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The Garey-Johnson algorithm is a well known polynomial-time al-
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gorithm constructing an optimal schedule for the maximum lateness
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problem with unit execution time tasks, two parallel identical proces-
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sors, precedence constraints and release times. The paper is concerned
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with the worst-case analysis of a generalization of the Garey-Johnson
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algorithm to the case of arbitrary number of processors. In contrast
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to other algorithms for the maximum lateness problem, the tight per-
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formance guarantee for the even number of processors differs from the
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tight performance guarantee for the odd number of processors.
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1 Introduction

In this paper we consider the problem of scheduling a set N={1,2,... n}
of n tasks (jobs, operations) on m > 1 parallel identical processors (ma-
chines) subject to precedence constraints in the form of an anti-reflexive,
anti-symmetric and transitive relation on N. If task ¢ precedes task 7, de-
noted ¢ — 7, then the processing of task ¢ must be completed before the
processing of task j begins. Each processor can process only one task at
a time, and each task can be processed by any processor. Once a proces-
sor begins executing a task, it processes this task until its completion (i.e.
no preemptions are allowed). Each task j requires one unit of processor’s
time and its processing can commence only after the specified non-negative
integer release time r;.

Since no preemptions are allowed and all processors are identical, any
schedule o can be determined by specifying for each task j its completion

time Cj (o) in such a way that
o Cj(0) >rj+1, forall j € N;
e not more than m tasks are assigned the same completion time;
o if i — j, then Cj(0) > Cj(0) + 1.

The goal is to find a schedule that minimizes the criterion of maximum
lateness

Lmax(a) = I}leaj\},([cj(o-) - dj]? (1)

where d; is an integer due date associated with task j.
In the three-field notation (see for example [2]), the above problem is

denoted by Plprec,p; = 1,7j|Lpas, where the terms prec and r; indicate
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the presence of precedence constraints and release times, and p; = 1 reflects
the fact that all processing times are equal to one unit of time. If the partially
ordered set of tasks is an in-tree, then the term prec is replaced by in —tree.
Analogously, the term out — tree indicates that the partially ordered set of
tasks is an out-tree. If all due dates are equal to zero, the maximum lateness
problem becomes the makespan problem P|prec,p; = 1,7;|Crqp with the
criterion

Cmaz(0) = rjrg\)f( Cj(0).

If the term r; is omitted, then all tasks have the same release time of zero.
It is well known that even P|prec,p; = 1|Cyuqy is NP-hard in the strong
sense [8], [7]. Moreover, as has been shown in [11], the P|prec,p; = 1|Cpaa
problem remains NP-hard in the strong sense even if the partially ordered
set of tasks is a bipartite graph. As far as the maximum lateness problem
is concerned, Plout — tree,pj = 1|Lyq, is also NP-hard in the strong sense
[3]. This implies the NP-hardness in the strong sense of Plin — tree,p; =
1,7j|Cmaz- These NP-hardness results boost the interest in the worst-case
performance of various approximation algorithms [1], [9], [10], [12].

Notice that approximation analysis for L,,q; criteria can be done by
two ways. Let o be a schedule obtained by an algorithm, and ¢* denote
the optimal schedule for a given instance. The first approach defines an
upper bound on e (0) — Limaz(0*). Relative approximation seems to
be difficult since L, criteria might have negative values. However, it is
straightforward that P|prec,p; = 1.7j|Ljes is equivalent to the problem
Plprec,p; = 1,75,q;|Gmaz, where each job j is associated with a release
time 7; and a positive tail g;, such that for a given schedule o, Gp.(0) =

max;en Cj(0) 4 ¢g;j. Indeed, from an instance of the L4, problem we define
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an instance of the Gyq, problem by setting Vj € N, ¢; = max;en d; —d; (and
conversely d; = max;ey ¢; — ¢;), so that for a given schedule o, Lyq(0) =
Gmaz(0) — maxen d;. Hence Gee is always positive and a worst case

approximation ratio can be found:
Ginaz(0) < aGraz(0*) = B
This will lead to an expression for Lj,q; as:
Linaz(0) < aLmaz(0™) + (@ — 1) max d; — B

All performance guarantee that can be found in the litterature for L.,
have this form and the best known ratio is v = 2 — 2 [9][12].

This paper is concerned with the Garey-Johnson algorithm [4]. Although
the Garey-Johnson algorithm was originally developed for the P2|prec, p; =
1,7j|Lmax problem, ie. the problem with only two processors, it can be
generalized to the case of arbitrary number of processors. We will refer to
this generalization by GJ-algorithm. Although the Garey-Johnson algorithm
is among the most popular scheduling algorithms, its worst-case performance
in the case of arbitrary number of processors has remained unknown for
almost three decades. In what follows we analyze the worst-case performance

of the GJ-algorithm.

2 GJ-algorithm

In order to define what GJ-algorithm is, we need to introduce the framework
on which it relies. Let us consider an instance of P|prec,p; = 1|Lynqq, defined
by an acyclic graph G, and for any node 7, an integer d; the due-date of task

1. Notice that in the rest of the paper, g, h,i,j will always denote tasks.
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Let us call Decision(G, (d;)ien) the following decision problem: does-it
exists a schedule which meets all due-dates (called in-time schedule)?

The GJ-algorithm relies on an oracle O which answers partially this
question: from original due-dates d;, an algorithm .4 computes consistent
modified due dates which should be met by any in-time schedule. If the
algorithm fails, then there is no in-time schedule, so that the oracle answers
“No”. Otherwise, the true answer is still unknown, but the oracle answers
“Yes”. Consistent due-dates are defined in the first subsection.

