Skip to main content

Advertisement

Log in

A multi-objective evolutionary algorithm for examination timetabling

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

This paper considers the scheduling of exams for a set of university courses. The solution to this exam timetabling problem involves the optimization of complete timetables such that there are as few occurrences of students having to take exams in consecutive periods as possible but at the same time minimizing the timetable length and satisfying hard constraints such as seating capacity and no overlapping exams. To solve such a multi-objective combinatorial optimization problem, this paper presents a multi-objective evolutionary algorithm that uses a variable-length chromosome representation and incorporates a micro-genetic algorithm and a hill-climber for local exploitation and a goal-based Pareto ranking scheme for assigning the relative strength of solutions. It also imports several features from the research on the graph coloring problem. The proposed algorithm is shown to be a more general exam timetabling problem solver in that it does not require any prior information of the timetable length to be effective. It is also tested against a few influential and recent optimization techniques and is found to be superior on four out of seven publicly available datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007a). Investigating Ahuja–Orlin’s large neighbourhood search approach for examination timetabling. OR Spectrum, 29(2), 351–372.

    Article  Google Scholar 

  • Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., & McCollum, B. (2007b). A tabu-based large neighbourhood search methodology for the capacitated examination timetabling problem. Journal of the Operational Research Society, 58, 1494–1502.

    Article  Google Scholar 

  • Ahmadi, S., Barrone, R., Cheng, P., Cowling, P., & McCollum, B. (2003). Perturbation based variable neighbourhood search in heuristic space for examination timetabling problem. In Proceedings of multidisciplinary international scheduling: theory and applications, MISTA 2003, Nottingham, UK (pp. 155–171).

  • Ahuja, R. K., Orlin, J. B., & Sharma, D. (2001). Multiexchange neighbourhood search algorithm for capacitated minimum spanning tree problem. Mathematical Programming, 91, 71–97.

    Google Scholar 

  • Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2005). Fuzzy multiple heuristic orderings for examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 334–353). Berlin: Springer.

    Chapter  Google Scholar 

  • Asmuni, H., Burke, E. K., Garibaldi, J. M., & McCollum, B. (2007). A novel fuzzy approach to evaluate the quality of examination timetabling. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 327–346). Berlin: Springer.

    Chapter  Google Scholar 

  • Balakrishnan, N., Lucena, A., & Wong, R. T. (1992). Scheduling examinations to reduce second order conflicts. Computers and Operations Research, 19, 353–361.

    Article  Google Scholar 

  • Bardadym, V. A. (1996). Computer-aided school and university timetabling: The new wave. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 22–45). Berlin: Springer.

    Google Scholar 

  • Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An experimental study on hyper-heuristics and exam timetabling. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 394–412). Berlin: Springer.

    Chapter  Google Scholar 

  • Brailsford, S. C., Potts, C. N., & Smith, B. M. (1999). Constraint satisfaction problems: algorithms and applications. European Journal of Operational Research, 119, 557–581.

    Article  Google Scholar 

  • Brelaz, D. (1979). New methods to color the vertices of a graph. Communication of the ACM, 22(4), 251–256.

    Article  Google Scholar 

  • Broder, S. (1964). Final examination scheduling. Communications of the ACM, 7, 494–498.

    Article  Google Scholar 

  • Bullnheimer, B. (1998). An examination scheduling model to maximize students study time. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 78–91). Berlin: Springer.

    Chapter  Google Scholar 

  • Burke, E. K., Elliman, D. G., Ford, P. H., & Weare, R. F. (1995). Specialised recombinative operators for the timetabling problem. In T. Fogarty (Ed.), Lecture notes in computer science: Vol. 993. Evolutionary Computing: AISB Workshop, Sheffield, UK (pp. 75–85). Berlin: Springer.

    Google Scholar 

  • Burke, E. K., Newall, J. P., & Weare, R. F. (1996a). A memetic algorithm for university exam timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 241–250). Berlin: Springer.

    Google Scholar 

  • Burke, E. K., Elliman, D. G., Ford, P. H., & Weare, R. F. (1996b). Examination timetabling in British universities—a survey. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 76–90). Berlin: Springer.

    Google Scholar 

  • Burke, E. K., Jackson, K., Kingston, J. H., & Weare, R. (1997). Automated university timetabling: the state of the art. The Computer Journal, 40(9), 565–571.

    Article  Google Scholar 

  • Burke, E. K., Newall, J. P., & Weare, R. F. (1998a). A simple heuristically guided search for the timetable problem. In E. Alpaydin & C. Fyte (Eds.), Proceedings of the international ICSC symposium on engineering of intelligent systems, EIS 1998, Spain (pp. 574–579).

