Skip to main content
Log in

A Scalable Hierarchically Distributed Architecture for Next-Generation Applications

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The rigidity of traditional network architectures, with tightly coupled control and data planes, impairs their ability to adapt to highly dynamic requirements of future application domains. While Software-Defined Networking (SDN) can provide the required dynamism, it suffers from scalability issues. Therefore, efforts have been made to propose alternative decentralized solutions, such as the flat distributed SDN architecture. Such alternatives address the scalability problem for mainly local flows, but are impaired by a substantial increase in the overhead for cross-domain flow setup. To manage the trade-off between scalability and overhead, there is a need for intermediate hierarchical solutions. However, these have not been explored to the complete potential so far. Furthermore, the Network Function Virtualization (NFV) paradigm complements SDN by offering computational and storage services in the form of Virtual Network Functions (VNFs). When integrated seamlessly, both SDN and NFV can offer solutions to the problems posed by highly dynamic application domains. Hence, this work proposes a scalable hierarchical SDN control plane architecture for SDN/NFV-based next-generation application domains such as immersive media delivery system. We have implemented the proposed architecture based on the well-known state-of-the-art ZeroSDN controller. To evaluate the performance of the architecture, we have implemented an on-demand immersive media (point cloud) streaming application and varied the load on the control plane using the background traffic. To benchmark our solution, we have evaluated its performance in comparison with the centralized and flat distributed architectures. We show that the proposed architecture performs better than the rest in terms of scalability, lost flows, and processing latency. Our study shows that the proposed architecture when distributed to three controllers, accepts 23% more flows with almost 70% reduced processing latency compared to the state-of-the-art ONOS controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://mininet.org/

  2. https://fping.org/fping.1.html

References

  1. Clemm, A., Torres Vega, M., Ravuri, H.K., Wauters, T., De Turck, F.: Toward truly immersive holographic-type communication: challenges and solutions. IEEE Commun. Mag. 58(1), 93–99 (2020)

    Article  Google Scholar 

  2. Bannour, F., Souihi, S., Mellouk, A.: Distributed sdn control: survey, taxonomy, and challenges. IEEE Commun. Surv. Tutor. 20(1), 333–354 (2018)

    Article  Google Scholar 

  3. Kaur, K., Mangat, V., Kumar, K.: A comprehensive survey of service function chain provisioning approaches in sdn and nfv architecture. Comput. Sci. Rev. 38, 100298 (2020)

    Article  Google Scholar 

  4. Clayman, S., Kalan, R.S., Sayit, M.: Virtualized cache placement in an sdn/nfv assisted sand architecture. In: 2018 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–5. IEEE (2018)

  5. Santos, J., van der Hooft, J., Vega, M.T., Wauters, T., Volckaert, B., De Turck, F.: Srfog: A flexible architecture for virtual reality content delivery through fog computing and segment routing

  6. Ravuri, H.K., Torres Vega, M., van der Hooft, J., Wauters, T., Da, B., De Turck, F.: On routing scalability in flat sdn architectures. In: NoF2020, the 11th International Conference on Network of the Future, pp. 1–5 (2020)

  7. Yang, H., Ivey, J., Riley, G.F.: Scalability comparison of sdn control plane architectures based on simulations. In: 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC), pp. 1–8. IEEE (2017)

  8. Hassas Yeganeh, S., Ganjali, Y.: Kandoo: A framework for efficient and scalable offloading of control applications. In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks, HotSDN ’12, pp. 19–24. ACM, New York, NY, USA (2012)

  9. Kohler, T., Dürr, F., Rothermel, K.: Zerosdn: a highly flexible and modular architecture for full-range distribution of event-based network control. IEEE Trans. Netw. Serv. Manag. 15(4), 1207–1221 (2018)

