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Abstract The problem presented in this paper is a
generalization of the usual coupled-tasks scheduling pro-

blem in presence of compatibility constraints. The rea-

son behind this study is the data acquisition problem

for a submarine torpedo. We investigate a particular
configuration for coupled-tasks (any task is divided into

two sub-tasks separated by an idle time), in which the

idle time of a coupled-task is equal to the sum of dura-

tions of its two sub-tasks. We prove NP-completeness

of the minimization of the schedule length, we show that
finding a solution to our problem amounts to solving a

graph problem, which in itself is close to the minimum-

disjoint path cover (min-DCP) problem. We design a
(

3a+2b
2a+2b

)

- approximation, where a and b (the process-

ing time of the two sub-tasks) are two input data such

as a > b > 0, and that leads to a ratio between 3
2 and 5

4 .

Using a polynomial-time algorithm developed for some
class of graph of min-DCP, we show that the ratio de-

creases to 1+
√
3

2 ≈ 1.37.

Keywords coupled-tasks · complexity · compatibility
graph · polynomial-time approximation

1 Introduction

In this paper, we present a scheduling problem of coupled-

tasks subject to compatibility constraints, which is a
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generalization of the scheduling problem of coupled-
tasks first introduced by Shapiro [19]. This problem is

motivated by the problem of data acquisition in a sub-

marine torpedo. The aim amounts to treating various

environmental data coming from sensors located on the
torpedo, that collect information which must be pro-

cessed on a single processor. A single acquisition task

can be described as follows: a sensor of the torpedo

emits a wave at a certain frequency (according to the

data that must be collected) which propagates in the
water and reflects back to the sensor. This acquisition

task is divided into two sub-tasks: the first task con-

sists in sending an ultrasound pulse while the second

receives returning echo. Between them, there is an in-
compressible idle time which represents the spread of

the echo under the water. Thus acquisition tasks may

be assigned to coupled-tasks.

In order to use idle time, other sensors can send

more echoes. However, the proximity of the waves causes
disruptions and interferences. In order to handle infor-

mation error-free, a compatibility graph between acqui-

sition tasks is created. In this graph, which describes

the set of tasks, we have an edge between two compat-

ible tasks. A task is compatible with another if at least
one of its sub-tasks can be executed during the idle

time of another task. Given a set of coupled-tasks and

such a compatibility graph, the aim is to schedule the

coupled-tasks in order to minimize the time required
for the completion of all the tasks.

1.1 Notations

First we present some common notations:

– Let G be an undirected graph. We note V (G) the

set of its vertices and E(G) the set of its edges;

http://arxiv.org/abs/1706.02202v1
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– we note n (resp. m) the cardinality of set V (G)

(resp. E(G));

– a path is a non-empty graph C with V (C) = {x0, x1,

. . . , xk} and E(C)={x0x1, . . . , xk−1, xk}, where all

the xi are distinct;
– the length of a path is the number of edges that the

path uses.

Then, we introduce the notations relative to coupled-

tasks we will use in the rest of the paper: we note
A = {A1, A2, . . . , An} the set of n coupled-tasks. Us-

ing the notation proposed by Shapiro [19], each task

Ai ∈ A is composed of two sub-tasks ai and bi. For clar-

ity we use the same notations for the processing time of

these tasks: ai and bi have processing time ai ∈ N and
bi ∈ N), and separated by a fixed idle time Li ∈ N (see

Figure 1(a)). For each i the second sub-task bi must

start its execution exactly Li time units after the com-

pletion time of ai.

According to the torpedo problem, a task may be

started during the idle time of a running task if it uses

another frequency, is not dependant on the execution

of the running task (and reciprocally), or does not re-
quire to access the resources used by the running tasks.

Formally, we say that two tasks Ai and Aj are compat-

ible if and only if we can execute at least a sub-task

of Ai during the idle time of Aj (see Figure 1(b)). On
the other side, some tasks cannot be compatible due to

previously cited reasons.

