Skip to main content
Log in

Human Immune-Based Intrusion Detection and Prevention System for Fog Computing

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The exponential increase in Internet of Things devices on the Internet causes a deluge of traffic at the cloud. Most of the traffic data is redundant. However, fog computing solves the problems by processing data at the network’s edge. Lately, the fog layer is a target of cyberattacks, due to its resource constraints. In this paper, we proposed a lightweight, human immune, and anomaly-based intrusion detection system (IDS) for the fog layer. The proposed system achieves low resource overhead by distributing the IDS functions among the fog nodes and the cloud. We obtained an accuracy of up to 98.8%. Also, we recorded a 10% reduction in the energy consumption of the fog node when compared with deploying a neural network on the fog node.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Prabhu, C.: Fog Computing. Springer, Deep learning and big data analytics-research directions (2019)

  2. Turner, V., MacGillivray, C., Gaw, J., Clarke, R., Morales, M., Kraus, B.: IDC futurescape: worldwide internet of things 2015 predictions. In: IDC (2014)

  3. Computing, F.: The internet of things: extend the cloud to where the things are (2016)

  4. Li, C., Qin, Z., Novak, E., Li, Q.: Securing SDN infrastructure of IoT-fog networks from MITM attacks. IEEE Internet Things J. 4(5), 1156–1164 (2017)

    Article  Google Scholar 

  5. Stojmenovic, I., Wen, S.: The fog computing paradigm: scenarios and security issues. In: 2014 federated conference on computer science and information systems, pp. 1–8 (2014). https://doi.org/10.15439/2014F503

  6. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  7. Sequeira, D.: Intrusion prevention systems: securitys silver bullet? Bus. Commun. Rev. 33(3), 36–41 (2003)

    Google Scholar 

  8. Mauritian Computer Emergency Response Team: guideline on intrusion detection and prevention systems (2011). https://ncb.govmu.org/portal/sites/ncb/downloads.html

  9. Scarfone, K., Mell, P.: Special Publication 800–94: Guide to Intrusion Detection and Prevention Systems. National Institute Standard and Technology, Gaithersburg (2012)

    Google Scholar 

  10. Khraisat, A., Gondal, I., Vamplew, P., Kamruzzaman, J.: Survey of intrusion detection systems: techniques, datasets and challenges. Cybersecurity 2(1), 20 (2019)

    Article  Google Scholar 

  11. Aloqaily, M., Balasubramanian, V., Zaman, F., Al Ridhawi, I., Jararweh, Y.: Congestion mitigation in densely crowded environments for augmenting qos in vehicular clouds. In: Proceedings of the 8th ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications, DIVANet’18, pp. 49–56. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3272036.3272038

  12. Balasubramanian, V., Aloqaily, M., Reisslein, M.: An SDN architecture for time sensitive industrial IoT. Comput. Netw. 186, 107739 (2021). https://doi.org/10.1016/j.comnet.2020.107739

    Article  Google Scholar 

  13. Otoum, Y., Nayak, A.: As-ids: anomaly and signature based ids for the internet of things. J. Netw. Syst. Manag. 29(3), 1–26 (2021)

    Article  Google Scholar 

  14. Almiani, M., AbuGhazleh, A., Al-Rahayfeh, A., Atiewi, S., Razaque, A.: Deep recurrent neural network for IoT intrusion detection system. Simul. Model. Pract. Theory 101, 102031 (2020). https://doi.org/10.1016/j.simpat.2019.102031

    Article  Google Scholar 

  15. Pacheco, J., Benitez, V.H., Félix-Herrán, L.C., Satam, P.: Artificial neural networks-based intrusion detection system for internet of things fog nodes. IEEE Access 8, 73907–73918 (2020)

    Article  Google Scholar 

  16. Al-Omari, M., Rawashdeh, M., Qutaishat, F., Mohammad, A., Ababneh, N.: An intelligent tree-based intrusion detection model for cyber security. J. Netw. Syst. Manag. 29(2), 1–18 (2021)

    Article  Google Scholar 

  17. Ou, C.M.: Host-based intrusion detection systems inspired by machine learning of agent-based artificial immune systems. In: 2019 IEEE International Symposium on INnovations in Intelligent SysTems and Applications (INISTA), pp. 1–5. IEEE (2019)

  18. Wang, W., Ren, L., Chen, L., Ding, Y.: Intrusion detection and security calculation in industrial cloud storage based on an improved dynamic immune algorithm. Inf. Sci. 501, 543–557 (2019)

    Article  Google Scholar 

  19. Igbe, O., Saadawi, T., Darwish, I.: Digital immune system for intrusion detection on data processing systems and networks (2017). US Patent App. 15/633,056

  20. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: International Conference on Artificial Immune Systems, pp. 291–302. Springer (2008)