    Article  Google Scholar 

  10. Hooft, J.V.D., Vega, M.T., Wauters, T., Timmerer, C., Begen, A.C., Turck, F.D., Schatz, R.: From capturing to rendering: volumetric media delivery with six degrees of freedom. IEEE Commun. Mag. 58(10), 49–55 (2020). https://doi.org/10.1109/mcom.001.2000242

    Article  Google Scholar 

  11. Zhang, J., Lee, J., Volker, J., Hou, J., Dey, S., et al.: Enabling technologies for fifth-generation mobile communications (2016)

  12. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B.P., Radoslavov, P., Snow, W., Parulkar, G.M.: Onos: towards an open, distributed sdn os. In: HotSDN ’14 (2014)

  13. Ravuri, H.K., Torres Vega, M., Wauters, T., Da, B., Clemm, A., De Turck, F.: An experimental evaluation of flow setup latency in distributed software defined networks. In: 2019 IEEE Conference on Network Softwarization (NetSoft), pp. 432–437 (2019)

  14. System components - onos - wiki. https://wiki.onosproject.org/display/ONOS. Accessed 29 April 2020

  15. Mahajan, K., Poddar, R., Dhawan, M., Mann, V.: Jury: Validating controller actions in software-defined networks. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 109–120. IEEE (2016)

  16. Muqaddas, A.S., Giaccone, P., Bianco, A., Maier, G.: Inter-controller traffic to support consistency in onos clusters. IEEE Trans. Netw. Serv. Manag. 14(4), 1018–1031 (2017)

    Article  Google Scholar 

  17. Alam, I., Sharif, K., Li, F., Latif, Z., Karim, M.M., Biswas, S., Nour, B., Wang, Y.: A survey of network virtualization techniques for internet of things using sdn and nfv. ACM Comput. Surv. 53(2), 1–40 (2020)

    Article  Google Scholar 

  18. Van Dinh, D., Yoon, B.N., Le, H.N., Nguyen, U.Q., Phan, K.D., Pham, L.D.: Ict enabling technologies for smart cities. In: 2020 22nd International Conference on Advanced Communication Technology (ICACT), pp. 1180–1192. IEEE (2020)

  19. Santos, J., Wauters, T., Volckaert, B., De Turck, F.: Towards end-to-end resource provisioning in fog computing over low power wide area networks. J. Netw. Comput. Appl. 175, 102915 (2021)

    Article  Google Scholar 

  20. Rametta, C., Baldoni, G., Lombardo, A., Micalizzi, S., Vassallo, A.: S6: a smart, social and sdn-based surveillance system for smart-cities. Proc. Comput. Sci. 110, 361–368 (2017)

    Article  Google Scholar 

  21. Bouten, N., Famaey, J., Mijumbi, R., Naudts, B., Serrat, J., Latré, S., De Turck, F.: Towards nfv-based multimedia delivery. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 738–741. IEEE (2015)

  22. Sanaei, M., Mostafavi, S.: Multimedia delivery techniques over software-defined networks: A survey. In: 2019 5th International Conference on Web Research (ICWR), pp. 105–110. IEEE (2019)

  23. Bonfim, M.S., Dias, K.L., Fernandes, S.F.: Integrated nfv/sdn architectures: a systematic literature review. ACM Comput. Surv. 51(6), 1–39 (2019)

    Article  Google Scholar 

  24. Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp, A.M.: Openqos: An openflow controller design for multimedia delivery with end-to-end quality of service over software-defined networks. In: Proceedings of the 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–8. IEEE (2012)

  25. Ongaro, F., Cerqueira, E., Foschini, L., Corradi, A., Gerla, M.: Enhancing the quality level support for real-time multimedia applications in software-defined networks. In: 2015 International Conference on Computing, Networking and Communications (ICNC), pp. 505–509. IEEE (2015)