.

PSfrag replacements
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Fig. 1 A single coupled-task and two compatible coupled-tasks.

1.2 Main problem formulation

We aim at scheduling a set of coupled-tasks with com-

patibility constraints on a monoprocessor. The input

of the general problem is described with the set A =
{A1, A2, . . . , An} of coupled-tasks and a compatibility

graph Gc, with V (Gc) = A and E(Gc) the edges which

represent all pairs of compatible tasks, ie an edge exists

between Ai and Aj if and if only aj can be scheduled
between ai and bi (Fig. 1(b)). Note that compatibility

is symmetrical, thus here ai could be scheduled between

aj and bj.

L1
L2 L3

PSfrag replacements
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a2 b2a1 b1a3 b3
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Fig. 2 Link between the compatibility graph and the scheduling

The solution of an instance consists in determin-
ing the starting time of each sub-task ai of each task

Ai ∈ A. The tasks have to be processed on a single

processor while preserving the constraints given by the

compatibility graph (see Figure 2). Formally, we need

to find a valid schedule σ : A → N where the notation
σ(Ai) denotes the starting time of the task Ai. We use

the following abuse of notation: σ(ai) = σ(Ai) (resp.

σ(bi) = σ(Ai) + ai + Li) denotes the starting time of

the first sub-task ai (resp. the second sub-task bi).

Let Cmax = maxAi∈A(σ(Ai) + ai + Li + bi) be the

required time to complete all the tasks. Then the ob-

jective is to find a feasible schedule which minimizes

Cmax. We use the notation scheme α|β|γ proposed by
Graham and al. [10], where α denotes the environment

processors, β the characteristics of the jobs and γ the

criteria. The main problem denoted as Π will be defined

by:

Π = 1|coupled− task, (ai, bi, Li), Gc|Cmax

1.3 Related work

The problem of coupled-tasks has been studied in re-

gard to different conditions on the values of ai, bi, Li

for 1 ≤ i ≤ n, and precedence constraints [4,1,14,17].

Note that, in the previous works, all tasks are compati-

ble by considering a complete graph [4,1,14,17]. More-
over, in presence of any compatibility graph, we find

several complexity results [20,21,22], which are sum-

marized in Table 1. The notation ai = a implies that

for all 1 ≤ i ≤ n, ai is equal to a constant a ∈ N.
This notation can be extended to bi and Li with the

constants b, L and p ∈ N.

Problem Complexity ref

1|coupled−task, (ai=bi=Li), Gc|Cmax NP-complete [20]

1|coupled−task, (ai=a, bi=b, Li=L), Gc|Cmax NP-complete [20]

1|coupled−task, (ai=bi=p,Li=L), Gc|Cmax NP-complete [22]

1|coupled−task, (ai=Li=p, bi), Gc|Cmax O(n2m) [20]

1|coupled−task, (ai, bi=Li=p), Gc|Cmax O(n2m) [20]

Table 1 Complexity for scheduling problems with coupled-tasks
and compatibility constraints
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1.4 Contribution and organization of this paper

Our work consists in measuring the impact of the com-

patibility graph on the complexity and approximation
of scheduling problems with coupled-tasks on a mono-

processor. In this way, we focus our work on establishing

the limits between polynomiality and NP-completeness

of these problems according to some parameters, when
the compatibility constraints is introduced. In [21,22],

we have studied the impact of the parameter L, and

have shown that the problem 1|coupled − task, (ai =

bi = p, Li = L), Gc|Cmax was NP-complete as soon as

L ≥ 2, and polynomial otherwise.