Then, the GJ-algorithm will compute, by binary search, a minimum
value A* such that the oracle O answers yes to the problem Decision(G, (A*+
di)ien). Tt is proven in subsection 2.2 that A* is a lower bound on the op-
timal lateness for the initial problem.

Finally, modified due-dates for the instance (G, (A* + d;);en) are used
as priorities to build a schedule of the tasks with a list scheduling algorithm.

This part is described in subsection 2.3.

2.1 Consistent due dates

If i — j and r; > 7;, then the replacement of 7; by r; + 1 does not affect
the feasibility of any schedule. Since one can recalculate all release times
in O(n?) operations, without loss of generality we will assume that i — j
implies the inequality r; +1 < r;. Without loss of generality we will also
assume that minjenr; = 0.

Let Dy, ..., D, be arbitrary nonnegative integers, then for any task ¢ and
any two numbers s and d such that S(i, s, d) will denote the set of all tasks
J with due date at most d (D; < d) such that ¢ precedes j according to G

(i —j),orr;>s.
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Intuitively if each task meets its due-date, then all tasks of S(i,s,d)
including ¢ should end before d. Now assume that r; < s < D; < d. If
D; = s then obviously, if i ends exactly at its due-date, all tasks of S(i, s, d)
should be computed in the time interval [s,d). Similarly, if D; > s and if i
ends at its due-date, all tasks of S(i, s,d) and ¢ should be performed in the
time interval [s,d). The notion of consistency derives from this intuition:

We will say that integers Dy, ..., D, are consistent if for every task j
rj < Dj—1, (2)
And for any task i, and any integers s, d linked to ¢ by the following relation:
ri<s<D;<d, (3)
we have the following property:

either |S(i,s,d)] <m(d—s)
or |S(i,s,d)| =m(d—s) and D; =s

(4)

It is easy to see that this definition is equivalent to the definition of
consistency given in [4]. Indeed, according to [4], integers Ds,..., D, are
consistent if the inequality (2) holds for every j € N, and for any task i and

any two integers s and d satisfying (3), the inequality

1S (i, s,d)| = m(d—s) (5)
implies '
Di<d- {Wl . (6)

The equivalence of both definitions follows from the fact that the inequal-
ities |S(i,s,d)| > m(d — s) and (6) contradict (3), and that the equality
|S(i,s,d)] =m(d— s) together with (6) and (3) implies D; = s.
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Example: Let us consider the problem instance pictured in figure 1. And
assume that m = 7. Let us consider the upper-left most node and call it a.
Notice that 7, = 0,d, = 1. Let us consider s = 1,d = 2. The set S(a,1,2)
comprises all nodes of the second row, since they all have a release date not
less than 1 and a due date not more than 2. As there are 9 > 7 nodes in the

second row,the due-dates are not consistent.

ri=0000000000d;=1

7"]'230 dj=4

Figure 1: An example with inconsistent due-dates for m = 7.

Lemma 1 If integers Dy, ..., Dy are consistent and i« — 3, then D; <

Dj—1.

Proof

Suppose that i — j and D; > D;. Since D1, ..., D,, are consistent, 7; < D;,
and analogously to [4], s = d = D; satisty (3). For these s and d, j €
S(i,s.d) and hence |S(i,s,d)| > m(d — s), which contradicts the definition

of consistency. []

2.2 A-modified due dates

Let A be an arbitrary integer. We will say that integers D, ..., D, are
A-modified due dates if they are consistent and D; < d; + A for alli € N.
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Example: Let us consider again the problem instance pictured in figure
1. Setting Dj = dj + 1 = i + 2 for jobs j of row i (rows are indexed from 0
to 4) defines 1-modified due dates. One can easily check the new due-dates
are consistent.

As has been shown in [4], there exists an algorithm which for any given
A in O(n3) operations either calculates A-modified due dates or establishes
that such due dates do not exist at all. The idea of this algorithm is based
on the definition of consistency in [4] and can be outlined as follows. In
order to compute for a given A a set of A-modified due dates we first set
Dj = d; + A for all j € N. If (2) holds for all j € N and the inequality
(6) holds for all triples (i,s,d) satisfying (3) and (5), integers Dy, ..., D,
themselves are A-modified due dates. If some j does not satisfy (2), the
desired set of A-modified due dates does not exist at all. Suppose that
Dj > r;j+ 1 for all j € N, but for some triple (4, s, d) satisfying (3) and (5)

D;>d— [Ww (7)

It is easy to see that if A-modified due dates exist, then the due date asso-
ciated with 7 is not greater than the right-hand side of the inequality (7).

Hence we set

m

and again check (2) and the inequality (6) for all triples (i, s,d) satisfying
(3) and (5). At each such iteration we either conclude that the desired set of
A-modified due dates does not exist, or establish that the current integers
Dy, ..., D, are A-modified due dates, or reduce value of some D;. The
result that this procedure terminates in O(n3) operations is based on three
observations. First, that it suffices to consider only values of d coinciding

with one of the current integers D;. Second, that for a given d it suffices
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to consider only values of s coinciding with one of release times or d itself.
Third, that if the procedure is structured as three nested loops, where the
outer loop selects d in decreasing order, the next loop selects 7, and for fixed
d and 4 the inner loop selects s in increasing order, each triple cannot appear
in more than one iteration.

The following lemma shows that the existence of a schedule that meets

due dates dy + A, ..., d,, + A implies the existence of A-modified due dates.

