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Abstract In a proportionate flow shop problem several jobs
have to be processed through a fixed sequence of machines
and the processing time of each job is equal on all machines.
By identifying jobs with agents whose costs linearly depend
on the completion time of their jobs and assuming an initial
processing order on the jobs, we face two problems: the first
is how to obtain an optimal order that minimizes the total
processing cost, the second is how to allocate the cost sav-
ings obtained by ordering the jobs optimally. In this paper
we focus on the allocation problem. PFS games are defined
as cooperative games associated to proportionate flow shop
problems. It is seen that PFS games have a nonempty core.
Moreover, it is shown that PFS games are convex if the jobs
are initially ordered in decreasing urgency. For this case an
explicit game independent expression for the Shapley value
is provided.
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1 Introduction

In a flow shop problem a group of jobs has to be processed
through a fixed number of machines and the order of the
machines in which the jobs have to be processed is the same
for all jobs. To each job a cost is associated dependent on
its completion time. In this paper we consider proportion-
ate flow shop problems. A proportionate flow shop prob-
lem is a flow shop problem in which additionally every
job has the same processing time on each machine (e.g.,
a wooden door needs several layers of paint and each dif-
ferent layer of paint has a different machine associated to
it, but the painting time is always the same). Proportion-
ate flow shop problems have gained considerable attention
lately and various papers have been devoted to this topic. In
Shakhlevich et al. (1998) an algorithm is provided to obtain
an optimal schedule for this kind of problems. Shiau and
Huang (2004) generalize this type of problems by consider-
ing multiple identical machines at any stage. In Allahverdi
(1996) and Allahverdi and Savsar (2001) proportionate flow
shop problems with breakdowns (machines can have fail-
ures and some extra time is needed for repairs) and setup
times (situations where each job needs some specific prepa-
rations on the machine before being processed, thus incur-
ring some additional extra time) are studied, respectively.
Cheng and Shakhlevich (1999) propose algorithms for pro-
portionate flow shop problems where the processing times
can be controlled by incurring extra costs.

By associating jobs to clients, a proportionate flow shop
problem gives rise to an interactive decision making prob-
lem. Each client incurs costs, which we assume to depend
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linearly on the completion time of its job. By assuming an
initial order on the jobs, the first problem clients jointly face
is an optimization problem which is to find an optimal re-
ordering of all jobs, i.e., a schedule that maximizes joint cost
savings. The subsequent problem is of a game theoretic na-
ture and asks how to reallocate these cost savings in a fair
way. By defining the value of a coalition of clients as the
maximal attainable cost savings by means of an optimal ad-
missible reordering, we obtain a cooperative proportionate
flow shop game (a PFS game) related to the proportionate
flow shop problem. The core of this game provides insight
in the allocation problem at hand, since core elements lead
to a stable reallocation of the joint cost savings. A game is
said to be balanced if it has a nonempty core.

The above game-theoretic approach to sequencing situa-
tions has been initiated by Curiel et al. (1989) for the class
of one-machine sequencing situations. Generalizations to,
e.g., ready times, due dates, multiple ownership, more ma-
chines, and controllable processing times have been stud-
ied in Hamers et al. (1995), Borm et al. (2002), Calleja et
al. (2006), Estévez-Fernández et al. (2004), Hamers et al.
(1999), Calleja et al. (2002), and van Velzen (2006). A re-
view on sequencing games can be found in Curiel et al.
(2002). Finally, within the context of flow shop problems,
van den Nouweland et al. (1990) have studied the specific
case of a dominant machine. Other approaches to cooper-
ation in sequencing situations can be found in Maniquet
(2003) and Moulin and Stong (2002). For queuing situations
especially, strategic behavior and competition have been an-
alyzed; for a clear survey we refer to Hassin and Haviv
(2003). Two papers on cooperative aspects of queuing sit-
uations are González and Herrero (2004) and García-Sanz
et al. (2008).

The current article analyzes proportionate flow shop
problems and related PFS games following the lines set out
by Curiel et al. (1989). It is shown that PFS games are bal-
anced. Moreover, PFS games turn out to be convex if the
initial order is an urgency order. An urgency order is an or-
der in which jobs are ordered nonincreasingly with respect
to their urgency index. Here, as usual, the urgency index of a
job is the quotient of its cost coefficient (i.e., the coefficient
of the linear cost function) and its processing time. Besides,
in this setting we provide an explicit game independent ex-
pression for the Shapley value.

The remainder of the paper is organized as follows. Sec-
tion 2 provides the basic definitions and terminology of pro-
portionate flow shop problems. Here, three useful results in
Shakhlevich et al. (1998) and the algorithm presented there
are recalled. In Sect. 3, PFS games are defined and it is
shown that they are balanced. Besides, these games are con-
vex provided that the initial order is an urgency order. In
such case, an expression of the Shapley value, which does
not depend on coalitional values, is provided.

2 Proportionate flow shop problems

A flow shop situation consists of a fixed sequence of m ma-
chines, and a finite set of jobs N that have to be processed on
all machines. Without loss of generality, we assume in this
paper that each job must be processed first on machine M1,
then on M2, etc. A proportionate flow shop (PFS) situation is
a flow shop situation where the processing time of every job
is the same on each machine. Hence, a PFS situation can be
described by a 3-tuple (M,N,p) with M = {M1, . . . ,Mm}
being the set of machines, N = {1, . . . , n} denoting the set
of jobs, and p ∈ R

N+ as the vector of processing times of the
jobs.

A schedule fixes for every job i and every machine r a
time interval of length pi in which job i is processed in
such a way that neither a job is processed on two differ-
ent machines at the same time, nor a machine processes
two different jobs at the same time. Given a PFS situation
(M,N,p) we denote a schedule of the jobs on the machines
as σ = (σ 1, . . . , σm) with σ r : N → {1, . . . , |N |} a bijection
describing the processing order on machine Mr . We denote
by Π(N,M) the set of all schedules of the jobs on the ma-
chines. Given σ ∈ Π(N,M), i ∈ N , and Mr ∈ M , we de-
note by P(σ r , i) the set of predecessors of job i on machine
Mr , i.e., P(σ r , i) = {j ∈ N | σ r(j) < σ r(i)}. Further, we
define P̄ (σ r , i) := P(σ r , i) ∪ {i}. We denote by p(σ r , i)

the immediate predecessor of job i on machine Mr , i.e.,
p(σ r, i) ∈ N such that P̄ (σ r ,p(σ r , i)) = P(σ r , i). Notice
that p(σ r, i) does not exist when P(σ r , i) = ∅.

In principle, the processing order on machines need not
be the same. A schedule σ = (σ 1, . . . , σm) with σ 1 = · · · =
σm is called a permutation schedule, or order. We denote by
Π(N) the set of all permutations schedules of the jobs.

Assuming that processing starts at time 0 and that there
are no unnecessary delays, the completion time of job i on
machine Mr with respect to an arbitrary schedule σ , Cσ

i (r),
can be recursively determined by

Cσ
i (1) =

∑

j∈P̄ (σ 1,i)

pj ,

and for r = 2, . . . ,m,

Cσ
i (r) =

{
Cσ

i (r − 1) + pi if P(σ r , i) = ∅,

max{Cσ
p(σ r ,i)(r),C

σ
i (r − 1)} + pi otherwise.

It is assumed that each job i ∈ N incurs costs, ci , which
are linear with respect to the time in which the job leaves the
system according to schedule σ . Hence, there exist positive
numbers αi , i ∈ N , such that ci(σ ) = αiC

σ
i (m). From now

on we denote the overall completion time Cσ
i (m) by Cσ

i .
Given a PFS situation (M,N,p) and a linear cost associ-

ated to each job, which is represented by α ∈ R
N , the asso-

ciated PFS problem, (M,N,p,α) has the objective of find-
ing a schedule that minimizes the total cost originated in the
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Fig. 1 Gantt chart of the PFS situation in Example 2.2

system, i.e., finding σ̂ such that

cN(σ̂ ) = min
σ∈Π(N,M)

cN(σ )

with cN(σ ) = ∑
i∈N ci(σ ) = ∑

i∈N αiC
σ
i . Note that

Π(N,M) is finite, and therefore there exists at least one
optimal solution.

Next, we recall three lemmas from Shakhlevich et al.
(1998) that are used throughout the article.

Lemma 2.1 (Shakhlevich et al. 1998) Let (M,N,p,α) be
a PFS problem. Then,

(i) every optimal schedule is a permutation schedule;
(ii) for a permutation schedule σ and i ∈ N , the completion

time Cσ
i is given by

Cσ
i =

∑

j∈P̄ (σ,i)

pj + (m − 1) max
j∈P̄ (σ,i)

{pj }.

Example 2.2 Let (M,N,p,α) be a PFS problem with
machines M = {M1,M2}, jobs N = {1,2,3,4}, vector of
processing times p = (4,5,6,1), and vector of cost coeffi-
cients α = (32.5,32,32,5). Let σ = (1 2 3 4) be a permuta-
tion schedule. This situation is represented in Fig. 1.