  26. Owens, H., II., Durresi, A.: Video over software-defined networking (vsdn). Comput. Netw. 92, 341–356 (2015)

    Article  Google Scholar 

  27. Mu, M., Broadbent, M., Farshad, A., Hart, N., Hutchison, D., Ni, Q., Race, N.: A scalable user fairness model for adaptive video streaming over sdn-assisted future networks. IEEE J. Select. Areas Commun. 34(8), 2168–2184 (2016)

    Article  Google Scholar 

  28. Kleinrouweler, J.W., Cabrero, S., Cesar, P.: Delivering stable high-quality video: an sdn architecture with dash assisting network elements. In: Proceedings of the 7th International Conference on Multimedia Systems, pp. 1–10 (2016)

  29. Bentaleb, A., Begen, A.C., Zimmermann, R., Harous, S.: Sdnhas: an sdn-enabled architecture to optimize qoe in http adaptive streaming. IEEE Trans. Multimed. 19(10), 2136–2151 (2017)

    Article  Google Scholar 

  30. Barakabitze, A.A., Mkwawa, I.H., Sun, L., Ifeachor, E.: Qualitysdn: Improving video quality using mptcp and segment routing in sdn/nfv. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 182–186. IEEE (2018)

  31. Zhu, L., Karim, M.M., Sharif, K., Li, F., Du, X., Guizani, M.: SDN controllers: Benchmarking & performance evaluation. CoRR abs/1902.04491 (2019)

  32. Hongvanthong, S.: Novel four-layered software defined 5g architecture for ai-based load balancing and qos provisioning. In: 2020 5th International Conference on Computer and Communication Systems (ICCCS), pp. 859–863. IEEE (2020)

  33. Caba, C., Soler, J.: Mitigating sdn controller performance bottlenecks. In: 2015 24th International Conference on Computer Communication and Networks (ICCCN), pp. 1–6. IEEE (2015)

  34. Souza, R., Dias, K., Fernandes, S.: Nfv data centers: a systematic review. IEEE Access 8, 51713–51735 (2020)

    Article  Google Scholar 

  35. Gardikis, G., Koutras, I., Mavroudis, G., Costicoglou, S., Xilouris, G., Sakkas, C., Kourtis, A.: An integrating framework for efficient nfv monitoring. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft), pp. 1–5. IEEE (2016)

  36. Sun, P., Guo, Z., Lan, J., Li, J., Hu, Y., Baker, T.: Scaledrl: a scalable deep reinforcement learning approach for traffic engineering in sdn with pinning control. Comput. Netw. 190, 107891 (2021)

    Article  Google Scholar 

  37. van der Hooft, J., Wauters, T., De Turck, F., Timmerer, C., Hellwagner, H.: Towards 6dof http adaptive streaming through point cloud compression. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2405–2413 (2019)

  38. Jianya, Y.Y.G.: An efficient implementation of shortest path algorithm based on Dijkstra algorithm. J. Wuhan Tech. Univ. Surv. Map. 3, 4 (1999)

    Google Scholar 

  39. Katoh, N., Ibaraki, T., Mine, H.: An efficient algorithm for k shortest simple paths. Networks 12(4), 411–427 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is the result of a collaborative project between Huawei and Ghent University, and funded by Huawei Technologies, China. Maria Torres Vega and Jeroen van der Hooft are funded by the Research Foundation Flanders (FWO), with grant numbers 12W4819N and 1281021N, respectively.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [HKR], [MTV]; Methodology: [HKR], [JH], [Tim Wauters]; Formal analysis and investigation: [HKR], [MTV], [TW]; Writing - original draft preparation: [HKR], [MTV]; Writing - review and editing: [JH], [TW], [FDT]; Supervision: [FDT]. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hemanth Kumar Ravuri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravuri, H.K., Vega, M.T., van der Hooft, J. et al. A Scalable Hierarchically Distributed Architecture for Next-Generation Applications. J Netw Syst Manage 30, 1 (2022). https://doi.org/10.1007/s10922-021-09618-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-021-09618-4

Keywords

Navigation