Skip to main content

Advertisement

Log in

Machine Learning-Assisted Closed-Control Loops for Beyond 5G Multi-Domain Zero-Touch Networks

  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

End-to-End (E2E) services in beyond 5G (B5G) networks are expected to be built upon resources and services distributed in multi-domain, multi-technology environments. In such scenarios, key challenges around multi-domain management and collaboration need to be tackled. ETSI Zero-touch network and Service Management (ZSM) architectural framework provides the structure and methods for effectively delivering E2E network services. ZSM pursues cross-domain automation with minimum human intervention through two main enablers: Closed Control Loop (CCL) and Artificial Intelligence (AI). In this work, we propose a multi-domain ZSM-based architecture aiming at B5G scenarios where several per-domain CCLs leverage Machine Learning (ML) methods to collaborate in E2E service management tasks. We instantiate the architecture in the use case scenario of multi-domain automated healing of Dynamic Adaptive Streaming over HTTP (DASH) video services. We present two ML-assisted techniques, first to estimate a Service Level Agreement (SLA) violation through a Edge-based Quality of Experience (QoE) Probe, and second to identify the root cause at the core transport network. Results from the experimental evaluation in an emulation environment using real mobile network traces point to the potential benefits of applying ML techniques for QoS-to-QoE estimation at Multi-Access Edge Computing facilities and correlation to faulty transport network links. Altogether, the work contributes towards a vision of ML-based sandbox environments in the spirit of E2E service and network digital twins towards the realization of automated, multi-domain CCLs for B5G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Alternatively, the migration task could include the video DASH server at its new location DC2 sending HTTP redirect messages to active users among other well-known Service/VM migration techniques

  2. http://skulddata.cs.umass.edu/traces/mmsys/2013/pathbandwidth

  3. https://www.ucc.ie/en/misl/research/datasets/ivid_4g_lte_dataset

  4. https://github.com/uccmisl/5Gdataset

  5. https://scikit-learn.org/stable/

  6. https://scikit-learn.org/stable/modules/generated/sklearn. model_selection.GridSearchCV.html

  7. https://selfnet-5g.eu/

  8. https://5g-ppp.eu/cognet/

  9. https://5gzorro.eu/

  10. https://5growth.eu/

  11. https://inspire-5gplus.eu/

References

  1. Saraiva, N., Lachos, D., Rosa, R., Santos, M., Rothenberg, C.: Network service orchestration: a survey. Comput. Commun. 142–143, 69–94 (2019)

    Article  Google Scholar 

  2. Rosa, R.V., Silva Santos, M.A., Rothenberg, C.E.: Md2-nfv: the case for multi-domain distributed network functions virtualization. In: 2015 International Conference and Workshops on Networked Systems (NetSys), pp. 1–5 (2015)

  3. Xie, M., Gomes, P.H., Harmatos, J., Ordonez-Lucena, J.: Collaborated closed loops for autonomous end-to-end service management in 5G. In: 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 64–70 (2020)

  4. Benzaid, C., Taleb, T.: AI-driven zero touch network and service management in 5G and beyond: challenges and research directions. IEEE Netw. 34(2), 186–194 (2020)

    Article  Google Scholar 

  5. ETSI: Zero-touch orchestration, operations and management (ZOOM). https://www.etsi.org/technologies/zero-touch-network-service-management

  6. ETSI: ETSI GS ZSM 002: zero-touch network and service management (ZSM); reference architecture. Tech. Rep., 08 (2019)

  7. Lachos Perez, D.A., Rothenberg, C.E.: MUDED: integrating networks with applications through multi-domain exposure and discovery mechanisms. In: VI IEEE NFV-SDN (2020)

  8. Xie, M., Gomes, P.H., Harmatos, J., Ordonez-Lucena, J.: Collaborated closed loops for autonomous end-to-end service management in 5G. In: 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), pp. 64–70. IEEE (2020)

