Skip to main content
Log in

MADCS: A Middleware for Anomaly Detection and Content Sharing for Blockchain-Based Systems

  • Research
  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

The massive growth in data generation, experienced throughout the current century, has enabled the design of data-driven solutions for various applications. On the other hand, privacy concerns have been raised, especially considering the problems that the leakage of personal data can cause. To address privacy and security issues when dealing with sensitive content, works in the literature have focused on improving protocols for content sharing, primarily by endowing them with anomaly detection modules. However, in Blockchain-based systems, the aggregation of anomaly detection modules to middleware environments is still an under-explored research direction. This paper introduces the Middleware for Anomaly Detection and Content Sharing (MADCS), a new middleware based on a layered structure composed of the application, preprocessing, data analysis and business layers, besides the Blockchain platform. For validation, we built a synthetic dataset of medical prescriptions following an international standard and applied a clustering-based technique for anomaly detection. Experiments demonstrated 85% precision and 78% accuracy in identifying abnormalities in the content-sharing process. The results show that a Blockchain combined with MADCS may contribute to a safer content-sharing network environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and materials

all data was generated from the simulations described in the paper, available at https://github.com/alef123vinicius/MADCS.

References

  1. Zwilling, M., Klien, G., Lesjak, D., Wiechetek, Ł, Cetin, F., Basim, H.N.: Cyber security awareness, knowledge and behavior: a comparative study. J. Comput. Inform. Syst. 62(1), 82–97 (2022). https://doi.org/10.1080/08874417.2020.1712269

    Article  Google Scholar 

  2. Pollini, A., Callari, T.C., Tedeschi, A., Ruscio, D., Save, L., Chiarugi, F., Guerri, D.: Leveraging human factors in cybersecurity: an integrated methodological approach. Cogn. Technol. Work 24(2), 371–390 (2022). https://doi.org/10.1007/s10111-021-00683-y

    Article  Google Scholar 

  3. Dave, G., Choudhary, G., Sihag, V., You, I., Choo, K.-K.R.: Cyber security challenges in aviation communication, navigation, and surveillance. Comput. Secur. 112, 102516 (2022). https://doi.org/10.1016/j.cose.2021.102516

    Article  Google Scholar 

  4. Pastori Valentini, E., Ipolito Meneguette, R., Alsuhaim, A.: An attacks detection mechanism for intelligent transport system. In: 2020 IEEE International Conference on Big Data (big data), pp. 2453–2461 (2020). https://doi.org/10.1109/BigData50022.2020.9378309

  5. Al-Turjman, F., Zahmatkesh, H., Shahroze, R.: An overview of security and privacy in smart cities’ iot communications. Trans. Emerg. Telecommun. Technol. 33(3), 3677 (2022). https://doi.org/10.1002/ett.3677

    Article  Google Scholar 

  6. Ghimire, B., Rawat, D.B.: Recent advances on federated learning for cybersecurity and cybersecurity for federated learning for internet of things. IEEE Internet Things J. 9(11), 8229–8249 (2022). https://doi.org/10.1109/JIOT.2022.3150363

    Article  Google Scholar 

  7. Cristiani, A.L., Lieira, D.D., Meneguette, R.I., Camargo, H.A.: A fuzzy intrusion detection system for identifying cyber-attacks on IOT networks. In: 2020 IEEE Latin-American Conference on Communications (LATINCOM), pp. 1–6 (2020). https://doi.org/10.1109/LATINCOM50620.2020.9282320

  8. McConomy, B.C., Leber, D.E.: Cybersecurity in healthcare. In: Clinical Informatics Study Guide, pp. 241–253. Springer, Berlin/Heidelberg, Germany (2022). https://doi.org/10.1007/978-3-030-93765-2_17

  9. Zaeem, R.N., Barber, K.S.: The effect of the GDPR on privacy policies: recent progress and future promise. ACM Trans. Manage. Inf. Syst. (2020). https://doi.org/10.1145/3389685

    Article  Google Scholar 

  10. Mulgund, P., Mulgund, B.P., Sharman, R., Singh, R.: The implications of the California consumer privacy act (CCPA) on healthcare organizations: lessons learned from early compliance experiences. Health Pol. Technol. 10(3), 100543 (2021). https://doi.org/10.1016/j.hlpt.2021.100543

    Article  Google Scholar 

  11. Sookhak, M., Jabbarpour, M.R., Safa, N.S., Yu, F.R.: Blockchain and smart contract for access control in healthcare: a survey, issues and challenges, and open issues. J. Netw. Comput. Appl. 178, 102950 (2021). https://doi.org/10.1016/j.jnca.2020.102950

    Article  Google Scholar 

  12. Syed, N.F., Shah, S.W., Trujillo-Rasua, R., Doss, R.: Traceability in supply chains: a cyber security analysis. Comput. Secur. 112, 102536 (2022). https://doi.org/10.1016/j.cose.2021.102536