Lemma 2 Let o be an arbitrary schedule and Dj = Cj(0), for all j € N,

then D1, ..., D, are consistent.

Proof
Since ¢ is a feasible schedule, r; < Cj(0) =1 = Dj — 1 for all j € N.
Suppose that some triple (i,s,d) satisfies (3) and the equality |S(i,s,d)| =
m(d — s). Then at least (d — s) + 1 time units are required to complete
all tasks constituting the set S(i,s,d) U {i}. Since Cj(o) = D; < d for
each j € S(i,s,d) U {i}, there exists a task j € S(i,s,d) U {i} such that
Cj(o) < s. From the definition of S(i, s, d), either i = j or i — j. Therefore
D; = Ci(0) < s, and by (3), D; = s.
Now suppose that some triple (i,s,d) satisfies (3) and the inequality
|S(i,s,d)] > m(d—s). Then
- [BEsl] IS0

m m

< s,

and since s and d are integers,

d_[M}HSS.
m

15(i, 5, d)|
m

Because at least { -‘ time units are required to complete |S(7, s, d)]



O J oy U b WD

OO OO U U U oo bbb DNOLWWWWWWLWWWWWLWNDNDDNDNDDNDNDDNDNDMNMNMNERERRRRRRRRR
G WNDPOWOWOJONUPd WNRPOWOWOJOUPd WNPOWOWOJONUEd WNEPOWOWOJIOUdWNE OWOJoU xwhEkE O

tasks, there exists a task j € S(i,s,d) such that
S(i,s,d
Ci(o) < d— {M-‘ +1.
: m

Since for this task Cj(o) < s, r; < s, and by the definition of S(i,s,d),

i — j. Hence, D; = C;(0) < s, which contradicts (3). ]

We will say that schedule o is active if there is no schedule ¢’ such that
Cj(c") < Cj(o) for all j € N and at least one of these inequalities is strict.
In what follows, for any integer ¢, we will refer to the time interval [t — 1,¢]

also as a time slot t.
Lemma 3 If a schedule o is active, then Cj(0) —1; < n for all j € N.

Proof

Suppose that there exists a task j such that Cj(o) —r; > n. Then all
m processors are idle in at least one time slot ¢ satisfying the inequalities
rj <t < Cj(0). Because o is active, this implies the existence of a task g
such that ¢ — j and t < Cy(0) < Cj(0). Among all these tasks g select
a task with the smallest completion time. Let it be task ¢. Since ¢ — 7,
ri <rj <t and task i can be processed in the time slot ¢ without changing
completion times of all other tasks which contradicts the fact that o is

active. ]

The following lemma establishes upper and lower bounds on the optimal

value of the criterion.

Lemma 4 Let o* be an optimal schedule and A* be the minimal A allowing

A-modified due dates. Then

I}é«‘f}\}[{(m —di) < A" < Ly (0") <n+ IlIéE]I\I;((T'z —d;).

10



O J oy U b WD

OO OO U U U oo bbb DNOLWWWWWWLWWWWWLWNDNDDNDNDDNDNDDNDNDMNMNMNERERRRRRRRRR
G WNDPOWOWOJONUPd WNRPOWOWOJOUPd WNPOWOWOJONUEd WNEPOWOWOJIOUdWNE OWOJoU xwhEkE O

Proof
If A =r;—d; for some j € N, then A-modified due dates D1,..., D, do

not exist, because in this case
D; de+A:7‘j,
which contradicts the inequalities D; > r; + 1. Hence,
x(r; — d;) < A*.
=4 <
Without loss of generality we assume that o* is active, because otherwise
o* can be replace by an active schedule ¢’ such that C;(¢’) < Cj(c*), for all
J € N, and hence also optimal. Consider any task j satisfying the equality
Cj(0*) — dj = Lipaz(0*). Then using lemma 3 we have

Lmaw(g*) = Cj(O'*) —rj+r;— d]‘ <n+r;— dj <n+ IIéE}\}[((T’Z —d;).
i

To complete the proof, we observe that Cj(0*) < dj + Lpaz(0*), for all
j € N, and therefore by lemma 2 the integers Cj(c*), Cy(c*), ..., Cp(c™)

are Lpge(0™)-modified due dates. Hence, A* < Lyya(0™). [

2.3 GJ-algorithm for an arbitrary number of processors

The algorithm considered in this paper is a straightforward generalization
of that presented in [4] for the two-processor case. Both algorithms use
as a subroutine the so called list algorithm (see for example [2]). The list
algorithm assumes that the tasks are arranged in a list £ and constructs an
active schedule o, iteratively from time ¢ = 0, computing at each time ¢
the set F} of feasible jobs at time t according to the partial schedule of the

interval [0,¢ — 1], schedule all of them at time ¢ if |F}| < m, otherwise choose

11



O J oy U b WD

OO OO U U U oo bbb DNOLWWWWWWLWWWWWLWNDNDDNDNDDNDNDDNDNDMNMNMNERERRRRRRRRR
G WNDPOWOWOJONUPd WNRPOWOWOJOUPd WNPOWOWOJONUEd WNEPOWOWOJIOUdWNE OWOJoU xwhEkE O

among F; the m jobs with lowest index in £ and schedule them at ¢. ¢ is
then updated to the next time slot in which a job is feasible.
As in lemma 4, let A* be the minimal A allowing A-modified due dates.

GJ-algorithm

1. Set Ap = maxjen(r; —dj) and Ay = n+maxjen(r; — d;). Using the

binary search, compute A* and A*-modified due dates.