In this work, we complete complexity results with
the study of other special cases according to the value of

ai and bi, and we propose several approximation algo-

rithms for them. We restrict our study to a special case,

by adding new hypotheses to the processing time and

idle time of the tasks. For any task Ai, i ∈ {1, . . . , n},
the processing time ai (resp. bi) of sub-task ai (resp.

bi) is equal to a constant a (resp. b), and the length of

the idle time between ai and bi is L. Considering ho-

mogeneous tasks is a realistic hypothesis according to
the tasks that the torpedo has to execute. Let Π1 be

this new problem. Formally:

Π1 = 1|coupled−task, (ai = a, bi = b, Li = L), Gc|Cmax

This paper is organized as follows: in section 2, we

establish the complexity of Π1 according to the val-

ues of a, b and L, and we show that the problem is

polynomial for any L < a + b; then we consider in
the rest of the paper that L = a + b. In that case,

the problem can be considered as a new graph problem

we call Minimum Schedule-Linked Disjoint-Path

Cover (Min-SLDPC). We present the proof of NP-

completeness of Min-SLDPC and we conclude this sec-
tion by the study of a specific sub-case with a = b =

L/2. In Section 3, we show that Min-SLDPC is imme-

diately 2-approximated by a simple approach: we design

a polynomial-time approximation algorithm with per-
formance guarantee lower than 3

2 . In fact, we show that

the approximation ratio obtained by this algorithm is

between 3
2 and 5

4 , according to the values of a and b.

The last section is devoted to the study of Π1 for some

particular topology of the graph Gc. First we present a
well-known graph problem, Minimum Disjoint-Path

Cover, (Min-DPC). Then we show the relation be-

tween Min-DPC and Min-SLDPC and evaluate how

results from the first one can be applied to solve the
second problem on specific topologies. This implies the

reduction of the performance ratio we can obtain on

some restricted instances from 3
2 to ≈ 1.37.

2 Computational complexity

First, we prove that Π1 is polynomial when L < a+ b:

it is obvious that a maximum matching in the graph

Gc gives an optimal solution. Indeed, during the idle

time L of a coupled-task Ai, we can process at most

one sub-task aj or bk. Since the idle time L is identical,
so it is obvious that finding an optimal solution consists

in computing a maximum matching. Thus, the problem

1|coupled−task, (ai=a, bi=b, Li=L < a+b), Gc|Cmax

admits a polynomial-time algorithm with complexity
O(m

√

(n)) where n is the number of tasks and m the

number of edges of Gc (see [18]).

The rest of the paper is devoted to the case L =

a+ b. Without loss of generality, we consider the case1

of b < a. The particular case b = a will be discussed in

subsection 2.2.

2.1 From a scheduling problem to a graph problem

Let us consider a valid schedule σ of an instance (A, Gc)

of Π1 with b < a, composed of a set of coupled-tasks

A and a compatibility graph Gc. For a given task Ai,
at most two sub-tasks may be scheduled between the

completion time of ai and the starting time of bi, and

in this case the only available schedule consists in exe-

cuting a sub-task bj and a sub-task ak during the idle
time Li with i 6= j 6= k such that σ(bj) = σ(ai)+ a and

σ(ak) = σ(ai)+ a+ b. Figure 3 shows a such configura-

tion.

PSfrag replacements

ai biaj bj ak

a

aaa bbb

b

bk

Li

Fig. 3 At most 2 sub-tasks may be scheduled between ai and bi

We can conclude that any valid schedule σ can be

viewed as a partition {T1, T2, . . . , Tk} of A, such that
for any Ti the subgraph Pi = Gc[Ti] of Gc induced by

vertices Ti is a path (here, isolated vertices are con-

sidered as paths of length 0). Clearly, {P1, P2 . . . Pk} is

a partition of Gc into vertex-disjoint paths. Figure 4

shows an instance of Π1 (Figure 4(a)), a valid schedule
(Figure 4(c)) - not necessarily an optimal one -, and the

corresponding partition of Gc into vertex-disjoint paths

(Figure 4(b)).

