in multimedia data cache resource allocation for industrial networks. IEEE Trans. Ind. Inf. 15(12), 6472–6480 (2019)

    Article  Google Scholar 

  25. Tripathy, L., Patra, R.R.: Scheduling in cloud computing. Cloud Comput. 4(5), 21–27 (2014)

    Google Scholar 

  26. Chen, H., Wen, J., Pedrycz, W., Guohua, Wu: Big data processing workflows oriented real-time scheduling algorithm using task-duplication in geo-distributed clouds. IEEE Trans. Big Data 6(1), 131–144 (2020)

    Article  Google Scholar 

  27. Zheng, P., Qi, Y., Zhou, Ya., Chen, P., Zhan, J., Rung-Tsong Lyu, M.: An automatic framework for detecting and characterizing the performance degradation of software systems. IEEE Trans. Reliab. 63(4), 927–943 (2014)

    Article  Google Scholar 

  28. Kong, X., Lin, C., Jiang, Y., et al.: Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction. J. Netw. Comput. Appl. 34(4), 1068–1077 (2011)

    Article  Google Scholar 

  29. Dou, H., Qi, Y., Wei, W., Song, Houbing: A two-time-scale load balancing framework for minimizing electricity bills of Internet Data Centers. Pers. Ubiquit. Comput. 20(5), 681–693 (2016)

    Article  Google Scholar 

  30. Jyoti, S., Deo Prakash, V.: A cost-effective deadline-constrained dynamic scheduling algorithm for scientific workflows in a cloud environment. IEEE Trans. Cloud Comput. 6(1), 2–18 (2018)

    Article  Google Scholar 

  31. Wang, P., Qi, Y., Liu, X.: Power-aware optimization for heterogeneous multi-tier clusters. J. Parallel Distrib. Comput. 74(1), 2005–2015 (2014)

    Article  Google Scholar 

  32. Chunlin, L., Jianhang, T., Luo, Y.: Distributed QoS-aware scheduling optimization for resource-intensive mobile application in hybrid cloud. Cluster Comput. 21(2), 1331–1348 (2018)

    Article  Google Scholar 

  33. Han, H., Deyui, Q., Zheng, W. et al.: A QoS guided task scheduling model in cloud computing environment. In 2013 Fourth International Conference on Emerging Intelligent Data and Web Technologies (EIDWT). IEEE, New York, pp. 72-76, (2013)

  34. Johan, T., Montero, R.S., Rafael, M.V., et al.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. 28(2), 358–367 (2012)

    Article  Google Scholar 

  35. Yassa, S., Chelouah, R., Kadima, H., et al.: Multi-objective approach for energy-aware workflow scheduling in cloud computing environments. Sci. World J. (2013)

  36. Masdari, M., Salehi, F., Jalali, M., et al.: A survey of PSO-based scheduling algorithms in cloud computing. J. Netw. Syst. Manage. (2016)

Download references

Acknowledgements

The work described in this paper is supported by the National Key R&D Program of China (2018YFB0203901), China Postdoctoral Science Foundation (2017M611407), Key Research and Development Program of Shaanxi Province (2018ZDXM-GY-036), National Natural Science Foundation of China (31770768) and the Natural Science Foundation of Heilongjiang Province of China (F2017001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, W., Zhao, C., Miao, Q. et al. QoS-DPSO: QoS-aware Task Scheduling for Cloud Computing System. J Netw Syst Manage 29, 5 (2021). https://doi.org/10.1007/s10922-020-09573-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-020-09573-6

Keywords

Navigation