    Article  Google Scholar 

  13. Dalal, R.S., Howard, D.J., Bennett, R.J., Posey, C., Zaccaro, S.J., Brummel, B.J.: Organizational science and cybersecurity: abundant opportunities for research at the interface. J. Bus. Psychol. 37(1), 1–29 (2022). https://doi.org/10.1007/s10869-021-09732-9

    Article  Google Scholar 

  14. Sreedevi, A.G., Nitya Harshitha, T., Sugumaran, V., Shankar, P.: Application of cognitive computing in healthcare, cybersecurity, big data and IOT: a literature review. Inform. Process. Manage. 59(2), 102888 (2022). https://doi.org/10.1016/j.ipm.2022.102888

    Article  Google Scholar 

  15. de Aguiar, E.J., dos Santos, A.J., Meneguette, R.I., De Grande, R.E., Ueyama, J.: A blockchain-based protocol for tracking user access to shared medical imaging. Futur. Gener. Comput. Syst. 134, 348–360 (2022). https://doi.org/10.1016/j.future.2022.04.017

    Article  Google Scholar 

  16. Xie, X., Fang, Y., Jian, Z., Lu, Y., Li, T., Wang, G.: Blockchain-driven anomaly detection framework on edge intelligence. CCF Trans. Netw. 3(3), 171–192 (2020). https://doi.org/10.1007/s42045-020-00044-9

    Article  Google Scholar 

  17. Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14(4), 352–375 (2018). https://doi.org/10.1504/IJWGS.2018.10016848

    Article  Google Scholar 

  18. Zhang, R., Xue, R., Liu, L.: Security and privacy on blockchain. ACM Comput. Surv. (CSUR) 52(3), 1–34 (2019). https://doi.org/10.1145/3316481

    Article  Google Scholar 

  19. Vishwa, A., Hussain, F.K.: A blockchain based approach for multimedia privacy protection and provenance. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, pp. 1941–1945 (2018). https://doi.org/10.1109/SSCI.2018.8628636

  20. Zaerens, K.: Concept for controlled business critical information sharing using smart contracts. In: 2018 2nd Cyber Security in Networking Conference (CSNet), IEEE, pp. 1–8 (2018). https://doi.org/10.1109/CSNET.2018.8602824

  21. Sá, A.G.C., Pappa, G.L., Pereira, A.C.M.: Generating Personalized Algorithms to Learn Bayesian Network Classifiers for Fraud Detection in Web Transactions. In: Proceedings of the 20th Brazilian Symposium on Multimedia and the Web. WebMedia ’14, pp. 179–186. ACM (2014). https://doi.org/10.1145/2664551.2664568

  22. Golomb, T., Mirsky, Y., Elovici, Y.: Ciota: Collaborative IoT anomaly detection via blockchain. arXiv preprint arXiv:1803.03807 (2018). https://doi.org/10.48550/arXiv.1803.03807

  23. Putra, G.D., Dedeoglu, V., Kanhere, S.S., Jurdak, R.: Towards scalable and trustworthy decentralized collaborative intrusion detection system for iot. In: 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation (IoTDI), IEEE, pp. 256–257 (2020). https://doi.org/10.1109/IoTDI49375.2020.00035

  24. Tug, S., Meng, W., Wang, Y.: Cbsigids: towards collaborative blockchained signature-based intrusion detection. In: 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), IEEE, pp. 1228–1235 (2018). https://doi.org/10.1109/Cybermatics_2018.2018.00217

  25. Haddad, A., Habaebi, M.H., Islam, M.R., Hasbullah, N.F., Zabidi, S.A.: Systematic review on ai-blockchain based e-healthcare records management systems. IEEE Access 10, 94583–94615 (2022). https://doi.org/10.1109/ACCESS.2022.3201878

    Article  Google Scholar 

  26. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 45–54 (2018). https://doi.org/10.1109/CVCBT.2018.00011

  27. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. (2008). https://bitcoin.org/bitcoin.pdf. Accessed 22 Dec 2022

  28. Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., Imran, M.: An overview on smart contracts: challenges, advances and platforms. Futur. Gener. Comput. Syst. 105, 475–491 (2020). https://doi.org/10.1016/j.future.2019.12.019

    Article  Google Scholar 

  29. Kumar, R.L., Khan, F., Kadry, S., Rho, S.: A survey on blockchain for industrial internet of things. Alex. Eng. J. 61(8), 6001–6022 (2022). https://doi.org/10.1016/j.aej.2021.11.023

    Article  Google Scholar 

  30. Chang, S.E., Chen, Y.: When blockchain meets supply chain: a systematic literature review on current development and potential applications. IEEE Access 8, 62478–62494 (2020). https://doi.org/10.1109/ACCESS.2020.2983601

