Skip to main content
Log in

Improving simulated annealing with variable neighborhood search to solve the resource-constrained scheduling problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

The purpose of this paper is to improve the simulated annealing method with a variable neighborhood search to solve the resource-constrained scheduling problem. We also compare numerically this method with other neighborhood search (local search) techniques: threshold accepting methods and tabu search. Furthermore, we combine these techniques with multistart diversification strategies and with the variable neighborhood search technique. A thorough numerical study is completed to set the parameters of the different methods and to compare the quality of the solutions that they generate. The numerical results indicate that the simulated annealing method improved with a variable neighborhood search technique is indeed the best solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcaraz, J., & Maroto, C. (2001). A robust algorithm for resource allocation in project scheduling. Annals of Operations Research, 102, 83–109.

    Article  Google Scholar 

  • Aubin, J., & Ferland, J. A. (1989). A large scale timetabling problem. Computers and Operations Research, 16, 67–77.

    Article  Google Scholar 

  • Baar, T., Brucker, P., & Knust, S. (1998). Tabu-search algorithms and lower bounds for the resource-constrained project scheduling problem. In S. Voss, S. Martello, I. Osman, & C. Roucairol (Eds.), Meta-heuristics: advances and trends in local search paradigms for optimization (pp. 1–18). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Baptiste, P., Le Pape, C., & Nuijten, W. (1999). Satisfiability and time-bound adjustments for cumulative scheduling problems. Annals of Operations Research, 92, 305–333.

    Article  Google Scholar 

  • Blazewicz, J. (1978). Complexity of computer scheduling algorithms under resources constraints. In Proceedings first meeting AFCET-SMF on applied mathematics (pp. 169–178), Palaiseau, Poland.

  • Bouffard, V. (2003). Méthodes heuristiques pour un problème d’ordonnancement avec contraintes sur les ressources. Master thesis, Département d’informatique et de recherche opérationnelle, Université de Montréal, Canada, April 2003.

  • Bouleimen, K., & Lecocq, H. (1998). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem. In G. Barbasoǧlu, S. Karabati, L. Ozdamar, & G. Ulusoy (Eds.), Proceedings of the sixth international workshop on project management and scheduling (pp. 19–22). Istanbul: Boǧaziçi University Pringing Office.

    Google Scholar 

  • Brucker, P., & Knust, S. (2001). Resource-constrained project scheduling and timetabling. In E. Burke & W. Erben (Eds.), Lecture notes in computer science : Vol. 2079. PATAT III (pp. 277–293). Berlin: Springer.

    Google Scholar 

  • Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: notation, classification, models, and methods. European Journal of Operational Research, 112, 3–41.

    Article  Google Scholar 

  • Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140, 266–280.

    Article  Google Scholar 

  • Carlier, J., & Pinson, E. (1998). Jackson’s pseudo-preemptive schedule for the P m /r i ,q i /C max  scheduling problem. Annals of Operations Research, 83, 41–58.

    Article  Google Scholar 

  • Cerny, V. (1985). Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41–51.

    Article  Google Scholar 

  • de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–162.

    Article  Google Scholar 

  • Dueck, G. (1993). New optimization heuristics: the great deluge algorithm and the record-to-record travel. Journal of computational Physics, 104, 86–92.

    Article  Google Scholar 

  • Dueck, G., & Scheuer, T. (1990). Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. Journal of Computational Physics, 90, 161–175.

    Article  Google Scholar 

  • Ferland, J. A., Hertz, A., & Lavoie, A. (1996). An object-oriented methodology for solving assignment-type problems with neighborhood search techniques. Operations Research, 44, 347–359.

    Google Scholar 

  • Glover, F. (1986). Future path for integer programming and links to artificial intelligence. Computers and Operations Research, 13, 533–549.

    Article  Google Scholar 

  • Hansen, P. (1986). The steepest ascent mildest descent heuristic for combinatorial programming. In: Congress on numerical methods in combinatorial optimization, Capri, Italy.

  • Hansen, P., & Mladonović, N. (2001). Variable neighborhood search: principles and applications. European Journal of Operations Research, 130, 449–467.

    Article  Google Scholar 

  • Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics, 45, 733–750.

    Article  Google Scholar 

  • Jeffcoat, D. E., & Bulfin, R. L. (1993). Simulated-annealing for resource-constrained scheduling. European Journal of Operational Research, 70, 43–51.

    Article  Google Scholar 

  • Kelly, J. P., Laguna, M., & Glover, F. (1994). A study of diversification strategies for the quadratic assignment problem. Computers and Operations Research, 21, 885–893.

    Article  Google Scholar 

  • Kirkpatric, S., Gelatt, C. D. Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of resource-constrained project scheduling problems. Management Science, 41, 1693–1703.

    Article  Google Scholar 

  • Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  • Petrovic, S., & Burke, E. K. (2004). University timetabling. In J. Y. -T. Leung (Ed.), Handbook of scheduling: algorithms, models, and performance analysis. Boca Raton: CRC Press, Chap. 45.

    Google Scholar 

  • Reeves, C. R. (1996). Modern heuristic techniques. In V. J. R. Smith, I. H. Osman, C. R. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods (pp. 1–25). New York: Wiley.

    Google Scholar 

  • Schaerf, A. (1999a). A survey of automated timetabling. Artificial Intelligence Review, 13, 87–127.

    Article  Google Scholar 

  • Schaerf, A. (1999b). Local search techniques for large high school timetabling problems. IEEE Transactions on Systems, Man and Cybernetics, Part A, 29, 368–377.

    Article  Google Scholar 

  • Schaerf, A. (2006). Measurability and reproducibility in timetabling. In E. K. Burke & H. Rudova (Eds.), Proceedings of the 6th international conference on the practice and theory of automated timebabling (pp. 53–62). Brno: Masaryk University.

    Google Scholar 

  • Srivastav, A., & Stangier, P. (1997). Tight approximations for resource constrained scheduling and bin packing. Discrete Applied Mathematics, 79, 223–245.

    Article  Google Scholar 

  • Taillard, E. (1991). Robust tabu search for the quadratic assignment problem. Parallel Computing, 17, 443–455.

    Article  Google Scholar 

  • Van Laarhoven, P. J. M., Aarts, E. H. L., & Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, 40, 113–125.

    Google Scholar 

  • Zhang, G., Cai, X., & Wong, C. K. (2004). Some results on resource constrained scheduling. IIE Transactions, 36, 1–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques A. Ferland.

Additional information

This research was supported by NSERC grant (OGP 0008312) the first author received a FCAR fellowship during her M.Sc. studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouffard, V., Ferland, J.A. Improving simulated annealing with variable neighborhood search to solve the resource-constrained scheduling problem. J Sched 10, 375–386 (2007). https://doi.org/10.1007/s10951-007-0043-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-007-0043-7

Keywords

Navigation