2. Construct a list schedule for a list where tasks are arranged in the

non-decreasing order of there A*-modified due dates.

Figure 2 illustrates the schedule produced by GJ-algorithm applied to
the graph of figure 1 on 7 processors, with A* = 1 in comparison to the
optimal schedule.

Recall that, for a given A, the number of operations needed to com-
pute A-modified due dates or to determine that these due dates do not
exist is O(n3). The selection of Ay and Ay is justified by lemma 4. So,
the calculation of A* and the corresponding A*-modified due dates can be
accomplished in O(n?log, n) operations.

In what follows, o* will denote a schedule minimizing the maximum late-
ness, D1, ..., D, will denote A*-modified due dates calculated in accord with
the first step of the GJ-algorithm, and & will denote a schedule constructed
by this algorithm.

3 Decomposition procedure

In order to analyze the performance of the GJ-schedule, we use a decompo-
sition procedure which will build a sequence jo, . .. jq of jobs and bounds on

Dj, that will be useful in the next sections.

12
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GJ Schedule: Ly, (5) = 2 Optimal schedule: L4, (0*) =1

Figure 2: GJ and optimal schedule for the example of figure 1.

Decomposition of schedules is a classical tool to analyze their worst-case
performance, see for example [2],[1] for makespan minimization analysis.
However, with each algorithm a specific decomposition is needed to derive
the performance bound.

For any integers t and D, denote by d(¢, D) the set of all tasks j such
that Cj(6) =t and D; < D.

Lemma 5 For any task j and any integers D and t, satisfying
D; <D, rj<t<Cy@) and |6(t,D)| <m,
there exists a task h € §(t, D — 1) such that h — j.

Proof

Since the schedule & is constructed in accord with the list algorithm and
since |d(t, D)| < m and r; < t, there exists a task ¢ such that C;(g) >t and
i1 — j. Among all such tasks 7 select a task with the smallest completion
time. Let it be task h. Lemma 1 implies that Dy, < D; —1 < D — 1. Hence
the lemma holds if C}(7) = ¢. In order to prove this equality, assume that
Cp(G) > t. The relation h — j implies r;, < rj, and since the schedule &

was constructed in accord with the list algorithm, there exists a task f such

13
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that Cp(G) > t and f — h. Then by transitivity f — j, which contradicts
the selection of h. [

Further exploring the structure of &, we observe that
max|C;(7) — Dj} = max[C5(7) — (dj + A7) = Linaz(7) — A7
and by lemma 4,

Hence, if

max|[C;(0) — Dj] =0,

then & is an optimal schedule for the original problem. Since our goal is the
worst-case analysis of the GJ-algorithm, we will assume that there exists a
task g such that

Cy(a) — Dy > 0. (8)

The following procedure, which will be referred to as a decomposition
procedure, constructs for any task g, satisfying (8), a sequence of tasks
Jo = g, - Jig) and the sequence of corresponding sets of tasks MO, ..
M'"9) . Suppose that the sequence jo, ..., j; and the corresponding sequence
of sets MO, ..., M*~1 have been already constructed. Obviously, if k = 0,
no sets have been constructed yet. Let ¢ be an integer such that ¢ < Cj, (7)
and [0(t,D;, )| < m. Observe that both inequalities hold for example for
t = 0. Among all such ¢ select the largest one and denote it by 7. Then

Mk = UT<t§C]k (5.)6(t, D7k)

If rj, > 7 for all h € M*, then the procedure terminates with I(g) = k. If

ry, < 7 for at least one h € M*, then according to lemma 5 §(7, Dj, —1) #0.

14
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time
72 J1 g=170
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o |0 |O
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M2 MU MY

Figure 3: Decomposition of the GJ-schedule of figure 2.

If |6(7, Dj, — 1)| = 1, then the procedure terminates with i(g) = k. In this
case, the task constituting the set §(7, D;, — 1) will be denoted by a(g). If

|0(7, Dj, — 1)| > 2, then choose as ji41 any task h satisfying

Dy, = max D
i€s(r,D;, 1)

and start a new iteration by constructing the set M*+1,

Figure 3 illustrates the decomposition, in a case where a(g) does not
exists. The following lemmas express the properties of the decomposi-
tion, firstly by defining lower bounds on release times of tasks of subsets
MP¥(lemmas 8 and 7) and then a lower bound on the due-date of ¢ (lemma

8).

Lemma 6 If task g satisfies (8) and the decomposition procedure cannot

determine a(g), then

min 7, = min C;(g) — 1.
ieui(ing e MU9)

Proof

Since a(g) does not exist, according to the decomposition procedure

min 7, = min C;(d) — 1. (9)
ieMU9) ieM9)
15
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Suppose that for some k < I(g) there exists j € M* such that
r; < min C3(a) — 1.
ieMU9)
Then by lemma 5 there exists task h € M 9) such that h — j. Since h — j
implies 7, < r;,

rp, < min C;(7) — 1,
ie M)

which contradicts (9). []

Lemma 7 Let g satisfy (8) and let, in the corresponding decomposition,

j € MF, then

Tag) +1(9) —k+1 ifa(g) exists
I(g) =k if a(g) does not exist

Proof
Suppose that a(g) exists and k = I(g). If

r; < min C;(7) —1,
ieMi(9)

then according to the decomposition procedure and lemma 5, a(g) — j.