Here, Cσ
1 = 8, Cσ

2 = 14, Cσ
3 = 21, and Cσ

4 = 22. We il-
lustrate how to calculate Cσ

3 below.

Cσ
3 = p1 + p2 + p3 + (m − 1)max{p1,p2,p3}

= 4 + 5 + 6 + (2 − 1)max{4,5,6} = 21.

Hence, the total weighted completion time according to σ is
cN(σ ) = 1490.

Since the processing time of a job is the same on all ma-
chines, we can define an urgency (index) of job i ∈ N as
ui = αi

pi
. The next lemma states that if a job has higher ur-

gency than another job with larger processing time, then the
one with higher urgency is processed first in an optimal or-
der.

Lemma 2.3 (Shakhlevich et al. 1998) Let (M,N,p,α) be
a PFS problem and let σ be an optimal order. If i, j ∈ N

are such that ui ≥ uj and pi < pj , or ui > uj and pi ≤ pj ,
then σ(i) < σ(j).

We now recall some terminology from Shakhlevich et
al. (1998). Let (M,N,p,α) be a PFS problem and let σ ∈

Π(N). We say that job i ∈ N is a new-max job according
to σ if pi > maxj∈P(σ,i){pj }. Let aσ

1 , . . . , aσ
s be the new-

max jobs according to σ , with σ(aσ
1 ) < · · · < σ(aσ

s ). Note
that paσ

1
< · · · < paσ

s
. Then, N can be partitioned into s so-

called segments Aσ
1 , . . . ,Aσ

s in the following way

Aσ
r :=

{
P(σ, aσ

r+1) \ P(σ, aσ
r ) if 1 ≤ r < s,

N \ P(σ, aσ
r ) if r = s.

Note that P(σ, aσ
1 ) = ∅, since σ(aσ

1 ) = 1. The above parti-
tion into segments is denoted by Seg(σ ).

The lemma below states that in any optimal order the jobs
in a segment are processed in nonincreasing urgency order.

Lemma 2.4 (Shakhlevich et al. 1998) Let (M,N,p,α) be
a PFS problem and let σ be an optimal order. Let Aσ

r be a
segment corresponding to σ and i, j ∈ Aσ

r . If σ(i) < σ(j),
then ui ≥ uj .

Subsequently, we recall the algorithm to find an opti-
mal schedule for PFS problems given in Shakhlevich et al.
(1998). In our description, we already incorporate the results
in Lemmas 2.3 and 2.4. Let (M,N,p,α) be a PFS problem.
We define an urgency order, σu, as an order in which the jobs
are ordered in nonincreasing urgency and jobs with the same
urgency are ordered according to nondecreasing processing
time. Since the starting point of the algorithm is σu, we can
assume without loss of generality that σu = (1 . . . n). To
find the optimal order we generate orders σ̂1, . . . , σ̂n, where
σ̂1 := σu and σ̂n is optimal. Note that associated with σ̂i−1

we have the segments A
σ̂i−1
1 , . . . ,A

σ̂i−1
s which give a parti-

tion of N . Now, we explain how to obtain σ̂i from σ̂i−1. Let

si ∈ {1, . . . , s} be such that A
σ̂i−1
si ∩ {1, . . . , i − 1} 	= ∅ and

A
σ̂i−1
si+1 ∩ {1, . . . , i − 1} = ∅. We define A(i,1), . . . ,A(i, si)

as A(i,1) = A
σ̂i−1
si ∩ {1, . . . , i − 1} and A(i, r) = A

σ̂i−1
si−r+1

for r = 2, . . . , si , i.e., we have numbered the segments from
right to left.

Associated to each A(i, r), we denote by a(i, r) the new-
max job of this (sub)segment and by σir the order we ob-
tain from σ̂i−1 by placing i at the tail of A(i, r). Note that
σi1 = σ̂i−1. We denote by σisi+1 the order we obtain from
σ̂i−1 by placing i in front of a(i, si). Figure 2 gives an illus-
tration of these concepts where si = 2. In this figure, each
rectangle represents a job and the height of the rectangle rep-
resents its processing time. Shaded rectangles are new-max
jobs according to the urgency order.

Let rN(i) ∈ {1, . . . , si + 1} be such that

(1) cN(σir ) − cN(σirN (i)) > 0 for every r < rN(i);
(2) cN(σirN (i)) − cN(σir ) ≤ 0 for every r > rN(i).

We define σ̂i = σirN (i). Obviously, (1) and (2) imply that
cN(σ̂i) is minimal with respect to the si + 1 considered or-
ders. In Shakhlevich et al. (1998), it is shown that σ̂i =
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Fig. 2 Reordering of job i

σirN (i) is optimal for the case in which jobs {i + 1, . . . , n}
are not allowed to be reordered. Note that (2) guarantees that
i is processed latest in case of ties. Equations (1) and (2) are
equivalent to cN(σ̂i) is “minimal” and pa(i,rN (i)) > pa(i,r)

for every r 	= rN (i) with cN(σir ) = cN(σirN (i)).

3 Proportionate flow shop games

In this section we introduce proportionate flow shop games
and show balancedness. Moreover, if the initial order is an
urgency order, then the corresponding proportionate flow
shop game is convex and an explicit game independent ex-
pression of the Shapley value is provided based on the de-
composition of proportionate flow shop games into unanim-
ity games.

Before stating our main results we recall some basic no-
tions from cooperative game theory.

A cooperative TU-game in characteristic function form
is an ordered pair (N,v) where N is a finite set (the set of
players) and v : 2N → R satisfies v(∅) = 0. Here, 2N de-
notes the set of subsets (coalitions) of N . A game (N,v)

is called super-additive if v(S) + v(T ) ≤ v(S ∪ T ) for all
S,T ⊂ N such that S ∩ T = ∅. A special class of TU-games
is the class of unanimity games. Let T ⊂ N , we define the
unanimity game (N,uT ) by

uT (S) =
{

1 if T ⊂ S,

0 otherwise.

Recall that every TU-game (N,v) can be written in a unique
way as linear combination of unanimity games.

The core of a cooperative TU-game (N,v) is defined by

Core(v) =
{
x ∈ R

N
∣∣∣
∑

i∈N

xi = v(N),
∑

i∈S

xi ≥ v(S)

for all S ∈ 2N

}
,

i.e., the core is the set of efficient allocations of v(N) such
that there is no coalition with an incentive to split off.
A game is said to be balanced (see Bondareva 1963 and
Shapley 1967) if the core is nonempty.

An important subclass of balanced games is the class of
convex games (cf. Shapley 1971). A game (N,v) is said to

be convex if

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

for all S,T ⊂ N .
An important and well studied one point solution in co-

operative game theory is the Shapley value (Shapley 1953).
Let (N,v) be a TU-game and let v = ∑

T ⊂N, T 	=∅ cT uT be
the unique decomposition into unanimity games. Then, the
Shapley value of (N,v) is defined by

Φi(v) =
∑

T :i∈T

cT

|T | (3.1)

for every i ∈ N . It turns out that the Shapley value of a con-
vex game is always in the core (Shapley 1953).

Next, we start the game theoretical study of proportion-
ate flow shops. Let (M,N,p,α) be a PFS problem and let
σ0 ∈ Π(N,M) be an initial schedule on the jobs. By asso-
ciating jobs with players (or clients) we consider an asso-
ciated PFS game. In order to define the value of a coali-
tion S ⊂ N , one has to decide which schedules are admis-
sible for S. For this, we first need the notion of connected
components in a machine. A coalition U is called connected
(with respect to σ r

0 ) if for all i, j ∈ U and k ∈ N such that
σ r

0 (i) < σ r
0 (k) < σ r

0 (j) it holds that k ∈ U . A connected
coalition U ⊂ S is called maximal on machine r if U ∪{i} is
not connected with respect to σ r

0 for every i ∈ S \U . Given a
coalition S ⊂ N , we denote by S/σ r

0 the set of all maximally
connected components of S according to σ r

0 .
Given a coalition S ⊂ N , the set of admissible schedules

of S with respect to σ0 consists of all schedules σ such that

(i) S/σ r
0 = S/σ r for all r ∈ M ;

(ii) Cσ
i (r) = C

σ0
i (r) for every i ∈ N \ S and for all r ∈ M .

In words, a schedule is admissible for a coalition S with re-
spect to σ0 if changes on any machine r with respect to σ r

0
are only allowed among elements within connected compo-
nents of S on r in such a way that no job outside the coalition
has its completion time affected. These two conditions and
Lemma 2.1 imply that

(iii) all optimal schedules for the grand coalition are admis-
sible;

(iv) if the initial schedule is an order, then any order satis-
fying (i) is admissible for any coalition S ⊂ N .
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We now proceed with the definition of PFS games. Let
(M,N,p,α) be a PFS problem and let σ0 ∈ Π(N,M) be
an initial schedule on the jobs. The associated PFS game
(N,v) is defined by

v(S) := max
σ∈A(S,σ0)

{
cS(σ0) − cS(σ )

}

for every S ⊂ N , where cS(σ ) = ∑
i∈S ci(σ ) = ∑

i∈S αiC
σ
i

and A(S,σ0) is the set of admissible rearrangements for
coalition S with respect to σ0. Note that by Condition (ii)
of admissibility, the characteristic function can also be ex-
pressed as

v(S) := max
σ∈A(S,σ0)

{
cN(σ0) − cN(σ )

}
.