  9. Boutaba, R., Salahuddin, M.A., Limam, N., Ayoubi, S., Shahriar, N., Estrada-Solano, F., Caicedo, O.M.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 16 (2018). https://doi.org/10.1186/s13174-018-0087-2

    Article  Google Scholar 

  10. Pan, J., Cai, L., Yan, S., Shen, X.S.: Network for ai and ai for network: challenges and opportunities for learning-oriented networks. IEEE Netw 35, 270–277 (2021)

    Article  Google Scholar 

  11. ETSI: GS ZSM 001—V1.1.1—Zero-Touch Network and Service Management (ZSM); Requirements Based on Documented Scenarios. Group Specification (gs), 02 (2019)

  12. ETSI. ETSI GS ZSM 009-1 V1.1.1: Zero-Touch Network and Service Management (ZSM); Closed-Loop Automation; Part 1: Enablers. Group Specification (gs), 06 (2021)

  13. Strassner, J., Strassner, J.S.: Policy-Based Network Management: Solutions for the Next Generation. Morgan Kaufmann, Boston (2004)

    MATH  Google Scholar 

  14. Behringer, M.H., Pritikin, M., Bjarnason, S., Clemm, A., Carpenter, B.E., Jiang, S., Ciavaglia, L.: Autonomic Networking: Definitions and Design Goals. RFC 7575 (June 2015)

  15. ETSI: ETSI GS NFV-SOL 005: network functions virtualisation (NFV) release 2; protocols and data models; RESTful protocols specification for the Os-Ma-nfvo reference point. Tech. Rep., 01 (2020)

  16. Alimi, R., Penno, R., Yang, Y., Kiesel, S., Previdi, S., Roome, W., Shalunov, S., Woundy, R.: Application-layer traffic optimization (ALTO) protocol. RFC 7285 (2014)

  17. Ceccarelli, D., Lee, Y.: Framework for abstraction and control of TE networks (ACTN). Internet Eng Task Force (IETF), RFC8453 (2018)

  18. Forum, T.: TMF640 service activation and configuration API user guide v4.0.1. Tech. Rep., 07 (2020)

  19. MEF: MEF 55 LSO IRP: LSO interlude. Tech. Rep., 06 (2020)

  20. de la Oliva, A., Li, X., Costa-Perez, X., Bernardos, C.J., Bertin, P., Iovanna, P., Deiss, T., Mangues, J., Mourad, A., Casetti, C., Gonzalez, J.E., Azcorra, A.: 5G-TRANSFORMER: slicing and orchestrating transport networks for industry verticals. IEEE Commun. Mag. 56(8), 78–84 (2018)

    Article  Google Scholar 

  21. Bernardos, C.J., Gerö, B.P., Di Girolamo, M., Kern, A., Martini, B., Vaishnavi, I.: 5GEx: realising a Europe-wide multi-domain framework for software-defined infrastructures. Trans. Emerg. Telecommun. Technol. 27(9), 1271–1280 (2016)

    Article  Google Scholar 

  22. Dinh-Xuan, L., Seufert, M., Wamser, F., Tran-Gia, P.: Study on the accuracy of QoE monitoring for HTTP adaptive video streaming using VNF. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), pp. 999–1004 (2017)

  23. Neal, A., Naughton, B., Chan, C., Sprecher, N., Abeta, S.: Mobile edge computing (mec); technical requirements. ETSI, Sophia Antipolis, France, White Paper no. DGS/MEC-002 (2016)

  24. Vasilev, V., Leguay, J., Paris, S., Maggi, L., Debbah, M.: Predicting QoE factors with machine learning. In: 2018 IEEE International Conference on Communications (ICC), pp. 1–6, IEEE (2018)

  25. Fontes, R.R., Afzal, S., Brito, S.H.B., Santos, M.A.S., Rothenberg, C.E.: Mininet-WiFi: emulating software-defined wireless networks. In: 2015 11th International Conference on Network and Service Management (CNSM), pp. 384–389. IEEE (2015)