Hence, rj > r,4) + 1 and the lemma holds. If

r; > min C;(5) — 1,
ieMi(9)

then the same result follows from the observation that

ity GO =1 = Co@) 2 ey +1

Since minyen 1, = 0, the lemma also holds if a(g) does not exist.
Suppose that the lemma holds for any & > w for some nonnegative

integer w < Il(g). Let k = w, then by the assumption, for any u €

16
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8(Cj,,,(0), Dj, — 1)

k+1

Ta(g) +1(g) — (k+ 1)+ 1 if a(g) exists
l(g) — (k+1) if a(g) does not exist

If’l”j<C'

ins1 (@), then by lemma 5 there exists h € §(C;

(), Dj, —1) such

k+1

that h — 7 and therefore

b > Ch() > 1> Ta(g) T 1(g) —k+1 if a(g) exists
l(g) — k if a(g) does not exist

It r; > C

ix11(7), then (10) follows from r; > C}

61 (@) = 75, + 1. Hence,

the lemma holds for any k. []

Lemma 8 If task g satisfies (8), then

b > ) Pag +lg)+1 if alg) exists
g =

l(g)+2 if a(g) does not exist

Proof
If a(g) exists, then the inequality

Dg = Da(g) +l(g) +1

follows from the fact that according to the decomposition procedure D;, >

Dj, .+ 1forall 0 <k <I(g).

Jk+1

Suppose that a(g) does not exist, then by lemma 7 and the condition (2)
of consistency, D, > I(g) + 1. Suppose that the lemma does not hold, i.e.
suppose that Dy = [(g)+ 1. Then, taking into account that according to the
decomposition procedure D;, > Dj, , + 1 for all 0 < k < I(g), Dj,, =1
and rj, = 0. If |M*| < m for all 0 < k < I(g), then all tasks constituting
each M* are processed in the same time slot, and therefore Cy(7) = I(g) + 1

which contradicts (8).

17
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Let k be the largest [ among all [ satisfying |M!| > m. In order to show
that k = I(g), assume that k < I(g) . Then, for each k£ <1 <(g), all tasks
constituting M! are processed in the same time slot C;,(7) = I(g) — | + 1.
Hence,

}Q%cHa—1=QMA@=Km—h

This by virtue of lemma 7 implies that for any j € M*

r; > min Cy(o) — 1,
j 2 in Cy(7) — 1,

which contradicts the decomposition procedure which should terminate after
the construction of set M. Hence, k = I(g). Let s = 0 = and

d=1=D,

"o
i)+ Then, since [0(Cj, ., (7), Dj, )] = 2,

1S (Jig)» 5> )| > | M9 — {dig I > m(d —s)

which contradicts the fact that the A*-modified due dates are consistent. ]

4 Completion times in 6 and A*-modified due dates

In this section we derive bounds on Cy from the decomposition procedure
defined in the previous section (lemmas 10 and 11.)

It is convenient to introduce the following notation:

2
——— if m isodd
alm)={ ™ QI_ 1
— if ‘m is even
m

Lemma 9 For any positive integer p

[2{)—1

- ] > a(m)p.

18
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Proof

Let m be even. Since 2p — 1 is odd, 21’7;—1 cannot be integer, and therefore

2p—1 2p—1 1 2
m m m m

If m is odd and Q;n—ﬂ < 1, then 2%1 + % < 1, and therefore

{Zp—l-‘ _ {2p—1+ll >fn_p>a(m)p.

m m m

. 2p—1 2p—1 2
Finally, let m be odd and £—= > 1, then £— > m%, and therefore

2p —1 2p 2p
> > = a(m
[ m w_[m-l-l—‘_m—i-l o(m)p

which completes the proof. [
Lemma 10 If task g satisfies (8) and a(g) does not exist, then
Cy(@) < [1 —a(m)]li(g) + 2|+ Dy — [1 — a(m)].

Proof

From the construction of M9 there exists a task h € M9 such that

rp, = min Cj(a) — 1.
jeMUg) -

Let s =7, and d = D, then by lemma 6 and the fact that D; < Dy, for all
je U,

rn=s<Dyp<d and (U M*—{n})C S(hs,d).

If |S(h,s,d)| = m(d — s), then by the consistency of the A*-modified
due dates Dy = s, which contradicts the inequality s < Djy. Therefore
|S(h,s,d)| < m(d—s). On the other hand, each time slot C},(7), where

1 <i < (g), contains at least two tasks from M?, and any other time slot

19
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t, satisfying the inequalities r;, < t < Cy(7), contains exactly m tasks from

Uﬁc(i)oM k. Consequently,
m[Cy(5) —rn — U(g) — 1] + 2l(g) < |S(h,s.d)| <m(d—s) =m(Dg —r4).

Hence

Cy(5) < 1(g) +1— 217;—9)+Dg. (11)

If m is even, then since 2{(g) is also even and (11) is a strict inequality,

Cg(ﬁ)ﬁl(g)+l—2lq§z—g)+Dg—%.

Consequently,
¢y <i(gr2- 2T b1 2 i) 124Dy 1-a(m)]

If m is odd, then from (11)

~ 2l(g)

Cy(3) < lg) +1 - —5

+ Dy,

and because both 2I(g) and m + 1 are even

o)<t +1- 2y 2
Hence
@) i@ +2- 20y p 1y 2 agmllit) +2)

+Dy — [1 — a(m)]

which completes the proof. [
Lemma 11 If task g satisfies (8) and a(g) ewists, then
09(5-) - Ca(g) (5-) < [1 - a(m)] [l(g) + 1] + Dg - min[ca(g) (6)7 Da(g)]'

20
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Proof
According to the decomposition procedure Dj, < Dj,_, — 1 forall 1 <i <

[(9) + 1. Adding all these inequalities, we have

Da(g) < Djo - l(g) -1,
which gives

Dy — min[Cyy)(5), | > Dy — Dyigy > U(g) + 1. (12)

a(g)

Because the A*-modified due dates are consistent, 74(4) < Dy(y). Let d = D,

and s = min[Cy(4)(7), Dq(g)l, then
Ta(g) < 8 < Da(g) < d.