Theorem 3.1 PFS games are balanced.

Proof 1 We distinguish between two cases.

Case 1: σ0 is an order. In this case, σ 1
0 = · · · = σm

0 and
S/σ0 := S/σ 1

0 = · · · = S/σm
0 . It is readily seen that the game

is σ0-component additive (i.e., v({i}) = 0 for all i ∈ N ,
(N,v) is super-additive, and v(S) = ∑

T ∈S/σ0
v(T )) and

therefore balanced (see LeBreton et al. 1992 and Curiel et
al. 1994).

Case 2: σ0 is an arbitrary schedule. Let (N,v) be the PFS
game associated to the PFS problem (M,N,p,α) and the
initial schedule σ0. Define the order σ̃0 by σ̃ r

0 = σm
0 for every

r ∈ M . Let (N,w) be the PFS game associated to the PFS
problem (M,N,p,α) and initial order σ̃0. Defining ai =
ci(σ0) − ci(σ̃0) for all i ∈ N , it follows that

v(N) = w(N) +
∑

i∈N

ai (3.2)

by definition of (N,v), (N,w), and ai , and the fact that the
optimal schedule for N , σ̂ , belongs to both admissible sets
as pointed out in (iii), i.e., σ̂ ∈ A(N,σ0), σ̂ ∈ A(N, σ̃0). Be-
sides,

v(S) ≤ w(S) +
∑

i∈S

ai . (3.3)

Equation (3.3) follows because for every σ ∈ A(S,σ0) we
can define σ̃ by σ̃ r = σm for every r ∈ M . Since σ̃0 is an
order, we have that the order σ̃ is admissible as pointed out
in (iv), i.e., σ̃ ∈ A(S, σ̃0). Hence,

v(S) = max
σ∈A(S,σ0)

{
cS(σ0) − cS(σ )

}

= cS(σ0) − min
σ∈A(S,σ0)

{
cS(σ )

}

1We are indebted to a referee for the idea of this proof.

= cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ0)

{
cS(σ )

}

≤ cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ0)

{
cS(σ̃ )

}

≤ cS(σ0) − cS(σ̃0) + cS(σ̃0) − min
σ∈A(S,σ̃0)

{
cS(σ )

}

= cS(σ0) − cS(σ̃0) + max
σ∈A(S,σ̃0)

{
cS(σ̃0) − cS(σ )

}

=
∑

i∈S

ai + w(S),

where the first inequality follows from the fact that cS(σ ) ≥
cS(σ̃ ) for every σ ∈ A(S,σ0) by Lemma 1 in Shakhlevich
et al. (1998), the second inequality holds because A(S, σ̃0)

may be larger than the set of orders σ̃ defined from ad-
missible schedules σ ∈ A(S,σ0). The last equality follows
by definition of ai , since cS(σ0) − cS(σ̃0) = ∑

i∈S ci(σ0) −∑
i∈S ci(σ̃0) = ∑

i∈S ai .
By case 1, (N,w) is balanced, and therefore Core(w) 	=∅.

Let y ∈ Core(w) and define x = y + a. Then, from (3.2)
and (3.3) it follows that x ∈ Core(v), and therefore (N,v) is
balanced. �

Example 3.2 Let (M,N,p,α) be a PFS situation where
N = {1,2,3}, M = {M1,M2,M3}, p = (3,1,4) and α =
(4,1,7). Let σ0 be an order, with σ0 = (1 2 3). The situation
is represented in Fig. 3.

The corresponding PFS game (N,v) is given in Table 1.
We explain in detail how to calculate the value of coali-

tion {1,2} below. The total cost with the initial order is
cN(σ0) = 158. The set of admissible rearrangements for
coalition {1,2} is A({1,2}, σ0) = {σ0, σ1, σ2, σ3, σ4, σ5,

σ6, σ7}, where the different schedules and their associated
costs and cost savings are given in Table 2.

It turns out that σ7 has the minimum associated cost and
then

v
({1,2}) = max

σ∈A({1,2},σ0)

{
cS(σ0) − cS(σ )

}

= cS(σ0) − cS(σ7) = 3.

Fig. 3 Gantt chart of the PFS situation in Example 3.2

Table 1 Coalitional values of the game in Example 3.2

S {1} {2} {3} {12} {13} {23} N

v(S) 0 0 0 3 0 1 3
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Table 2 Admissible schedules for coalition {1,2} with respect to σ0
in Example 3.2

σl cS(σl) cS(σ0) − cS(σl)

σ0 = ((1 2 3), (1 2 3), (1 2 3)) 46 0

σ1 = ((1 2 3), (1 2 3), (2 1 3)) 52 −6

σ2 = ((1 2 3), (2 1 3), (1 2 3)) 56 −10

σ3 = ((2 1 3), (1 2 3), (1 2 3)) 51 −5

σ4 = ((1 2 3), (2 1 3), (2 1 3)) 50 −4

σ5 = ((2 1 3), (1 2 3), (2 1 3)) 57 −11

σ6 = ((2 1 3), (2 1 3), (1 2 3)) 51 −5

σ7 = ((2 1 3), (2 1 3), (2 1 3)) 43 3

Note that the initial order in Example 3.2 is not an ur-
gency order. Moreover, the game is balanced but not convex.

From now on we study PFS games with an urgency order
as the initial schedule, i.e.,

σ0 = σu.

Moreover, we assume without loss of generality that

σ0 = (1 2 . . . n).

Since the initial schedule is an order, we have S/σ r
0 = S/σm

0
for every r ∈ M . With minor abuse of notation, we de-
note by S/σ0 the set of maximally connected components
on each machine. Due to the conditions of admissible re-
arrangements, we can write the value of coalition S ⊂ N as

v(S) =
∑

R∈S/σ0

v(R), (3.4)

as it has been pointed out in the proof of Theorem 3.1.
Next, we give an expression for the value of a coalition

based on the cost savings that each player can obtain if a
similar procedure as the method in Sect. 2 is followed. Due
to (3.4) we can restrict our study to connected coalitions. Let
S ⊂ N be a connected coalition, S = {iS, iS + 1, . . . , jS −
1, jS}. To find the optimal order for S we generate orders
σ̂ S

iS
, . . . , σ̂ S

jS
where σ̂ S

iS
:= σu and σ̂ S

jS
is optimal in S. Now,

we explain how σ̂ S
i is obtained from σ̂ S

i−1. If for every r

it holds that A
σ̂S

i−1
r ∩ {iS, . . . , i − 1} does not contain any

new-max job according to σ̂ S
i−1, then i and iS belong to the

same segment in σu and iS is not a new-max job. In this
case, σ̂ S

i = σu by Lemma 2.4. This situation is illustrated in
Fig. 4.

If A
σ̂S

i−1
r ∩ {iS, . . . , i − 1} contains a new-max job accord-

ing to σ̂ S
i−1 for some r , then we define

ri = min
{
r | Aσ̂S

i−1
r ∩ {iS, . . . , i − 1} contains

a new-max job according to σ̂ S
i−1

}
,

Fig. 4 Reordering of job i in coalition S

ti = max
{
r | Aσ̂S

i−1
r ∩ {iS, . . . , i − 1} contains

a new-max job according to σ̂ S
i−1

}
,

si = ti − ri + 1.

Analogously to the method described in Sect. 2, we define
AS(i,1), . . . ,AS(i, si) as

AS(i,1) = A
σ̂S

i−1
ti

∩ {iS, . . . , i − 1},

AS(i, r) = A
σ̂S

i−1
ti−r+1 for r = 2 . . . si .

Associated to each AS(i, r), we denote by aS(i, r) the
new-max job of this (sub)segment and by σS

ir the order we
obtain from σ̂ S

i−1 by placing i at the tail of AS(i, r). Note
that σS

i1 = σ̂ S
i−1. We denote by σS

isi+1 the order obtained from

σ̂ S
i−1 by placing i in front of aS(i, si). This procedure is clar-

ified in Fig. 5 where si = 2.
Let rS(i) ∈ {1, . . . , si + 1} be such that

(3) cN(σir ) − cN(σirS(i)) > 0 for every r < rS(i);
(4) cN(σirS(i)) − cN(σir ) ≤ 0 for every r > rS(i).

We define σ̂ S
i = σS

irS(i)
. As in Sect. 2, the idea behind (3)

and (4) is to make cN(σ̂ S
i ) minimal. Besides, (4) guarantees

that i is processed latest in case of ties. Note that this is
equivalent to cN(σ̂ S

i ) being minimal and pa(i,rS(i)) > pa(i,r)

for every r 	= rS(i) with cN(σS
ir ) = cN(σS

irS(i)
).