  • Burke, E. K., Newall, J. P., & Weare, R. F. (1998b). Initialization strategies and diversity in evolutionary timetabling. Evolutionary Computation, 6(1), 81–103.

    Article  Google Scholar 

  • Burke, E. K., & Newall, J. P. (1999). A multistage evolutionary algorithm for the timetable problem. IEEE Transactions on Evolutionary Computation, 3(1), 63–74.

    Article  Google Scholar 

  • Burke, E. K., Bykov, Y., & Petrovic, S. (2001). A multicriteria approach to examination timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 118–131). Berlin: Springer.

    Chapter  Google Scholar 

  • Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280.

    Article  Google Scholar 

  • Burke, E. K., Petrovic, S., & Qu, R. (2002). Case-based heuristic selection for examination timetabling. In Proceedings of the 4th Asia-Pacific conference on simulated evolution and learning, SEAL 2002, Singapore (pp. 277–281).

  • Burke, E. K., & Newall, J. P. (2003). Enhancing timetable solutions with local search methods. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 195–206). Berlin: Springer.

    Google Scholar 

  • Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through adaptation of heuristic orderings. Annals of Operational Research, 129, 107–134.

    Article  Google Scholar 

  • Burke, E. K., & Landa Silva, J. D. (2004). The design of memetic algorithms for scheduling and timetabling problems. In W.E. Hart, N. Krasnogor, & J. E. Smith (Eds.), Studies in fuzziness and soft computing: Vol. 166. Recent Advances in Memetic Algorithms and Related Search Technologies (pp. 289–312). New York: Springer.

    Chapter  Google Scholar 

  • Burke, E. K., Kingston, J., & de Werra, D. (2004a). Applications to timetabling. In J. Gross & J. Yellen (Eds.), Handbook of graph theory (pp. 445–474). London: Chapman Hall.

    Google Scholar 

  • Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (2004b). A time-predefined local search approach to exam timetabling problems. IIE Transactions, 36(6), 509–528.

    Article  Google Scholar 

  • Burke, E. K., Dror, M., Petrovic, S., & Qu, R. (2005). Hybrid graph heuristics in hyper-heuristics applied to exam timetabling problems. In B. L. Golden, S. Raghavan, & E. A. Wasil (Eds.), The next wave in computing, optimization, and decision technologies (pp. 79–91). New York: Springer.

    Chapter  Google Scholar 

  • Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2006a). Hybrid variable neighbourhood approaches to university exam timetabling (Technical Report NOTTCS-TR-2006-2). School of CSiT, University of Nottingham.

  • Burke, E. K., Petrovic, S., & Qu, R. (2006b). Case-based heuristic selection for timetabling problems. Journal of Scheduling, 9, 115–132.

    Article  Google Scholar 

  • Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176, 177–192.

    Article  Google Scholar 

  • Caramia, M., Dell’Olmo, P., & Italiano, G. F. (2001). New algorithms for examination timetabling. In S. Näher & D. Wagner (Eds.), Lecture notes in computer science: Vol. 1982. Algorithm Engineering 4th International Workshop, WAE 2000, Saarbrücken, Germany (pp. 230–241). Berlin: Springer.

    Google Scholar 

  • Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms. Operations Research, 34(2), 193–202.

    Article  Google Scholar 

  • Carter, M. W., & Laporte, G. (1996). Recent developments in practical examination timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 3–21). Berlin: Springer.

    Google Scholar 

  • Carter, M. W., Laporte, G., & Lee, S. Y. (1996). Examination timetabling: algorithmic strategies and applications. The Journal of the Operational Research Society, 47(3), pp. 373–383.

    Article  Google Scholar 

  • Carter, M. W., & Johnson, D. G. (2001). Extended partition initialization in examination timetabling. The Journal of the Operational Research Society, 52, 538–544.

    Article  Google Scholar 

  • Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 232–244). Berlin: Springer.

    Google Scholar 

  • Chan, C. K., Gooi, H. B., & Lim, M. H. (2002). Co-evolutionary algorithm approach to a university timetable system. In Proceedings of the 2002 congress on evolutionary computation, CEC 2002, Honolulu, HI, USA (Vol. 2, pp. 1946–1951).