By lemma 5 and the decomposition procedure, for any j € Ui(i )OM k ei-
ther r; > Cyg) = s or a(g) — j. Moreover, by the decomposition procedure,

D; <Dy=dforall je Ul(g) MP¥. Hence
l
U MP C S(alg), s d).

On the other hand, each time slot Cj, (5), where 1 < k < I(g), contains
at least two tasks from M*, and any other time slot t, satisfying the in-
equalities Cyg)(5) < t < Cy(F), contains exactly m tasks from Ufk(i)oMk-

Consequently,
15(alg),s,d)| =2 m[Cy(5) — Cog)(6) = U(g) —1] +2l(g) + 1. (13)

If |S(a(g),s,d)] < m(d — s), then taking into account that d and s are

integers, we have

PS a(g), s, d)|

- —‘ S d—s= Dg — min[Ca(g) (6-)Da(g)]

21
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If |S(a(g), s,d)] = m(d — s), then

min[Cy ) (7), Dyg)) = s = d — {M—‘ =D, — {M—‘ .

m m

Therefore in both cases

Dg N min[ca(g) (5)7 Da(g)] > {W—‘

and using (13) and lemma 9
_ _ 2l(g) +1 _ _
> C,(0) = Cu(@) ~1(0) — 1+ [ L] = 0,0) - € 0)

20l(g) + 1] — 1

lg) -1+ [ ] > C,(5) — Cug) (7) — [1 — a(m)][i(g) + 1.

Hence
Cg(a') - Ca(g)(a') < [1 - a(m)] [l(g) =+ 1] + Dg - min[Ca(g) (5)7 Da(g)]-

which completes the proof. [

5 Performance guarantees

We now have enough material to prove the performance guarantee of GJ

algorithm. In the last subsction, we show that the bounds are tight.

5.1 Worst case performance analysis

In order to use the lemma of the previous sections, we need a second decom-

position procedure, which will produce a sequence of jobs gg,...,gx with

interesting properties.

Suppose that Liaz () > Lpaz(0*). Let go be any task satisfying the

equality
Cyo(0) — dgy = Linaz (7). (14)
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By the definition of A*-modified due dates and lemma 4
Limaz(7) = Cgy(5) — dgy < Cyy(7) — (Dgy — A”) < Co(5) — Dy + Limaz (c7),

which implies Cy,(5) — Dy, > 0. Using the decomposition procedure and

starting with gg we can construct a sequence of tasks as follows:

e if a(go) - given by the first decomposition of the previous section - does

not exist, then this sequence contains only one task go;

e if a(gy) exists, then repeatedly applying the decomposition procedure,
we get a sequence of tasks go, .. .. gy such that Cy, () — Dy, > 0 and
gi+1 = a(g;) for all 0 < i < k, and either Cy, (5) — Dy, < 0 or

Cy,(G) — Dy, > 0 but a(gy) does not exist.
Theorem 1 For any m > 2
Linaz(7) — Limaz(6®) < [1 — a(m)][1 + I]Hé?}\)[( ;). (15)

Proof
Suppose that a(gg) does not exist. Then taking into account lemma 10,

lemma 7 and lemma 4,
Cgo(a') < [1—a(m)][i(go) + 1] + Dy, < [1— O‘(m)][’rgo + 1] + dgo + A*

<[1—a(m)[l+ Hlé?}\)[( ’T'j] + dg, + Limaz(0")
J

which by virtue of (14) implies (15).
Suppose that k > 1, Cy, (5) — Dy, > 0 and a(gx) does not exist. Then

by lemma 11 and lemma 7, for all 0 < i < k — 1,

Cy, (7) — ng+1<5) <[ —a(m)][i(g:) + 1] + Dy, — min[CgH»l (@), Dg1+1]

23
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= [1 - Oé(m)][l(g@) + 1] + Dgi - Dgi+1 < [1 - a(m)][rgz‘ - 7agi+1] + Dgi - D9i+1'

Adding inequalities

ng‘ (5) - Cg¢+1(5) < [1 - a(m)][rgi - ng‘+1] + Dgi - Dgz‘+1 (16)
for all 0 <¢ < k — 1, we have
090(5) — Cy, (@) <[1— O‘(m)][rgo - rgk] + Dgy — Dy, - (17)

On the other hand, by lemma 10 and lemma 7
Cy(0) < [1 —a(m)][l(gk) + 1] + Dy, < [1 = a(m)][rg, + 1] + Dy,
This together with (17) and lemma 4 gives
Coo(9) < [1 = alm)llrgy + 1] + Dgo < [1 = a(m)][1 + maxrj] +dg, + A7

<[1—am)[l+ Ine%(?"j] +dg, + Linaz(c™)
J

which implies (15).
Suppose that £k > 1, Cy, () — Dy, < 0. If k > 2, then by adding

inequalities (16) for all 0 < i < k — 2, we obtain
Cy(7) — Cg,_,(7) < [1 = a(m)][rgy — g, ]+ Dgy — Dg,_, - (18)