    Article  Google Scholar 

  31. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation. OSDI ’99, pp. 173–186. USENIX Association, USA (1999). https://dl.acm.org/doi/10.5555/296806.296824

  32. Fu, X., Wang, H., Shi, P.: A survey of blockchain consensus algorithms: mechanism, design and applications. Sci. China Inf. Sci. 64(2), 1–15 (2021). https://doi.org/10.1007/s11432-019-2790-

    Article  Google Scholar 

  33. Aggarwal, S., Kumar, N.: Hyperledger. In: Advances in computers, vol. 121, pp. 323–343. Elsevier, Amsterdam (2021). https://doi.org/10.1016/bs.adcom.2020.08.016

  34. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference. EuroSys ’18. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3190508.3190538

  35. Celebi, M.E., Aydin, K.: Unsupervised learning algorithms. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-24211-8

  36. Na, S., Xumin, L., Yong, G.: Research on k-means clustering algorithm: an improved k-means clustering algorithm. In: 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, IEEE, pp. 63–67 (2010). https://doi.org/10.1109/IITSI.2010.74

  37. Szabo, N.: Formalizing and securing relationships on public networks. First Monday (1997). https://doi.org/10.5210/fm.v2i9.548

    Article  Google Scholar 

  38. Hewa, T., Ylianttila, M., Liyanage, M.: Survey on blockchain based smart contracts: applications, opportunities and challenges. J. Netw. Comput. Appl. 177, 102857 (2021). https://doi.org/10.1016/j.jnca.2020.102857

    Article  Google Scholar 

  39. Buterin, V., et al.: A next-generation smart contract and decentralized application platform. (2014). http://bit.ly/3GewIci. Accessed 22 Dec 2022

  40. Zhou, Q., Huang, H., Zheng, Z., Bian, J.: Solutions to scalability of blockchain: a survey. IEEE Access 8, 16440–16455 (2020). https://doi.org/10.1109/ACCESS.2020.2967218

    Article  Google Scholar 

  41. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soci. Ser. C (Appl. Stat.) 28(1), 100–108 (1979). https://doi.org/10.2307/2346830

  42. Bholowalia, P., Kumar, A.: Ebk-means: a clustering technique based on elbow method and k-means in wsn. Int. J. Comput. Appl. 105, 17–24 (2014)

    Google Scholar 

  43. Hotchkiss, R.N., Weiland, A.J.: Valgus stability of the elbow. J. Orthop. Res. 5(3), 372–377 (1987). https://doi.org/10.1002/jor.1100050309

    Article  Google Scholar 

  44. Roam Analytics: Prescription-based prediction: predicting doctor attributes from prescription behavior. Kaggle (2018). https://www.kaggle.com/datasets/roamresearch/prescriptionbasedprediction. Accessed 18 April 2023

  45. Ma, X., Wu, J., Xue, S., Yang, J., Zhou, C., Sheng, Q.Z., Xiong, H., Akoglu, L.: A comprehensive survey on graph anomaly detection with deep learning. IEEE Trans. Knowl. Data Eng. (2021). https://doi.org/10.1109/TKDE.2021.3118815

    Article  Google Scholar 

  46. Nguyen, D.C., Pham, Q.-V., Pathirana, P.N., Ding, M., Seneviratne, A., Lin, Z., Dobre, O., Hwang, W.-J.: Federated learning for smart healthcare: a survey. ACM Comput. Surv. (CSUR) 55(3), 1–37 (2022). https://doi.org/10.1145/3501296

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Coordination of Improvement of Higher Education Personnel (CAPES), the Sao Paulo Research Foundation (FAPESP, grants 2018/17335-9 and 2021/10921-2), the Center of Mathematical Sciences Applied to Industry (CeMEAI, under FAPESP grant number 2013/07375-0), and the National Council for Scientific and Technological Development (CNPq).

Funding

this research was funded by the Coordination of Improvement of Higher Education Personnel (CAPES), the Sao Paulo Research Foundation (FAPESP, grants 2018/17335-9 and 2021/10921-2), the Center of Mathematical Sciences Applied to Industry (CeMEAI, under FAPESP grant number 2013/07375-0), and the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

AS and FG implemented the system, performed the experiments, analyzed the results and wrote the first draft. CR and RG improved the conceptual design of the research, structured the paper and checked the references. RM, GR and BK provided intellectual contributions to the design and experiments. JU coordinated the methodological aspects of the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Caetano Mazzoni Ranieri.

Ethics declarations

Conflict of interest

Not applicable.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.V.C., Giuntini, F.T., Ranieri, C.M. et al. MADCS: A Middleware for Anomaly Detection and Content Sharing for Blockchain-Based Systems. J Netw Syst Manage 31, 46 (2023). https://doi.org/10.1007/s10922-023-09736-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09736-1

Keywords

Navigation