  • Cheong, C. Y., Tan, K. C., & Veeravalli, B. (2007). Solving the exam timetabling problem via a multi-objective evolutionary algorithm—a more general approach. In Proceedings of the 2007 IEEE symposium on computational intelligence in scheduling, CI-Sched 2007, Honolulu, HI, USA (pp. 165–172).

  • Coello Coello, C. A., & Pulido, G. T. (2001). Multiobjective optimization using a micro-genetic algorithm. In L. Spector, E. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. K. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 2001, San Francisco, CA, USA (pp. 274–282). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Côté, P., Wong, T., & Sabourin, R. (2005). Application of a hybrid multi-objective evolutionary algorithm to the uncapacitated exam proximity problem. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 151–168). Berlin: Springer.

    Chapter  Google Scholar 

  • David, P. (1998). A constraint-based approach for examination timetabling using local repair techniques. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 169–186). Berlin: Springer.

    Chapter  Google Scholar 

  • de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–162.

    Article  Google Scholar 

  • Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for examination timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 104–117). Berlin: Springer.

    Chapter  Google Scholar 

  • Dowsland, K. A. (1996). Simulated annealing solutions for multi-objective scheduling and timetabling. In V. R. J. Smith, I. H. Osman, C. R.J. Reeves, & G. D. Smith (Eds.), Modern heuristic search methods (pp. 155–166). New York: Wiley.

    Google Scholar 

  • Dowsland, K. A., & Thompson, J. (2005). Ant colony optimization for the examination scheduling problem. The Journal of Operational Research Society, 56, 426–438.

    Article  Google Scholar 

  • Dozier, G., Brown, J., & Bahler, D. (1994). Solving small and large scale constraint satisfaction problems using a heuristic-based microgenetic algorithm. In Proceedings of the 1st IEEE international conference on evolutionary computation, Piscataway, NJ, USA (Vol. 1, pp. 306–311).

  • Duong, T. A., & Lam, K. H. (2004). Combining constraint programming and simulated annealing on university exam timetabling. In Proceedings of the 2nd international conference in computer sciences, research, innovation & vision for the future, RIVF 2004, Hanoi, Vietnam (pp. 205–210).

  • Eley, M. (2007). Ant algorithms for the exam timetabling problem. In E. K. Burke & H. Rudová (Eds.), Lecture notes in computer science: Vol. 3867. Proceedings of the 6th international conference on the practice and theory of automated timetabling, PATAT 2006, Brno, Czech Republic (pp. 364–382). Berlin: Springer.

    Chapter  Google Scholar 

  • Erben, W. (2001). A grouping genetic algorithm for graph colouring and exam timetabling. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 132–156). Berlin: Springer.

    Chapter  Google Scholar 

  • Erben, W., & Song, P. Y. (2005). A hybrid grouping genetic algorithm for examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 487–490). Berlin: Springer.

    Google Scholar 

  • Fonseca, C. M. (1995). Multiobjective genetic algorithms with application to control engineering problems. Ph.D. thesis, Dept. Automatic Control and Systems Eng., University of Sheffield, Sheffield, UK.

  • Gani, T. A., Khader, A. T., & Budiarto, R. (2004). Optimizing examination timetabling using a hybrid evolution strategies. In Proceedings of the 2nd international conference on autonomous robots and agents, Palmerston North, New Zealand (pp. 345–349).

  • Gendreau, M., Hertz, A., & Laporte, G. (1994). A tabu search heuristic for the vehicle routing problem. Management Science, 40, 1276–1290.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Hansen, P., & Mladenovic, N. (2001). Variable neighbourhood search: principles and applications. European Journal of Operational Research, 130, 449–467.

    Article  Google Scholar 

  • Hentenryck, P. V. (1989). Constraint satisfaction in logic programming. Logic programming series. Cambridge: MIT Press.

    Google Scholar 

  • Hussin, N. (2005). Tabu search based hyper-heuristic approaches for examination timetabling. Ph.D. thesis, Department of Computer Science, University of Nottingham.

  • Kazarlis, S. A., Papadakis, S. E., Theocharis, J. B., & Petridis, V. (2001). Microgenetic algorithms as generalized hill-climbing operators for GA optimization. IEEE Transactions on Evolutionary Computation, 5(3), 204–217.

    Article  Google Scholar 

  • Kendall, G., & Hussin, N. M. (2003). An Investigation of a tabu search based hyperheuristic for examination timetabling. In Proceedings of multidisciplinary international scheduling: theory and applications, MISTA 2003, Nottingham, UK (pp. 309–328).

  • Kendall, G., & Hussin, N. M. (2005). A tabu search hyper-heuristic approach to the examination timetabling problem at the MARA university of technology. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 199–218). Berlin: Springer.