It is easy to see that (18) also holds when k& = 1. On the other hand, by
lemma 11, the fact that Cy, (7) — Dy, < 0 and lemma 7,

Cy_1(5) = Cg, () < [1 — a(m)][l(gk—1) + 1] + Dy, _, — min[Cy, (5), Dy, ]

<[1- a(m)][rgk—l - Tgk] + Dy, _, — Cy, ()

which together with (18) and lemma 4 gives
Cgo(@) < [L = a(m)llrgy = rg.] + Dyo < [L = a(m)][1 + maxr;] + dg, + A"
J

24
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< (1= aGmllL+ mars] + dpo + Lnas(07)
J

which implies (15). [
Theorem 2 For any m > 2
Loz (7) < [2 = a(m)]Lmaz (%) + [1 — a(m)] max dy — [1 —a(m)]. (19)

Proof

Let j be an arbitrary task. Since r; > 0 and therefore C;(0*) > 1,
Liaz(0™) > Cj(0") —dj > 1 — Igle%{dv.
Hence, Ly (0*) + max,en dy, > 1, and by virtue of 1 — a(m) >0
[1 = a(m)|[Lmas (™) + Igle%(dv] — [l —a(m)] > 0.

Hence, if Lingz () = Limgq(0*), then (19) holds.

Suppose that La. () > L (0®). Let go be a task, satisfying the
equality

Cyo(7) — dgy = Limaz (7).

and let go,...,gr be the sequence of tasks build according to the second
decomposition procedure, such that Cy,(5) — Dy, > 0 and g; 1 = a(g;) for
all 0 < i < k, and either C, (5) — Dy, < 0 or Cy, () — Dy, > 0 but a(g)
does not exist.

If Cy, (6) = Dy, <0, then k> 1. For all 0 < i < k—1, by lemma 11 and

lemma 8
Cgi (5') - Cg¢+1 (5) < [1 - a(m)][l(gz) + 1] + Dgi - min[Cng (5)? D97L+1]

<[1- a(m)][D{}i - Dg¢+1] + Dy, — min[CgH»l (@), Dg¢+1]
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= [2 - a(m)]DQi - [1 - a(m)]DgH—l - min[cgz‘+1 (6)7 Dgi+1]
< [2 - a(m)]{ mln[ngJrl gz+1]}

Adding all these inequalities and taking into account that Cy, (5) < Dy, and

Cyiyr(5) > Dy, if i+ 1 <k, we have
Cgo(7) = Cg, (7) < [2 = a(m)[{ Dy, — Cy, (7))},
and since Cy, (5) > 1,
Cyo(7) < [2 = a(m)] Dy, — [1 — a(m)]. (20)

Suppose that Cy, () — Dy, > 0, then a(gy) does not exist. By lemma 10
and lemma 8

Cy.(7) < [2 = a(m)] Dy, — [1 — a(m)]. (21)

If k=0, then (21) coincides with (20). Let £ > 1. For all 0 <i < k— 1, by

lemma 11 and the fact that Cy,,,(5) > Dyg,,,

ng‘(&) -C

Jit+1 (5) < [2 - a(m)]{Dgz - Dgi+1 }7

Adding all these inequalities, we have
Cq90(7) — Cy, (7) < 2 — a(m){ Dy, — Dy, },

which together with (21) gives (20).
Using (20),

Limaz(7) = Cy90(7) = dgy < [2 = a(m)| Dy, — [1 — a(m)] = dy,
and by the definition of A*-modified due dates and lemma 4
< (2 a(m))(dgy + A%) — [1 — a(m)] — dg,
< 2= a(m)]Lmaz(07) +[1 — a(m)]maxd; — [1 — a(m)]

which completes the proof. [
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5.2 Tightness

In order to show that, for any m > 5, (15) and (19) are asymptotically tight,
we will consider graphs G ,,, each comprising m - « - u,;, nodes which form

T - Uy Tows, where x is a positive integer and

1
mt if m is odd
Uy, = 2 (22)
— if m is even

2

The rows of nodes are numbered from 0 to x - u,, — 1 (see figure 4), and

m+2 if imodu, < U, —3

[the number of nodes inrow 7] = ¢ m+1 if imoduy, = uy, — 2

2 if smoduy = um —1
Each graph G, represents a partially ordered set of tasks, where each
node represents a task and the arcs represent precedence constraints. All
tasks corresponding to row ¢ have the same release time equals ¢ and the

same due-date equals d; =7 + 2. We will use the following notation:

e If imoduy,, < u,;, — 3 then the m + 2 nodes, constituting row ¢, will be

denoted by a},a?,b},...,b"

17710

e If imodu,, = u, — 2 then the m 4+ 1 nodes of row ¢ will be denoted

by a},b}, ... b

19 Y
e If {modwu,, = uy,, — 1 then the two nodes, constituting row ¢, will be

denoted by az1 and af.