In order to find the optimal order for a coalition S one
has to realize that there might be new-max jobs preceding
the elements of S that do not belong to the coalition. This,
however, does not constitute a problem and Lemmas 2.1,
2.3, and 2.4 are still applicable in S. The proof that σ̂ S

jS
is

optimal among the admissible orders of S can be provided
along the same lines as in Shakhlevich et al. (1998) and is
therefore omitted.

Hence, the value of coalition S can be written as

v(S) =
jS∑

i=iS

(
cN

(
σ̂ S

i−1

) − cN

(
σ̂ S

i

))
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Fig. 5 Reordering of job i in coalition S

Fig. 6 Gantt chart of the PFS
situation in Example 3.3

with σ̂ S
iS−1 := σu. We define

GS
i := cN

(
σ̂ S

i−1

) − cN

(
σ̂ S

i

)

for i ∈ S. Here, GS
i ≥ 0 denotes the cost savings obtained

after reordering job i ∈ S in S. Then,

v(S) =
∑

i∈S

GS
i .

Note that, as a consequence of Lemma 2.3, it follows that
if j ∈ P(σu, a), then j ∈ P(σ̂ S

i , a) for every i ∈ S, with a a
new-max job according to σu.

The following example illustrates how to compute coali-
tional values by means of individual cost savings.

Example 3.3 Let (M,N,p,α) be a PFS problem with M =
{M1,M2,M3}, N = {1,2,3,4,5,6,7,8,9}, p = (20,30,

10,30,10,20,30,10,40), and α = (200,270,80,210,69,

130,180,59,200). The urgency order is σu = (1 2 3 4 5 6 7
8 9). Suppose that initially the jobs are processed according
to the urgency order. Then, cN(σu) = 224020. The situation
is represented in Fig. 6.

It can be checked that the optimal order for this prob-
lem is σ̂ = (3 5 8 1 6 2 4 7 9) with an associated cost of
cN(σ̂ ) = 219110. Hence, the total value of the grand coali-
tion is v(N) = 224020 − 219110 = 4910. The total value
can be decomposed in the sum of the cost savings that are
obtained each time a job is reordered, i.e., v(N) = ∑9

i=1 GN
i

with GN
i = cN(σ̂N

i−1) − cN(σ̂N
i ). Easy but tedious calcu-

lations show that GN
1 = GN

2 = 0, GN
3 = 2500, GN

4 = 0,
GN

5 = 1480, GN
6 = 800, GN

7 = 0, GN
8 = 130, and GN

9 = 0.

The next result gives the decomposition into unanim-
ity games of a PFS game. We denote by {a1, . . . , as}, with
a1 < · · · < as , the set of new-max jobs according to σu. For

i ∈ N we denote by r(i) either the index of the new-max job
which precedes i if i is not a new-max job according to σu,
or the index of i if i is a new-max job according to σu (i.e.,
i = ar(i)). Consequently, par(i)

= maxk∈P̄ (σu,i){pk}.

Theorem 3.4 Let (M,N,p,α) be a PFS problem and let σu

be the initial order. Let (N,v) be the associated PFS game.
Then,

v(T ) =
∑

k∈N

r(k)∑

r=1

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(T )

for every T ⊂ N , where G
{ar(k)+1,...,n}
k is defined as 0.

Proof Let T ⊂ N be a connected coalition and set T =
{iT , . . . , jT }. We distinguish between two cases.
Case 1: T ∩{a1, . . . , as} = ∅. Then, σ̂ T

k (k) = k for all k ∈ T

by Lemma 2.4, and therefore GT
k = 0 for all k ∈ T . Hence,

v(T ) = 0. Moreover, {ar, . . . , k} 	⊂ T for every new-max job
ar and every k ≥ ar . Hence, u{ar ,...,k}(T ) = 0 and

∑

k∈N

r(k)∑

r=1

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(T ) = 0 = v(T ).

Case 2: T ∩{a1, . . . , as} = {av, . . . , aw} with av ≤ · · · ≤ aw .
Then, σ̂ T

k (k) = k for all iT ≤ k < av by Lemma 2.4 and

σ̂ T
k (k) = σ̂

{av,...,n}
k (k) for all k ≥ av by the mechanism of

the algorithm. Hence, GT
k = 0 for all iT ≤ k < av and

GT
k = G

{av,...,n}
k for all jT ≥ k ≥ av . Therefore, v(T ) =

∑jT

k=av
G

{av,...,n}
k . Moreover,



440 J Sched (2008) 11: 433–447

∑

k∈N

r(k)∑

r=1

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(T )

=
jT∑

k=av

r(k)∑

r=v

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(T )

=
jT∑

k=av

[(
G

{av,...,n}
k − G

{av+1,...,n}
k

)

+ (
G

{av+1,...,n}
k − G

{av+2,...,n}
k

) + · · ·
+ (

G
{ar(k)−1,...,n}
k − G

{ar(k),...,n}
k

) + G
{ar(k),...,n}
k

]

=
jT∑

k=av

G
{av,...,n}
k = v(T ),

where the first equality follows because if k and r are such
that

(i) ar < av ≤ k, then {ar , . . . , k} 	⊂ {iT , . . . , jT } = T and
u{ar ,...,k}(T ) = 0;

(ii) k > jT and ar ≤ k, then {ar , . . . , k} 	⊂ {iT , . . . , jT } = T

and u{ar ,...,k}(T ) = 0.

The second equality is satisfied because if k and r are
such that av ≤ ar ≤ ar(k), ar ≤ k ≤ jT , then {ar , . . . , k} ⊂
{iT , . . . , jT } = T and u{ar ,...,k}(T ) = 1.

Let T ⊂ N . If T is unconnected, then v(T ) =∑
U∈T/σ0

v(U) and

∑

k∈N

r(k)∑

r=1

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(T )

=
∑

U∈T/σ0

∑

k∈N

r(k)∑

r=1

(
G

{ar ,...,n}
k − G

{ar+1,...,n}
k

)
u{ar ,...,k}(U),

since the unanimity games are defined for connected coali-
tions. �

Next, we provide a result on the “monotonicity” of new-
max jobs and cost savings. The proof can be found in the
appendix (cf. Lemma A.5(iv)).

Lemma 3.5 Let (M,N,p,α) be a PFS problem and let
σu be the initial order. Let S,T ⊂ N , with S ⊂ T ⊂ N ,
be connected coalitions. Let S = {iS, . . . , jS} with iS < jS ,
and let a be the new-max job according to σu such that
pa = maxk∈P(σu,iS){pk}. Then,

GS
i ≤ GT

i

for every i ∈ S. Moreover, if pi ≥ pa , then GS
i = GT

i for
every i ∈ S.

Corollary 3.6 PFS games where the initial order is an ur-
gency order are convex.

Proof By Theorem 3.4 and Lemma 3.5 we know that PFS
games have a nonnegative decomposition into unanimity
games. Since unanimity games are convex, it follows that
PFS games are also convex. �

If the initial order is an urgency order, PFS games are
convex and the Shapley value belongs to the core. As a di-
rect consequence of Theorem 3.4 and (3.1) we have the fol-
lowing result that provides a game independent expression
of the Shapley value for PFS games where the initial order
is an urgency order.

Theorem 3.7 Let (M,N,p,α) be a PFS problem and let σu

be the initial order. Then, the Shapley value of the associated
PFS game (N,v) is given by

Φi(v) =
n∑

k=i

r(i)∑

r=1

G
{ar ,...,n}
k − G

{ar+1,...,n}
k

|{ar , . . . , k}|

for every i ∈ N .

The Shapley value of PFS games can be interpreted as
follows: player i ∈ N needs players ar(i), . . . , i − 1 in or-
der to obtain some cost savings, and the Shapley value

shares the gain G
{ar(i),...,i}
i = G

{ar(i),...,n}
i equally among

all the players involved, i.e., ar(i), . . . , i. If a new seg-
ment is added to the left of this group of jobs, i.e., if
ar(i)−1, . . . , ar(i), . . . , i − 1 cooperate with i, extra gains

G
{ar(i)−1,...,i}
i − G

{ar(i),...,i}
i = G

{ar(i)−1,...,n}
i − G

{ar(i),...,n}
i ≥ 0

can be obtained by Lemma 3.5. The Shapley value shares
equally these extra gains among all the players involved,
i.e., ar(i)−1, . . . , ar(i), . . . , i. Step by step, additive-gains are
shared equally among all who are involved.

Example 3.8 Let (M,N,p,α) be the PFS problem of Ex-
ample 3.3. Let σ0 = σu = (1 2 3 4 5 6 7 8 9) and let (N,v)

be the associated PFS game. Initially, there are only three
new-max jobs, which are jobs 1, 2, and 9. In order to calcu-
late the Shapley value of this game we need to compute GN

i ,

with i ∈ N , G
{2,...,9}
i , with i ∈ {2, . . . ,9}, and G

{9}
9 . These

values are represented in Table 3.
Table 4 illustrates the calculation of the Shapley value ac-

cording to Theorem 3.7. Here, we have only given the values
of the (extra) gains.