    Chapter  Google Scholar 

  • Lotfi, V., & Cerveny, R. (1991). A final exam-scheduling package. The Journal of the Operational Research Society, 42(3), 205–216.

    Article  Google Scholar 

  • Merlot, L. T. G., Boland N., Hughes, B. D., & Stuckey, P. J. (2003). A hybrid algorithm for the examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 207–231). Berlin: Springer.

    Google Scholar 

  • Mladenovic, N., & Hansen, P. (1997). Variable neighbourhood search. Computers and Operations Research, 24(11), 1097–1100.

    Article  Google Scholar 

  • Moscato, P., & Norman, M. G. (1991). A ‘memetic’ approach for the travelling salesman problem—implementation of computational ecology for combinatorial optimisation on message-passing systems. In Proceedings of the international conference on parallel computing and transputer applications. Amsterdam: IOS Press.

    Google Scholar 

  • Naji Azimi, Z. (2004). Comparison of metaheuristic algorithms for examination timetabling problem. Applied Mathematics and Computation, 16, 337–354.

    Article  Google Scholar 

  • Naji Azimi, Z. (2005). Hybrid heuristics for examination timetabling problem. Applied Mathematics and Computation, 163, 705–733.

    Article  Google Scholar 

  • Paquete, L. F., & Fonseca, C. M. (2001). A study of examination timetabling with multiobjective evolutionary algorithms. In Proceedings of the 4th metaheuristics international conference, MIC 2001, Porto, Portugal (pp. 149–153).

  • Paquete, L. F., & Stützle, T. (2003). Empirical analysis of tabu search for the lexicographic optimization of the examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 413–420). Berlin: Springer.

    Google Scholar 

  • Petrovic, S., & Bykov, Y. (2003). A multiobjective optimisation technique for exam timetabling based on trajectories. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 179–192). Berlin: Springer.

    Google Scholar 

  • Petrovic, S., & Burke, E. K. (2004). University timetabling. In J. Leung (Ed.), Handbook of scheduling: algorithms, models, and performance analysis (Chap. 45). London: Chapman & Hall.

    Google Scholar 

  • Pulido, G. T., & Coello Coello, C. A. (2003). The micro genetic algorithm 2: Towards online adaptation in evolutionary multiobjective optimization. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Lecture notes in computer science: Vol. 2632. 2nd international conference on evolutionary multi-criterion optimization, EMO 2003, Faro, Portugal (pp. 252–266). Berlin: Springer.

    Chapter  Google Scholar 

  • Qu, R., & Burke, E. K. (2005). Analysing high level heuristics within a graph-based hyper heuristic for exam timetabling problems (Technical Report NOTTCS-TR-2005-3). School of CSiT, University of Nottingham.

  • Qu, R., & Burke, E. K. (to appear). Hybridisations within a graph based hyper-heuristic framework for university timetabling problems. Journal of the Operational Research Society.

  • Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., & Lee, S. Y. (to appear). A survey of search methodologies and automated system development for examination timetabling. Journal of Scheduling.

  • Radcliffe, N. J., & Surry, P. D. (1994). Formal memetic algorithms. In T. Fogarty (Ed.), Lecture notes in computer science: Vol. 865. Evolutionary computing: AISB workshop, Leeds, UK (pp. 1–16). Berlin: Springer.

    Google Scholar 

  • Ross, P., Corne, D., & Fang, H.-L. (1994). Improving evolutionary timetabling with delta evaluation and directed mutation. In Y. Davidor, H.-P. Schwefel, & R. Manner (Eds.), Parallel problem solving in nature (Vol. III). Berlin: Springer.

    Google Scholar 

  • Ross, P., Corne, D., & Terashima-Marin, H. (1996). The phase transition niche for evolutionary algorithms in timetabling. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 309–324). Berlin: Springer.

    Google Scholar 

  • Ross, P., Hart, E., & Corne, D. (1998). Some observations about GA-based exam timetabling. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science: Vol. 1408. Proceedings of the 2nd international conference on the practice and theory of automated timetabling, PATAT 1997, Toronto, Canada (pp. 115–129). Berlin: Springer.

    Chapter  Google Scholar 

  • Ross, P., Hart, E., & Corne, D. (2003). Genetic algorithms and timetabling. In: A. Ghosh & S. Tsutsui (Eds.), Advances in evolutionary computing: theory and applications (pp. 755–771). New York: Springer.