  21. Rhys, H.: Classifying with decision trees. Manning Publications (2020). https://books.google.com.sa/books?id=jRzYDwAAQBAJ

  22. Jansen, S.: Chapter 10: decision trees and random forests. Packt Publishing (2018). https://books.google.com.sa/books?id=tx2CDwAAQBAJ

  23. Pump, R., Ahlers, V., Koschel, A.: State of the art in artificial immune-based intrusion detection systems for smart grids. In: 2018 Second World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 119–126. IEEE (2018)

  24. Matzinger, P.: Tolerance, danger, and the extended family. Ann. Rev. Immunol. 12(1), 991–1045 (1994)

    Article  Google Scholar 

  25. Brownlee, J.: Clever algorithms: nature-inspired programming recipes. Lulu.com (2011). https://books.google.com.sa/books?id=SESWXQphCUkC

  26. Hosseinpour, F., Amoli, P.V., Farahnakian, F., Plosila, J., Hämäläinen, T.: Artificial immune system based intrusion detection: innate immunity using an unsupervised learning approach. Int. J. Digital Content Technol. Appl. 8(5), 1 (2014)

    Google Scholar 

  27. Hosseinpour, F., Vahdani Amoli, P., Plosila, J., Hämäläinen, T., Tenhunen, H.: An intrusion detection system for fog computing and IoT based logistic systems using a smart data approach. Int. J. Digital Content Technol. Appl. 10 (2016)

  28. Ye, N., Chen, Q.: An anomaly detection technique based on a chi-square statistic for detecting intrusions into information systems. Qual. Reliab. Eng. Int. 17(2), 105–112 (2001). https://doi.org/10.1002/qre.392

    Article  Google Scholar 

  29. Hegde, C., Jiang, Z., Suresha, P.B., Zelko, J., Seyedi, S., Smith, M.A., Wright, D.W., Kamaleswaran, R., Reyna, M.A., Clifford, G.D.: Autotriage—an open source edge computing raspberry pi-based clinical screening system. medRxiv (2020). https://doi.org/10.1101/2020.04.09.20059840

  30. Xhafa, F., Kilic, B., Krause, P.: Evaluation of IoT stream processing at edge computing layer for semantic data enrichment. Fut. Gener. Comput. Syst. 105, 730–736 (2020). https://doi.org/10.1016/j.future.2019.12.031

    Article  Google Scholar 

  31. Xunlong Software CO., Limited: orange pi lite—orange pi (2016). http://www.orangepi.org/orangepilite/. Accessed May, 2020

  32. Nath, O.: Review on raspberry pi 3b+ and its scope. Int. J. Eng. Appl. Sci. Technol. 4(9), 157–159 (2020)

    Google Scholar 

  33. LCD wiki: 3.5inch rpi display - lcd wiki (2020). http://www.lcdwiki.com/3.5inch_RPi_Display. Accessed 17th Aug 2020

  34. Crovella, M.E., Carter, R.L.: Dynamic server selection in the internet. In: Third IEEE workshop on the architecture and implementation of high performance communication subsystems (HPCS) (1995)

  35. OpenNN.net: Opennn: open neural networks library (2020). https://www.opennn.net/

  36. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Long, J.: Interesting native code examples (2012). https://bit.ly/3fYmfkN. Accessed 25 May 2020

  38. What is omnet++? (2019). https://omnetpp.org/intro/. Accessed 6 June 2020

  39. Sudqi Khater, B., Abdul Wahab, A., Idris, M., Abdulla Hussain, M., Ahmed Ibrahim, A.: A lightweight perceptron-based intrusion detection system for fog computing. Appl. Sci. 9(1), 178 (2019)

    Article  Google Scholar 

  40. Krügel, C., Toth, T., Kirda, E.: Service specific anomaly detection for network intrusion detection. In: Proceedings of the 2002 ACM symposium on applied computing, pp. 201–208 (2002)

  41. Farouq, A., Tarek, S., Mohamed, D.: faroouq/idps\_omnet: Intrusion detection and prevention system for fog computing using omnet++ (2020). https://github.com/faroouq/IDPS_OMNET

Download references

Acknowledgements

The authors would like to thank the Computer Engineering Department, King Fahd University of Petroleum and Minerals for their support. We would like to thank Dr. Mustapha Aliyu Muhammad (M.D) and Dr. Aliyu Aliyu Muhammad (M.D) for their suggestions and recommendations in the course of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farouq Aliyu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliyu, F., Sheltami, T., Deriche, M. et al. Human Immune-Based Intrusion Detection and Prevention System for Fog Computing. J Netw Syst Manage 30, 11 (2022). https://doi.org/10.1007/s10922-021-09616-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09616-6

Keywords

Navigation