Table 3 Cost savings achieved by job i in coalitions N , {2, . . . ,9},
and {9} in Example 3.8

1 2 3 4 5 6 7 8 9

GN
i 0 0 2500 0 1480 800 0 130 0

G
{2,...,9}
i 0 1300 0 720 800 0 0 0

G
{9}
i 0
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Table 4 Computation of the Shapley value for the PFS game in Example 3.8

Players 1 2 3 4 5 6 7 8 9

GN
3 − G

{2,...,9}
3 = 1200 400 400 400

GN
5 − G

{2,...,9}
5 = 760 152 152 152 152 152

GN
8 − G

{2,...,9}
8 = 130 16.25 16.25 16.25 16.25 16.25 16.25 16.25 16.25

G
{2,...,9}
3 − G

{9}
3 = 1300 650 650

G
{2,...,9}
5 − G

{9}
5 = 720 180 180 180 180

G
{2,...,9}
6 − G

{9}
6 = 800 160 160 160 160 160

Shapley value 568.25 1558.25 1558.25 508.25 508.25 176.25 16.25 16.25 0

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

For the proof of Lemma 3.5, we need the following addi-
tional lemmas. The first lemma states that, in a PFS prob-
lem, the new-max jobs according to the urgency order re-
main new-max jobs during the proposed process of finding
an optimal order for an arbitrary coalition S.

Lemma A.1 Let (M,N,p,α) be a PFS problem and let
σu = (1,2, . . . , n) be the initial order. Let S ⊂ N . Then,
every new-max job according to σu is also new-max job ac-
cording to σ̂ S

i for every i ∈ S.

Proof Let a be a new-max job according to σu and let i ∈ S.
Then, pa > maxj∈P(σu,a){pj }. We have to show that a is a
new-max job according to σ̂ S

i , i.e., pa > maxj∈P(σ̂ S
i ,a){pj }.

Note that P(σu, a) ⊂ P(σ̂ S
i , a). Moreover, pj < pa for

all j ∈ P(σ̂ S
i , a) \ P(σu, a) by Lemma 2.3. Hence,

pa > max
{

max
j∈P(σu,a)

{pj }, max
j∈P(σ̂ S

i ,a)\P(σu,a)

{pj }
}

= max
j∈P(σ̂ S

i ,a)

{pj }. �

The following result is a direct consequence of the al-
gorithm, and therefore the proof is omitted. It says that the
set of predecessors of a certain job once reordered can only
increase with the consecutive application of the algorithm.

Lemma A.2 Let (M,N,p,α) be a PFS problem and let
σu = (1,2, . . . , n) be the initial order. Let S ⊂ N and i, j ∈
S with j < i. Then, P(σ̂ S

j , j) ⊂ P(σ̂ S
i , j).

Next, we show that if a job becomes new-max job dur-
ing its reordering, then it remains new-max job during the
successive application of the algorithm.

Lemma A.3 Let (M,N,p,α) be a PFS problem and let
σu = (1,2, . . . , n) be the initial order. Let S ⊂ N and i, j ∈
S with j < i. Then, j is new-max job according to σ̂ S

i if and
only if j is new-max job according to σ̂ S

j .

Proof If j is new-max job according to σu, then j is new-
max job according to σ̂ S

k for all k ∈ S by Lemma A.1, and
the result follows. Hence, we may assume that j is not new-
max job according to σu.

We first show the “only if” part. Let j be a new-max job
according to σ̂ S

i . Then,

pj > max
k∈P(σ̂ S

i ,j)

{pk} ≥ max
k∈P(σ̂ S

j ,j)

{pk},

where the first inequality follows since j is new-max job
according to σ̂ S

i and the second one by Lemma A.2. Hence,
j is a new-max job according to σ̂ S

j .
Next, we show the “if” part. Let j be a new-max job ac-

cording to σ̂ S
j . By Lemma A.2 we have that P(σ̂ S

j , j) ⊂
P(σ̂ S

i , j). Hence, we can write P(σ̂ S
i , j) = P(σ̂ S

j , j) ∪
(P (σ̂ S

i , j) \ P(σ̂ S
j , j)). Observe that pj > pk for all k ∈

P(σ̂ S
j , j), since j is a new-max job according to σ̂ S

j by as-

sumption. Besides, pj > pk for all k ∈ P(σ̂ S
i , j) \ P(σ̂ S

j , j)

by Lemma 2.3. Hence, j is a new-max job according to
σ̂ S

i . �

For the proof of Lemma 3.5 we need some additional no-
tation. Recall that {a1, . . . , as}, with a1 < · · · < as , is the set
of new-max jobs according to σu. Let S ⊂ N be a connected
coalition, S = {iS, . . . , jS}, in the conditions of Lemma 3.5.
Note that this is equivalent to

S ∩ {a1, . . . , as} = {au, . . . , av}
with au ≤ · · · ≤ av and au 	= a1.

Partition S as follows:
{{iS, . . . , l1 − 1}, {l1}, {l1 + 1, . . . , l2 − 1}, {l2}, . . . , {lm},
{lm + 1, . . . , jS}}, (A.1)
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Fig. 7 Partition of S

where l1 ∈ S is the first job with a processing time smaller
than au−1 that is not assigned to the segment defined by au−1

after reordering. Formally:

pl1 < pau−1 ,

au−1 	= aS
(
l1, r

S(l1)
)
,

au−1 = aS
(
l, rS(l)

)

for every l ∈ S with l < l1 and pl < pau−1,

and lk , k ≥ 2, is determined by making use of the processing
time of the new-max job which is in front of lk−1 after its
reordering in the following way:

plk < paS(lk−1,r
S(lk−1))

,

pj ≥ paS(lk−1,r
S(lk−1))

for every j ∈ {lk−1 + 1, . . . , lk − 1}.
Figure 7 illustrates how this partition is obtained. In each
order, all segments are indicated for clarity.

The idea behind this partition is the following: l1 is the
first job with a processing time smaller than au−1 that is
not placed in front of AS(l1, sl1) (i.e., rS(l1) 	= sl1 + 1).
Still, in a bigger coalition T containing au−1, l1 could
overtake au−1 during its reordering. The remaining jobs
l2, . . . , lm are those jobs that can overtake aS(lk−1, r

S(lk−1))

during their reordering. It turns out that l2, . . . , lm are
the only jobs that cannot overtake l1 in S but could be
moved to earlier positions in T (cf. Lemma A.4 and
Lemma A.5(i), (ii)).

We show that σ̂ S
i (l1) < σ̂ S

i (l2) < · · · < σ̂S
i (lm) for every

i ∈ S. For the proof of this result we need to reorder seg-
ments AS(i, r) from left to right. This will be done by intro-
ducing segments BS(i, r). We define BS(i,1), . . . ,BS(i, si)

as BS(i, r) = AS(i, si −r +1) for every r ∈ {1, . . . , si}. Now
rS(i), aS(i, r), and σS

ir have the same interpretation as be-
fore, but it refers to BS(i, r). Hence, σS

ir here is the order we
obtain from σ̂ S

i−1 by placing i at the tail of BS(i, r). Note

that σS
isi

= σ̂ S
i−1. We denote by σS

i0 the order obtained from

σ̂ S
i−1 by placing i in front of aS(i,1).

With our new notation, (3) and (4) become

(5) cN(σir ) − cN(σirS(i)) > 0 for every r > rS(i);
(6) cN(σirS(i)) − cN(σir ) ≤ 0 for every r < rS(i).

We denote by a(i, S) the new-max job according to σ̂ S
i−1

such that i is placed at the tail of the segment defined
by a(i, S) after being reordered i.e., a(i, S) = aS(i, rS(i)).
Note that pa(i,S) = maxk∈P(σ̂ S

i ,i){pk}. Let i ∈ S and let

a ∈ S be a new-max job according to σ̂ S
i−1. We denote

by rS(i, a) the index of the segment to which a belongs
according to σ̂ S

i−1 i.e., rS(i, a) ∈ {1, . . . , si} such that a ∈
BS(i, rS(i, a)). In the proof of Lemma A.4 we consider
cN(σS

ir ) − cN(σS
ir−1), r = 1, . . . , si , (i.e., the gains obtained

when, starting from σ̂ S
i−1, we change i from the tail of seg-

ment BS(i, r) to the tail of segment BS(i, r − 1)). From
Lemma 2.1(ii) and the definition of BS(i, r) we obtain

cN

(
σS

ir

) − cN

(
σS

ir−1

)

=
∑

j∈BS(i,r)

(αipj − αjpi)

+ αi(m − 1)
(

max
j∈BS(i,r)∪{i}

{pj } − max
j∈BS(i,r−1)∪{i}

{pj }
)

+
∑

j∈BS(i,r)

αj (m − 1)
(
paS(i,r) − max{pi,paS(i,r)}

)
,

(A.2)

where BS(i,0) = A
σ̂S

i−1
r̃

with au−1 ∈ A
σ̂S

i−1
r̃

. Note that if pi ≤
paS(i,r), then

cN

(
σS

ir

) − cN

(
σS

ir−1

)

=
∑

j∈BS(i,r)

(αipj − αjpi)
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+ αi(m − 1)
(

max
j∈BS(i,r)∪{i}

{pj } − max
j∈BS(i,r−1)∪{i}

{pj }
)
.