For a given feasible schedule σ, let us analyse the
relation between the length of the schedule Cmax and

1 The results we present here can be symmetrically extended
to instances with b > a.



4

PSfrag replacements

a1

b1

a2

b2

a3

b3

a4

b4

a5

b5

a6

b6

a7

b7

A1

A2

A3

A4

A5

A6

A7

(a) An input graph Gc with 7 tasks
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(b) A vertex-disjoint partition
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(c) A schedule on a monoprocessor

Fig. 4 Relation between a schedule and a partition into vertex-
disjoint paths

the corresponding partition {P1, P2, . . . Pk} into vertex-

disjoint paths. Clearly, we have Cmax = tseq + tidle
where tseq = n(a + b) and tidle is the inactivity time

of the processor. Since tseq is fixed for a given instance,
tidle obviously depends on the partition. We propose

the following lemma:

Lemma 1 Let {P1, P2, . . . Pk} be the partition of vertex-

disjoint paths corresponding to a schedule σ.

1. A path of length 0 corresponds to a single task sched-

uled in σ, tidle is incremented by L = a+ b;

2. for any path of length 1, tidle is increased by a;
3. for any path of length strictly greater than 1, tidle is

incremented by (a+ b).

Proof Point 1 is obvious. Fig. 5 illustrates points 2 and

3: a path of length 1 represents 2 tasks that may be

imbricated as on Figure 5(a). Paths of length strictly
greater than 1 represent more than two tasks. These

tasks can be scheduled in order to get an idle time of

length b at the beginning of the schedule and one of

length a at the end of it (as on Figure 5(b)). The reader

could check there is no other way to imbricate tasks in
order to reduce the idle time for paths of any length.

Thus, there exists a link between finding an op-

timal schedule and a graph problem which is called

Minimum Schedule-Linked Disjoint-Path Cover

(Min-SLDPC) defined in Table 2: Clearly, Min-SLDPC
is equivalent to Π1 with b < a and L = a+b, and can be

viewed as the graph problem formulation of a schedul-

ing problem. In any solution, each path increments the

PSfrag replacements
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Ak
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(a) Chains of length 1 increase tidle by a

PSfrag replacements

ai biaj bj ak bk

idle time idle time

ab

a− b

a+ b

AiAj Ak

Li

(b) Chains of length > 2 increase tidle by a+ b

Fig. 5 Impact of the length of the paths on the idle time

Instance: a graph G = (V, E) of order n, two natural integers
a and b, b < a.
Result: a partition P of G into vertex-disjoint paths (can be
of length 0)
Objective: Minimize n(a+b)+

∑
p∈P

w(p) where w : P → N

is a cost function with w(p) = a if and only if |E(p)| = 1, and
w(p) = a + b otherwise.

Table 2 Minimum Schedule-Linked Disjoint-Path Cover
(Min-SLDPC)

cost of idle time by at least a (when the path has a

length 1), and at most a + b < 2a. So, we can deduce

that an optimal solution to Min-SLDPC consists in

finding a partition P with a particular cardinality k∗,
and a maximal number of paths of length 1 among all

possible k∗-partitions. The following immediate theo-

rem establishes the complexity of Min-SLDPC:

Theorem 1 Min-SLDPC is an NP-hard problem.

Proof We consider the decision problem associated to

Min-SLDPC. We will prove that the the problem of

deciding whether an instance of SLDPC has a schedule
of length at most (n + 1)(a + b) is NP-complete. Our

proof is based on the polynomial-time transformation

Hamiltonian Path ∝ SLDPC. We keep the graph

and the vertices is the task to schedule. Let us consider

a graph G.

This transformation can be clearly computed in poly-

nomial time.

• Assume that the length of the optimal schedule is

Copt
max = (n+1)(a+ b). We will prove that the graph

G possess a Hamiltonian path i.e. k = 1. Recall first

that k is the number of partition and that b < a.

We know, from the previous discussion, that tseq =

n(a + b) and that a chain of length one increase
tidle by a (see illustration given by Figures 5(b) and

5(a)). It is clear that the graph G must be covered

by paths of different lengths.
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Suppose that the graph G is covered by k paths

with k1 paths of length one (the set of these paths

is denoted by P1), and k2 paths of lenght greater

than one (resp. by P≥2).