    Google Scholar 

  • Ross, P., Marin-Blazquez, J. G., & Hart, E. (2004). Hyper-heuristics applied to class and exam timetabling problems. In Proceedings of the 2004 congress on evolutionary computation, CEC 2004, Portland, OR, USA (Vol. 2, pp. 1691–1698).

  • Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127).

    Article  Google Scholar 

  • Sheibani, K. (2003). An evolutionary approach for the examination timetabling problems. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science: Vol. 2740. Proceedings of the 4th international conference on the practice and theory of automated timetabling, PATAT 2002, Gent, Belgium (pp. 387–396). Berlin: Springer.

    Google Scholar 

  • Tan, K. C., Khor, E. F., Lee, T. H., & Sathikannan, R. (2004). An evolutionary algorithm with advanced goal and priority specification for multi-objective optimization. Journal of Artificial Intelligence Research, 18, 183–215.

    Google Scholar 

  • Tan, K. C., Cheong, C. Y., & Goh, C. K. (2007). Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation. European Journal of Operational Research, 177, 813–839.

    Article  Google Scholar 

  • Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999a). Clique-based crossover for solving the timetabling problem with GAs. In Proceedings of the 1999 congress on evolutionary computation, CEC 1999, Washington, DC, USA (pp. 1200–1206).

  • Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999b). Application of the hardness theory when solving the timetabling problem with GAs. In Proceedings of the 1999 congress on evolutionary computation, CEC 1999, Washington, DC, USA (pp. 604–611).

  • Terashima-Marin, H., Ross, P., & Valenzuela-Rendon, M. (1999c). Evolution of constraint satisfaction strategies in examination timetabling. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, & R. E. Smith (Eds.), Proceedings of the genetic and evolutionary computation conference, GECCO 1999, Orlando, Florida, USA (pp. 635–642). San Mateo: Morgan Kaufmann.

    Google Scholar 

  • Thompson, J., & Dowsland, K. (1996a). General cooling schedules for a simulated annealing timetabling system. In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science: Vol. 1153. Proceedings of the 1st international conference on the practice and theory of automated timetabling, PATAT 1995, Edinburgh, Scotland (pp. 345–363). Berlin: Springer.

    Google Scholar 

  • Thompson, J., & Dowsland, K. (1996b). Variants of simulated annealing for the examination timetabling problem. Annals of Operations Research, 63, 105–128.

    Article  Google Scholar 

  • Thompson, J., & Dowsland, K. (1998). A robust simulated annealing based examination timetabling system. Computers and Operations Research, 25, 637–648.

    Article  Google Scholar 

  • White, G. M., & Chan, P. W. (1979). Towards the construction of optimal examination timetables. INFOR, 17, 219–229.

    Google Scholar 

  • White, G. M., & Xie, B. S. (2001). Examination timetables and tabu search with longer-term memory. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science: Vol. 2079. Proceedings of the 3rd international conference on the practice and theory of automated timetabling, PATAT 2000, Konstanz, Germany (pp. 85–103). Berlin: Springer.

    Chapter  Google Scholar 

  • White, G. M., Xie, B. S., & Zonjic, S. (2004). Using tabu search with longer-term memory and relaxation to create examination timetables. European Journal of Operational Research, 153(16), 80–91.

    Article  Google Scholar 

  • Wolpert, D. H., & Macready, W. G. (1995). No free lunch theorems for search (Technical Report SFI-TR-95-02-010). Santa Fe Institute, Santa Fe, NM.

  • Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82.

    Article  Google Scholar 

  • Wong, T., Côté, P., & Sabourin, R. (2004). A hybrid MOEA for the capacitated exam proximity problem. In Proceedings of the 2004 congress on evolutionary computation, CEC 2004, Portland, OR, USA (Vol. 2, pp. 1495–1501).

  • Wood, D. C. (1968). A system for computing university examination timetables. The Computer Journal, 11(1), 41–47.

    Article  Google Scholar 

  • Yang, Y., & Petrovic, S. (2005). A novel similarity measure for heuristic selection in examination timetabling. In E. K. Burke & M. Trick (Eds.), Lecture notes in computer science: Vol. 3616. Proceedings of the 5th international conference on the practice and theory of automated timetabling, PATAT 2004, Pittsburg, PA, USA (pp. 377–396). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheong, C.Y., Tan, K.C. & Veeravalli, B. A multi-objective evolutionary algorithm for examination timetabling. J Sched 12, 121–146 (2009). https://doi.org/10.1007/s10951-008-0085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-008-0085-5

Keywords

Navigation