(A.3)

Lemma A.4 σ̂ S
lk
(lk) > σ̂ S

lk
(lk−1) for every k ∈ {2, . . . ,m}.

Proof The outline of the proof is the following: we start by
noting that jobs in between lk−1 + 1, . . . , lk − 1 cannot over-
take lk−1 when they are reordered. This means that the seg-
ments in front of lk−1 are the same in σ̂ S

lk−1
and σ̂ S

lk−1. This

allows us to see that cN(σS
lkr

S(lk−1)
)− cN(σS

lkr
) ≤ 0 for every

r < rS(lk−1), which implies that lk does not overtake lk−1

after reordering.
First, we prove the result for k = 2. Since pj ≥ pa(l1,S)

for every j ∈ {l1 + 1, . . . , l2 − 1} we have σ̂ S
j (j) > σ̂ S

j (l1)

by Lemma 2.3 and Lemma 2.4. Therefore,

σ̂ S
l2−1(j) > σ̂ S

l2−1(l1) for every j ∈ {l1 + 1, . . . , l2 − 1}.
(A.4)

By (A.4) and Lemma A.3 it follows that the set of new-max
jobs preceding a(l1, S) according to σ̂ S

l1−1 and σ̂ S
l2−1 coin-

cide. Consequently,

rS
(
l2, a(l1, S)

) = rS
(
l1, a(l1, S)

)
.

To shorten notation, let rS(a(l1, S)) = rS(l1, a(l1, S)).
Moreover,

BS(l2, r) = BS(l1, r)

for every r ∈ {
1, . . . , rS

(
a(l1, S)

) − 1
}

(A.5)

and

BS
(
l1, r

S
(
a(l1, S)

)) ⊂ BS
(
l2, r

S
(
a(l1, S)

))
. (A.6)

Before showing our result for k = 2, we prove that

cN

(
σS

l2r

)−cN

(
σS

l2r−1

) ≤ pl2

pl1

(
cN

(
σS

l1r

)−cN

(
σS

l1r−1

))
(A.7)

for r ∈ {1, . . . , rS(a(l1, S)) − 1}.
cN

(
σS

l2r

) − cN

(
σS

l2r−1

)

=
∑

j∈BS(l2,r)

(αl2pj − αjpl2)

+ αl2(m − 1)
(

max
j∈BS(l2,r)∪{l2}

{pj }

− max
j∈BS(l2,r−1)∪{l2}

{pj }
)

+
∑

j∈BS(l2,r)

αj (m − 1)
(
paS(l2,r)

− max{pl2,paS(l2,r)
})

≤
∑

j∈BS(l2,r)

(αl2pj − αjpl2)

+ αl2(m − 1)
(

max
j∈BS(l2,r)∪{l2}

{pj }

− max
j∈BS(l2,r−1)∪{l2}

{pj }
)

=
∑

j∈BS(l1,r)

(αl2pj − αjpl2)

+ αl2(m − 1)
(

max
j∈BS(l2,r)∪{l2}

{pj }

− max
j∈BS(l2,r−1)∪{l2}

{pj }
)

≤
∑

j∈BS(l1,r)

(αl2pj − αjpl2)

+ αl2(m − 1)
(

max
j∈BS(l2,r)

{pj }

− max
j∈BS(l2,r−1)

{pj }
)

=
∑

j∈BS(l1,r)

(αl2pj − αjpl2)

+ αl2(m − 1)
(

max
j∈BS(l1,r)∪{l1}

{pj }

− max
j∈BS(l1,r−1)∪{l1}

{pj }
)

≤
∑

j∈BS(l1,r)

(
pl2

pl1

αl1pj − αjpl2

)

+ pl2

pl1

αl1(m − 1)
(

max
j∈BS(l1,r)∪{l1}

{pj }

− max
j∈BS(l1,r−1)∪{l1}

{pj }
)

= pl2

pl1

( ∑

j∈BS(l1,r)

(αl1pj − αjpl1)

+ αl1(m − 1)
(

max
j∈BS(l1,r)∪{l1}

{pj }

− max
j∈BS(l1,r−1)∪{l1}

{pj }
))

= pl2

pl1

(
cN

(
σS

l1r

) − cN

(
σS

l1r−1

))
. (A.8)

Here, the first equality follows by (A.2), the first inequality

is a consequence of
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∑

j∈BS(l2,r)

αj (m − 1)
(
paS(l2,r)

− max{pl2,paS(l2,r)
}) ≤ 0,

and the second equality follows by (A.5). For the second
inequality note that

max
j∈BS(l2,r−1)

{pj } < max
j∈BS(l2,r)

{pj }.

Hence, if pl2 ≥ maxj∈BS(l2,r)
{pj } > maxj∈BS(l2,r−1){pj },

then

max
j∈BS(l2,r)∪{l2}

{pj } − max
j∈BS(l2,r−1)∪{l2}

{pj }

= 0 < max
j∈BS(l2,r)

{pj } − max
j∈BS(l2,r−1)

{pj };

if maxj∈BS(l2,r)
{pj } > pl2 ≥ maxj∈BS(l2,r−1){pj }, then

max
j∈BS(l2,r)∪{l2}

{pj } − max
j∈BS(l2,r−1)∪{l2}

{pj }

≤ max
j∈BS(l2,r)

{pj } − max
j∈BS(l2,r−1)

{pj };

and finally, if maxj∈BS(l2,r)
{pj } > maxj∈BS(l2,r−1){pj } ≥

pl2 , then

max
j∈BS(l2,r)∪{l2}

{pj } − max
j∈BS(l2,r−1)∪{l2}

{pj }

= max
j∈BS(l2,r)

{pj } − max
j∈BS(l2,r−1)

{pj }.

The third equality is a consequence of (A.5) together with
the fact that l1 does not become a new-max job, since pl1 <

pau−1 < pa(l1,S) by definition of l1. The third inequality fol-
lows, since l2 > l1 implies ul2 = αl2

pl2
≤ αl1

pl1
= ul1 , therefore

αl2 ≤ pl2
pl1

αl1 . The last equality follows from (A.3) which

can be applied because, by definition of l1, pl1 < pau−1 <

paS(l1,r)
holds.

Analogously to (A.8), one can see that

cN

(
σS

l2r
S(a(l1,S))

) − cN

(
σS

l2r
S(a(l1,S))−1

)

≤ pl2

pl1

(
cN

(
σS

l1r
S(a(l1,S))

) − cN

(
σS

l1r
S(a(l1,S))−1

))
.

The only difference is that the second equality becomes
an inequality by (A.6) and the fact that αl2pj − αjpl2 ≤ 0,
since ul2 ≤ uj for every j ∈ BS(l2, r

S(a(l1, S))) \ BS(l1,

rS(a(l1, S))).
Hence, for every r ∈ {0, . . . , rS(a(l1, S)) − 1} we have

cN

(
σS

l2r
S(l2)

) − cN

(
σS

l2r

)

≤ cN

(
σS

l2r
S(a(l1,S))

) − cN

(
σS

l2r

)

=
rS(a(l1,S))−1∑

r̃=r

(
cN

(
σS

l2 r̃+1

) − cN

(
σS

l2 r̃

))

≤
rS(a(l1,S))−1∑

r̃=r

pl2

pl1

(
cN

(
σS

l1 r̃+1

) − cN

(
σS

l1 r̃

))

= pl2

pl1

(
cN

(
σS

l1r
S(a(l1,S))

) − cN

(
σS

l1r

))

≤ 0,

where the first inequality holds by definition of rS(l2), the
second inequality is a direct consequence of (A.7), and the
third one follows by (6). Therefore, rS(l2) ≥ rS(l1) by (6).
If rS(l2) > rS(l1), then it is immediate that σ̂ S

l2
(l2) > σ̂ S

l2
(l1).

If rS(l2) = rS(l1) then σ̂ S
l2
(l2) > σ̂ S

l2
(l1) by Lemma 2.4 and

the fact that ul1 ≥ ul2 . Therefore, σ̂ S
l2
(l2) > σ̂ S

l2
(l1).

Second, let k > 2 and suppose that the result is true for
l1, . . . , lk−1. Then,

σ̂ S
lk−1(l1) < σ̂ S

lk−1(l2) < · · · < σ̂S
lk−1(lk−1).