  26. Raca, D., Manifacier, M., Quinlan, J.J.: Godash—go accelerated has framework for rapid prototyping. In: 2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–4. IEEE (2020)

  27. Quinlan, J.J., Sreenan, C.J.: Multi-profile ultra high definition (UHD) AVC and HEVC 4K DASH datasets. In: Proceedings of the 9th ACM Multimedia Systems Conference, pp. 375–380 (2018)

  28. Gallego-Madrid, J., Sanchez-Iborra, R., Ruiz, P.M., Skarmeta, A.F.: Machine learning-based zero-touch network and service management: a survey. Digit. Commun. Netw. (2021). https://doi.org/10.1016/j.dcan.2021.09.001

  29. ETSI: Technical Committee (TC) Core Network and Interoperability Testing (INT). https://www.etsi.org/committee/int (2018)

  30. ITU: Focus group on machine learning for future networks including 5g. https://www.itu.int/en/ITU-T/ (2017)

  31. ETSI: Experiential Networked Intelligence (ENI). https://www.etsi.org/technologies-clusters/technologies/experiential-networked-intelligence (2018)

  32. Forum, T.: Zero-touch orchestration, operations and management (ZOOM). https://www.tmforum.org/collaboration/zoom-project/ (2016)

  33. Sciancalepore, V., Samdanis, K., Costa-Perez, X., Bega, D., Gramaglia, M., Banchs, A.: Mobile traffic forecasting for maximizing 5G network slicing resource utilization. In: IEEE INFOCOM 2017—IEEE Conference on Computer Communications, pp. 1–9 (2017)

  34. Saraiva de Sousa, N.F., Lachos Perez, D., Esteve Rothenberg, C., Henrique Gomes, P.: End-to-end service monitoring for zero-touch networks. J. ICT Standard. 9, 91–112 (2021)

    Google Scholar 

  35. Rothenberg, C.E., Lachos Perez, D.A., Saraiva de Sousa, N.F., Rosa, R.V., Mustafa, R.U., Islam, M.T., Gomes, P.H.: Intent-based control loop for dash video service assurance using ml-based edge qoe estimation. In: 2020 6th IEEE Conference on Network Softwarization (NetSoft), pp. 353–355 (2020)

  36. Dimopoulos, G., Leontiadis, I., Barlet-Ros, P., Papagiannaki, K.: Measuring video QoE from encrypted traffic. In: Proceedings of the 2016 Internet Measurement Conference, pp. 513–526 (2016)

  37. Khokhar, M.J., Ehlinger, T., Barakat, C.: From network traffic measurements to qoe for internet video. In: 2019 IFIP Networking Conference (IFIP Networking), pp. 1–9. IEEE (2019)

  38. Mazhar, M.H., Shafiq, Z.: Real-time video quality of experience monitoring for https and quic. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1331–1339. IEEE (2018)

  39. Bronzino, F., Schmitt, P., Ayoubi, S., Martins, G., Teixeira, R., Feamster, N.: Inferring streaming video quality from encrypted traffic: practical models and deployment experience. In: Proc. ACM Meas. Anal. Comput. Syst., vol. 3 (2019)

  40. Gutterman, C., Guo, K., Arora, S., Wang, X., Wu, L., Katz-Bassett, E., Zussman, G.: Requet: real-time qoe detection for encrypted youtube traffic. In: Proceedings of the 10th ACM Multimedia Systems Conference, MMSys’19, (New York, NY, USA), pp. 48–59, Association for Computing Machinery (2019)

  41. Orsolic, I., Skorin-Kapov, L.: A framework for in-network QoE monitoring of encrypted video streaming. IEEE Access 8, 74691–74706 (2020)