In figure 4, nodes a} and a? are shaded. Only nodes a} and a? have successors

(see figure 4):

o If m > 7 and imod um, < um — 3, then a] precedes a; ,b},,..., b
2 2 um+1 m
and aj precedes aj, 1,0, b0y,
27
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each task j in this row

row0 — OO0OO0OO0OO0OO0O0
has 7; = 0 and d; = 2
each task j in this row o — row 1

has r; =1 and d; =3
row 2 s o 3 each task j in this row
has r; =2 and d; = 4
each task j in this row row 3
— [
hasr; =3 and d; =5
row 4 —s o0 5850 each task j in this row
o O

hasr; =4 and d; =6

cach task j in this row

O O O —— TIOW 5
hasr; =5and d; =7
row 6 — each task j in this row
has r; = 6 and d; =8
each task j in this row

™ AN o
hasr; =7 and d; =9

é) \b\‘o\*o Cé é) \b each task j in this row
row 4(z — 1) — has 7; = 4(z — 1) and
each task j in this row dj =4(x—1)+2
hasr; =4(z —1)+1 — rowd(z—1)+1

O O
and dy =4l —1)+3 each task j in this row
v dp-1)+2 — O hasr; =4(x — 1)+ 2
and d; =4(x — 1) +4
each task j in this row and d; (z—1)+
@) @)

has r; =4(z — 1) +3 e tow d(z —1)+3
and d; =4(x —1)+5
Figure 4: Graph Gy, for m = 7.
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o If imodu,, = un — 3, then a; precedes aj,,bi ,,...,b}7 and a?
precedes b;ﬂ’r”lﬂ, S bl

o If imod uy, = uy, — 2, then aj precedes aj,; and af, ;.

e Ifimodu,, = u,—1andi < k-u,,—1, then a;1 precedes a}H, bi1+1, .. ,b;‘fl,

bl_tm-i-l m

2 2
and a; precedes aj, 1,0, ", ..., 0.

Although the graph presented in [13] and G 5 have the same structure,
the example in [13] was developed for a different algorithm and the GJ-
algorithm constructs for this example an optimal schedule. The distinct
feature of the example presented in this paper is the assignment of release
times and due dates in such a way that ensures the consistency of these due

dates.

Lemma 12 For any m > 5 and any x, the due dates corresponding to Gy m

are consistent.

Proof
In order to prove this lemma, we must study the sets S(j, s,d). As it is long

and tedious, please refer to the technical report [5] for a detailed proof. [

For any G ., consider a list where tasks are arranged in a nondecreasing
order of due dates and for each 7, where i mod u,, # u,;, — 2, all b tasks of
this row are listed before the a tasks of the same row. Let o, ,, be the
corresponding list schedule and let o} ,, be an optimal schedule for the
maximum lateness problem specified by the graph G, ,,. It is easy to see
that

*
max dj = upmx + 1, Linaz (05 m) = 0, Max T = U — 1
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and

Linaz(0z.m) = Qup, — 1) —upme — 1 = upr —x — 1.

Indeed, GJ-Schedule as well as optimal schedule can be deduced from the
example of figure 2 by concatenating schedules of wu,, consecutive rows.

1
Taking into account that a(m) = —,
m

Limaz(02,m) = Lmaz (07 1) _ U —x — 1

lim = lim —
z—+400 max;en rj + 1 z——+00 UpT — 1+ 1
= lim U — U () =1—a(m),

T——+00 UmT

and (15) is asymptotically tight. Analogously,

2 — a(m)]Limaz (07,m) + [1 — a(m)| maxjen dj — [1 — a(m)]

lim
T—+00 Limaz (Ux,m)
L= almlme +1) = [1 - a(m)]
T—+00 Um® — T — 2
1-— 1 WL — 1—
— lim 1 —a(m)](umz+1) _ g Um® x+[1 —alm)] _1,
r——+00 UmL — T T—+00 UmL — T

and (19) is asymptotically tight.

For m = 3 and m = 4 the proof of asymptotical tightness is similar to
that for m > 5 and is based on the following graphs H ,,. Each graph H ,,
has x - u,, rows of nodes, numbered from 0 to x-u,, — 1, where u,, is specified

by (22) and

_ ) m+1 if imodu, =0
[number of nodes in row i] =

2 if ‘modu,, =1

For arbitrary Hy g, let al,bl,... b" be nodes constituting row i such that
imodum, =0, and let a/,, and a?_, be the only nodes of row i such that

tmodu,, = 1. For any row i,
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e if imodu,, = 0, then a} precedes both a}H and a22+1;

o if imodm =1 and i < upx — 3, then a} precedes aj, |, bl ,..., b
2 Um+1 m
and a; precedes b; 7", ..., bl .

All tasks corresponding to row i have the same release time equals ¢ and the

same due-date equals d; =i + 2.

6 Conclusion

In this paper we generalized the Garey-Johnson algorithm, orginally de-
signed to solve optimally P2[prec,p; = 1,7j|Lmnqez to find solutions of the
problem P|prec, pj = 1,7°j|L,,,mm. We analysed its worst case behavior and
provided a tight bound on the performance ratio which equals the best
known ratio for this problem for even number of processors, and is slighly
worse for odd number of processors. The ideas behind Garey-Johnson algo-
rithm are commonly used to solve or find bounds for very different scheduling
problems like RCPSP, with so called energy bounds, preemptive scheduling,
scheduling with communication delays, scheduling on uniform processors.
The structure of the analysis presented in this paper could probably be
used in these cases for algorithms based on the same ideas and to derive
tight bounds on their worst case performance ratio.

Preemption deserves a particular attention since not much tight bounds
have been proven for the worst case performance of scheduling algorithms
when preemption is allowed, and since Garey and Johnson derived an algo-
rithm that solves optimally P2|prec, pmtn|Lyq,. A first insight of such a
study is given in [6].

Existing approximation algorithm for Plprec,p; = 1,7|Lyq, all have a
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worst case ratio that tends to 2 when the number of processors grows to

infinity. Hence it is a real challenge to design a polynomial algorithm that

passes under this threshold. We proved that Garey-Johnson algorithm is

not the one, however, its analysis could help the design of new algorithms.
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