For every k̃ ∈ {1, . . . , k − 1} and every j ∈ {l
k̃

+ 1, . . . ,

l
k̃+1 −1} we have that pj ≥ pa(l

k̃
,S). Hence, σ̂ S

j (j) > σ̂ S
j (l

k̃
)

by Lemmas 2.3 and 2.4 (i.e., a job j that is initially in be-
tween l

k̃
and l

k̃+1 can never overtake l
k̃

during its reorder-

ing). Therefore, for every k̃ ∈ {1, . . . , k − 1} it follows that

σ̂ S
lk−1(j) > σ̂ S

lk−1(lk̃)

for every j ∈ {l
k̃
+ 1, . . . , l

k̃+1 − 1}. (A.9)

By (A.9) and Lemma A.3 it follows that for every k̃ ∈
{2, . . . , k −1} the set of new-max jobs in between a(l

k̃−1, S)

and a(l
k̃
, S) according to σ̂ S

l
k̃
−1 and σ̂ S

lk−1 coincide (i.e., the

number of segments in between a(l
k̃−1, S) and a(l

k̃
, S) re-

mains constant after the reordering of l
k̃+1). Therefore, for

k̃ ∈ {1, . . . , k − 1} we have

rS
(
lk, a(l

k̃
, S)

) = rS
(
l
k̃
, a(l

k̃
, S)

)
.

To shorten notation, let rS(a(l
k̃
, S)) = rS(l

k̃
, a(l

k̃
, S)). In

addition, for every k̃ ∈ {1, . . . , k − 1} we have

BS(lk, r) = BS(l
k̃
, r)

for every r ∈ {rS(a(l
k̃−1, S))+ 1, . . . , rS(a(l

k̃
, S))− 1}, and

BS
(
l
k̃
, rS

(
a(l

k̃
, S)

)) ⊂ BS
(
lk, r

S
(
a(l

k̃
, S)

))
.

Using the same kind of arguments as in (A.8), one can see
that

cN

(
σS

lkr

) − cN

(
σS

lkr−1

) ≤ plk

pl
k̃

(
cN

(
σS

l
k̃
r

) − cN

(
σS

l
k̃
r−1

))

(A.10)

for every k̃ ∈ {1, . . . , k − 1} and every r ∈ {rS(lk, a(l
k̃−1,

S)) + 1, . . . , rS(lk, a(l
k̃
, S))}.
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Next, we want to prove that σS
lk
(lk) > σS

lk
(lk−1). For this,

we first show that cN(σS
lkr

S(lk)
) − cN(σS

lk r̄
) ≤ 0 for every

r̄ < rS(a(lk−1, S)). In order to use (A.7) and (A.10), we
need to know where BS(lk, r̄) is located with respect to
l1, . . . , lk−1. Let r̄ ∈ {0, . . . , rS(a(lk−1, S)) − 1} and k∗ ∈
{1, . . . , k−1} be such that rS(a(lk∗−1,S)) ≤ r̄ ≤ rS(a(lk∗ ,S))

with rS(a(l0, S)) = 1. We have that

cN

(
σS

lkr
S(lk)

) − cN

(
σS

lk r̄

)

≤ cN

(
σS

lkr
S(a(lk−1,S))

) − cN

(
σS

lk r̄

)

=
rS(a(lk∗ ,S))−1∑

r=r̄

(
cN

(
σS

lkr+1

) − cN

(
σS

lkr

))

+
k−1∑

k̃=k∗+1

rS(a(l
k̃
,S))−1∑

r=rS(a(l
k̃−1,S))

(
cN

(
σS

lkr+1

) − cN

(
σS

lkr

))

≤
rS(a(lk∗ ,S))−1∑

r=r̄

plk

plk∗

(
cN

(
σS

lk∗ r+1

) − cN

(
σS

lk∗ r

))

+
k−1∑

k̃=k∗+1

rS(a(l
k̃
,S))−1∑

r=rS(a(l
k̃−1,S))

plk

pl
k̃

(
cN

(
σS

l
k̃
r+1

) − cN

(
σS

l
k̃
r

))

= plk

plk∗

(
cN

(
σS

lk∗ rS(a(lk∗ ,S))

) − cN

(
σS

lk∗ r̄

))

+
k−1∑

k̃=k∗+1

plk

pl
k̃

(
cN

(
σS

l
k̃
rS(a(l

k̃
,S))

) − cN

(
σS

l
k̃
rS(a(l

k̃−1,S))

))

≤ 0,

where the first inequality holds by definition of rS(lk), the
second one is a direct consequence of (A.10), the second
equality is obtained by adding up terms, and the third in-
equality follows by (6). Therefore, rS(lk) ≥ rS(lk−1) by (6).
If rS(lk) > rS(lk−1), then it is immediate that σ̂ S

lk
(lk) >

σ̂ S
lk
(lk−1). If rS(lk) = rS(lk−1) then σ̂ S

lk
(lk) > σ̂ S

lk
(lk−1) by

Lemma 2.4 and the fact that ulk−1 ≥ ulk . Therefore, σ̂ S
lk
(lk) >

σ̂ S
lk
(lk−1). �

We now turn to the proof of Lemma 3.5. Note that
Lemma 3.5 corresponds to Lemma A.5(iv) below.

Lemma A.5 Let (M,N,p,α) be a PFS problem and let
σu = (1,2, . . . , n) be the initial order. Let S,T ⊂ N , with
S ⊂ T ⊂ N , be connected coalitions. Let S = {iS, . . . , jS}
with iS < jS , and let a be the new-max job according to
σu such that pa = maxk∈P(σu,iS){pk}. Then, the following
assertions hold:

(i) σ̂ T
i (i) = σ̂ S

i (i) for every i ∈ S with pi ≥ pa .

(ii) σ̂ T
i (i) ≤ σ̂ S

i (i) for every i ∈ S with pi < pa . Moreover,
if σ̂ T

i (i) < σ̂ S
i (i), then σ̂ T

i (i) < σ̂ T
i (a) for every i ∈ S.

(iii) Every new-max job in S according to σ̂ S
i is also a new-

max job in S according to σ̂ T
i for every i ∈ S.

(iv) GS
i ≤ GT

i for every i ∈ S. Moreover, for every i ∈ S if
pi ≥ pa , then GS

i = GT
i .

Proof Recall that {a1, . . . , as} is the set of new-max jobs
according to σu with a1 < · · · < as . We distinguish among
three cases.
Case 1: Either S ∩ {a1, . . . , as} = ∅, or S ∩ {a1, . . . , as} =
{jS}. Then, σ̂ S

i = σu for every i ∈ S and Assertions (i) and
(ii) are direct consequence of the definition of σ̂ T

i , Asser-
tion (iii) follows by Lemma A.1, and Assertion (iv) follows,
since GT

i ≥ 0 = GS
i by definition of GT

i .
Case 2: S ∩ {a1, . . . , as} = {au, . . . , av} and T ∩ {a1, . . . ,

as} = {au, . . . , aw} with au ≤ · · · ≤ av ≤ · · · ≤ aw . Then, we
have σ̂ S

i = σ̂ T
i for every i ∈ S. Hence, Assertions (i), (ii),

(iii), and (iv) are immediate.
Case 3: S ∩ {a1, . . . , as} = {au, . . . , av} and T ∩ {a1, . . . ,

as} = {aũ, . . . , aṽ} with aũ < au ≤ av ≤ aṽ .
Since the proof of this case is quite technical, we first

provide an informal idea of the proof. We consider S =
{iS, . . . , jS} and the partition of S as defined in (A.1). Then,
we compare the reordering of a player i ∈ S in S and T

as follows: if i ∈ {iS, . . . , l1 − 1}, then it easily follows
that σ̂ T

i (i) = σ̂ S
i (i) if pi ≥ pau−1 by Lemma 2.3; moreover,

σ̂ T
i (i) ≤ σ̂ S

i (i) if pi < pau−1 , since i can be placed in T in
front of the same new-max job as in S (obtaining the same
savings as in S) or can overtake au−1 if this gives more
savings. By definition of l1, every i ∈ {iS, . . . , l1 − 1} with
pi < pau−1 is placed at the tail of the segment defined by
au−1 in S, i.e., i ∈ AS(l1, sl1 + 1), and therefore it is placed
either at the tail of the segment defined by au−1, or in an
earlier position in T , i.e., i ∈ AT (l1, r) for some r ≥ sl1 + 1.
Besides, every i ∈ {iS, . . . , l1 − 1} with pi ≥ pau−1 cannot
do better in T by Lemma 2.3. Thus, AS(l1, r) = AT (l1, r)

for r ∈ {1, . . . , sl1}. Hence, when reordering l1 in T , it can
be placed either in front of the same new-max job as when
reordered in S, or it can overtake au−1. Therefore, σ̂ T

l1
(l1) ≤

σ̂ S
l1
(l1). Again, AS(j, r) = AT (j, r) for every r ∈ {1, . . . , sj }

with l1 	∈ AS(j, r) and every j ∈ {l1 + 1, . . . , l2 − 1}. Hence,
we can use the same kind of reasoning as before, and so on.