    Article  Google Scholar 

  42. Wassermann, S., Seufert, M., Casas, P., Gang, L., Li, K.: ViCrypt to the rescue: real-time, machine-learning-driven video-QoE monitoring for encrypted streaming traffic. IEEE Trans. Netw. Serv. Manag. (2020). https://doi.org/10.1109/TNSM.2020.3036497

  43. Ge, C., Wang, N.: Real-time qoe estimation of dash-based mobile video applications through edge computing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 766–771. IEEE (2018)

  44. Zheng, H., Zhao, Y., Lu, X., Cao, R.: A mobile fog computing-assisted dash qoe prediction scheme. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/6283957

  45. Ul Mustafa, R., Islam, M.T., Rothenberg, C., Ferlin, S., Raca, D., Quinlan, J.J.: DASH QoE performance evaluation framework with 5G datasets. In: In IEEE CNSM AnServApp Workshop (2020)

  46. Ul Mustafa, R., Ferlin, S., Esteve Rothenberg, C., Raca, D., Quinlan, J.J.: A supervised machine learning approach for dash video qoe prediction in 5g networks. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks. Q2SWinet ’20, (New York, NY, USA), pp. 57–64. Association for Computing Machinery (2020)

  47. Ul Mustafa, R., Moura, D., Rothenberg, C.E.: Machine learning approach to estimate video QoE of encrypted DASH traffic in 5G networks. In: In IEEE Singal Processing (SSP2021) Workshop (2021)

  48. Islam, M., Rothenberg, C.: HAS based empirical qoe study over TCP and QUIC on diverse networks. In: Anais do VII Workshop Pré-IETF, (Porto Alegre, RS, Brasil), pp. 29–42. SBC (2020)

  49. Zhaojun, G., Chao, W.: Statistic and analysis for host-based syslog. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 2, pp. 277–280. IEEE (2010)

  50. Moustapha, A.I., Selmic, R.R.: Wireless sensor network modeling using modified recurrent neural networks: application to fault detection. IEEE Trans. Instrum. Meas. 57(5), 981–988 (2008)

    Article  Google Scholar 

  51. Qader, K., Adda, M., Al-kasassbeh, M.: Comparative analysis of clustering techniques in network traffic faults classification. Int. J. Innov. Res. Comput. Commun. Eng. 5, 6552–6563 (2017)

    Google Scholar 

  52. Akbari, A., Beikmahdavi, N.: Cluster-based & cellular approach to fault detection & recovery in wireless sensor networks. In: 3rd Int. Conf. on Advanced Computer Theory & Eng. (ICACTE) (2010)

  53. Casas, P., D’Alconzo, A., Fiadino, P., Bär, A., Finamore, A., Zseby, T.: When youtube does not work—analysis of qoe-relevant degradation in google cdn traffic. IEEE Trans. Netw. Serv. Manage. 11(4), 441–457 (2014)

    Article  Google Scholar 

  54. Tembo, S.R., Courant, J.-L., Vaton, S.: A 3-layered self-reconfigurable generic model for self-diagnosis of telecommunication networks. In: 2015 SAI Intelligent Systems Conference (IntelliSys), pp. 25–34. IEEE (2015)

  55. Rosa, R.V., Bertoldo, C., Rothenberg, C.E.: Take your vnf to the gym: a testing framework for automated nfv performance benchmarking. IEEE Commun. Mag. 55(9), 110–117 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Innovation Center, Ericsson S.A., Brazil, grant UNI.67. The views expressed are solely those of the authors and do not necessarily represent Ericsson’s official standpoint.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Franklin Saraiva de Sousa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Sousa, N.F.S., Islam, M.T., Mustafa, R.U. et al. Machine Learning-Assisted Closed-Control Loops for Beyond 5G Multi-Domain Zero-Touch Networks. J Netw Syst Manage 30, 46 (2022). https://doi.org/10.1007/s10922-022-09651-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-022-09651-x

Keywords

Navigation