To provide the formal argument we need one additional
notation. Let U ⊂ N and i, j ∈ U with j < i, we denote by
rU (i, j) the index of the segment to which j belongs accord-
ing to σ̂ U

i , i.e., j ∈ AU(i, rU (i, j)). (Note that this defini-
tion generalizes the definition of rS(i, a) above Lemma A.4
job j in the coalition, taking into account our current nota-
tion.)

Let S = {iS, . . . , jS} and partition S according to (A.1).
Let i ∈ S and let a ∈ S be a new-max job according to σ̂ S

i−1
(σ̂ T

i−1). During the remainder of this proof we denote by
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si(S) (si(T )) the number of segments in S (T ) before re-
ordering player i in S (T ).

Note that σ̂ S
i = σ0 for every i ∈ {iS, . . . , au} by

Lemma 2.3, and therefore Lemma A.5 follows.
First, let i ∈ {au + 1, . . . , l1 − 1} and assume that

Lemma A.5 is satisfied for iS, . . . , i − 1. As a direct con-
sequence of (i), (ii), and (iii) we have

AT (j, r) = AS(j, r),

for every r ∈ {1, . . . , sj (S)} and for every j ∈ {iS +1, . . . , i}.
As a consequence, it follows that

cN

(
σT

ir

) − cN

(
σT

irS(i)

) = cN

(
σS

ir

) − cN

(
σS

irS(i)

)

for every r ∈ {
1, . . . , rS(i) − 1

}
,

cN

(
σT

irS(i)

) − cN

(
σT

ir

) = cN

(
σS

irS(i)

) − cN

(
σS

ir

)

for every r ∈ {
rS(i) + 1, . . . , si(S) + 1

}
.

(A.11)

We distinguish between pi ≥ pau−1 and pi < pau−1 .
Consider pi ≥ pau−1 . Here, we only have to show (i),

(iii), and (iv). In this case,

cN

(
σT

irS(i)

) − cN

(
σT

ir

) ≤ 0

for every r ∈ {
si(S) + 2, . . . , si(T ) + 1

}
,

by Lemma 2.3. This together with (A.11) implies that
rT (i) = rS(i), and therefore (i) is satisfied. Note that
P(σ̂ T

i , i) = P(σ̂ S
i , i), and therefore i is a new-max job ac-

cording to σ̂ S
i if and only if σ̂ T

i is a new-max job according
to T , which implies (iii). Finally, (iv) is a direct consequence
of rT (i) = rS(i) and (A.11).

Consider pi < pau−1 . Here, we have to show (ii), (iii),
and (iv). By definition of l1, we know that rS(i) = si(S) + 1
and that i is not a new-max job according to σ̂ S

i . Therefore,
(iii) is satisfied. Note that it may happen that

cN(σT
irS(i)

) − cN(σT
ir ) > 0

for some r ∈ {
si(S) + 2, . . . , si(T ) + 1

}
. (A.12)

Then, by (A.11) and (A.12), (ii) follows. Besides, rT (i) ≥
rS(i). Hence, GT

i = GS
i if rT (i) = rS(i) and GT

i > GS
i if

rT (i) > rS(i). Therefore, (iv) is also satisfied.
Second, let i = l1. Since pl1 < pau−1 by definition, we

only have to show (ii), (iii), and (iv). We have shown that
Lemma A.5 is satisfied for iS, . . . , i − 1. As a direct conse-
quence of (i), (ii), and (iii) we have

AT (l1, r) = AS(l1, r), r ∈ {
1, . . . sl1(S)

}
.

As a consequence, it follows that

cN

(
σT

l1r

) − cN

(
σT

l1r
S(l1)

) = cN

(
σS

l1r

) − cN

(
σS

l1r
S(l1)

)

for every r ∈ {
1, . . . , rS(l1) − 1

}
,

cN

(
σT

l1r
S(l1)

) − cN

(
σT

l1r

) = cN

(
σS

l1r
S(l1)

) − cN

(
σS

l1r

)

for every r ∈ {
rS(l1) + 1, . . . , sl1(S) + 1

}
.

(A.13)

Since pl1 < pau−1 and l1 is not new-max job according to
σ̂ S

l1
, (iii) is satisfied. Note that it may happen that

cN

(
σT

l1r
S(l1)

) − cN

(
σT

l1r

)
> 0

for some r ∈ {
sl1(S) + 2, . . . , sl1(T ) + 1

}
. (A.14)

Then, by (A.13) and (A.14), (ii) follows. Besides, rT (l1) ≥
rS(l1). Hence, GT

l1
= GS

l1
if rT (l1) = rS(l1) and GT

l1
> GS

l1

if rT (l1) > rS(l1). Therefore, (iv) is also satisfied.
Third, let k ∈ {2, . . . ,m + 1} and i ∈ {lk−1 + 1, . . . ,

lk − 1}, where lm+1 is defined by lm+1 = jS + 1. By
Lemma A.4 and definition of i ∈ {lk−1 + 1, . . . , lk − 1},
we have pi ≥ pa(lk−1,S) ≥ · · · ≥ pa(l1,S) > pau−1 and we
only have to show (i), (iii), and (iv). We have shown
that Lemma A.5 is satisfied for iS, . . . , l1. Assume that
Lemma A.5 is satisfied for l1 + 1, . . . , i − 1 with i ∈
{lk−1 + 1, . . . , lk − 1}. As a direct consequence of (i), (ii),
and (iii) we have

AT (i, r) = AS(i, r)

for all r ∈ {
1, . . . , si(S)

} \ {
rS(i, l1), . . . , r

S(i, lk−1)
}
,

AT
(
i, rS(i, lk′)

) ⊂ AS
(
i, rS(i, lk′)

)

for all k′ ∈ {1, . . . , k − 1},
AS

(
i, rS(i, lk′)

) \ AT
(
i, rS(i, lk′)

) ⊂ {l1, . . . , lk−1}
for all k′ ∈ {1, . . . , k − 1}.

(A.15)

We have σ̂ S
i (i) > σ̂ S

i (lk−1) by Lemma 2.3 and the fact
that pi ≥ pa(lk−1,S) ≥ · · · ≥ pa(l1,S) > pau−1 . By (A.15) and
Lemma 2.3 it follows that

cN

(
σT

ir

) − cN

(
σT

irS(i)

) = cN

(
σS

ir

) − cN

(
σS

irS(i)

)

for every r ∈ {
1, . . . , rS(i) − 1

}
,

cN

(
σT

irS(i)

) − cN

(
σT

ir

) ≤ 0

for every r ∈ {
rS(i) + 1, . . . , si(T ) + 1

}
,

(A.16)

which implies rT (i) = rS(i). Therefore, (i) is satisfied.
Moreover, note that by (A.15) and rT (i) = rS(i) it follows
that P(σ̂ T

i , i) = P(σ̂ S
i , i), and therefore i is a new-max job

according to σ̂ S
i if and only if i is a new-max job accord-

ing to σ̂ T
i , which implies (iii). Finally, (iv) is a direct conse-

quence of rT (i) = rS(i) and (A.16).
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To finish, let i = lk with k ∈ {2, . . . ,m}. Assume that
Lemma A.5 is satisfied for iS, . . . , i − 1. As a direct con-
sequence of (i), (ii), and (iii) we have that

AT (lk, r) = AS(lk, r)

for all r ∈ {
1, . . . , slk (S)

} \ {
rS(lk, l1), . . . , r

S(lk, lk)
}
,

AT
(
lk, r

S(lk, lk′)
) ⊂ AS

(
lk, r

S(lk, lk′)
)

for all k′ ∈ {1, . . . k},
AS

(
lk, r

S(lk, lk′)
) \ AT

(
lk, r

S(lk, lk′)
) ⊂ {l1, . . . , lk}

for all k′ ∈ {1, . . . k}.

(A.17)

By definition of lk it follows that plk < pa(lk−1,S). More-
over, σ̂ S

lk
(lk) > σ̂ S

lk
(lk−1) > σ̂ S

lk
(a(lk−1, S)) (the first inequal-

ity follows by Lemma A.4 and the second one by definition
of a(lk−1, S)). Hence, lk is not a new-max job according
to σ̂ S

lk
, and (iii) is satisfied. As a consequence of this and

of (A.17), it follows that

cN

(
σT

lkr

) − cN

(
σT

lkr
S(lk)

) = cN

(
σS

lkr

) − cN

(
σS

lkr
S(lk)

)

for every r ∈ {
1, . . . , rS(lk) − 1

}
. (A.18)

Note that it may happen that

cN

(
σT

irS(i)

) − cN

(
σT

ir

)
> 0

for some r ∈ {
rS(lk) + 1, . . . , si(T ) + 1

}
, (A.19)

since some of the {l1, . . . , lk−1} may be reordered in front
of au−1 in T . Then, by (A.18) and (A.19), (ii) follows. Be-
sides, rT (lk) ≥ rS(lk). Hence, GT

lk
= GS

lk
if rT (lk) = rS(lk)

and GT
lk

> GS
lk

if rT (lk) > rS(lk). Therefore, (iv) is also sat-
isfied. �
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