So the length of schedule given by this covering is:

Ch
max =

processing times
︷ ︸︸ ︷

n(a+ b) +

idle time for P1

︷ ︸︸ ︷

a× k1 +

idle time for P≥2

︷ ︸︸ ︷

(a+ b)k2

= (n+ k2)(a+ b) + k1a > C∗
max

if (k1 6=0 and k2≥1) or (k1>1 and k2=0)

Thus, the only schedule requiring exactly (n+1)(a+

b) units of time implies that the graph possess a

Hamiltonian path i.e. k1 = 0 and k2 = 1.

• Reciprocally, we suppose that the graph G possess
a Hamiltonian path, we will prove the existence of

a schedule of length Cmax = (n+ 1)(a+ b).

G contains an Hamiltonian path, we can deduce a

schedule with Cmax = (n + 1)(a + b): as tseq =

n(a + b), tidle must be equal to (a + b), which is
possible if and only if the schedule is represented

with only one chain.

2.2 A particular case Π2 :1|coupled− task, (ai=bi=p,

Li=L=2p), Gc|Cmax

In this subsection only, we suppose that both sub-tasks

are equal to a constant p and that the inactivity time

is equal to a constant L = 2p.

The previous proof cannot be used for this case.
Indeed the structure of these tasks allows to schedule

three compatible tasks together without idle time (see

Figure 6). Another solution consists in covering vertices

of Gc by triangles and paths (length 0 allowed), where
we minimize the number of paths and then maximize

the number of path of length 1.

This problem is a generalization of Triangle Pack-

ing [8] since an optimal solution without idle time con-

sists in partitioning into triangles the vertices of Gc.
This problem is well known to be NP-complete, and

leads to the NP-completeness of problem Π2.

PSfrag replacements

a1 a2 a3 b1 b2 b3

A1

A2 A3

2p

Fig. 6 Illustration of a schedule without idle time

A correct approximation algorithm for this problem

is an algorithm close to the general case. Indeed, finding

an optimal solution to this problem amounts to finding

a covering of the graph Gc by triangles and paths, which

minimize the idle time. In the following section, we will

develop an efficient polynomial-time approximation al-

gorithm for the general problem Min-SLDPC.

3 Approximation algorithm for Min-SLDPC

Notice that the following algorithm, executing sequen-

tially the tasks, admits a ratio equal to two.

We also develop a polynomial-time 3
2 -approximation

algorithm based on a maximum matching in the graph

Gc. In fact, we show that this algorithm has an approx-

imation ratio of at most 3a+2b
2a+2b , which leads to a ratio

between 3
2 and 5

4 according to the values of a and b

(with b < a). This result, which depends on the values
a and b, will be discussed in Section 4, in order to pro-

pose a better ratio on some class of graphs.

For any instance of Min-SLDPC, an optimal sched-

ule has a length Copt
max= tseq+toptidle where tseq=n(a+b).

Remark 1 For any solution of length Cmax, we neces-

sarily have2 tidle ≥ (a + b) and also3 tidle ≤ n(a + b).
Then, for any solution h of Min-SLDPC we have a

performance ratio ρ(h) such that:

ρ(h) ≤ Ch
max

Copt
max

≤ 2n(a+ b)

(n+ 1)(a+ b)
< 2. (1)

Indeed, we have Copt
max ≥ Tseq = n(a+ b) + (a+ b)

In the following, we develop a polynomial-time ap-
proximation algorithm based on a maximum matching

in the graph Gc, with performance guaranty in [ 54 ,
3
2 ]

according to the values of a and b.

Let I be an instance of our problem. An optimal
solution is a disjoint-paths cover. The n vertices are

partitioned in three disjoint sets: n1 uncovered vertices,

n2 vertices covered by α2 = n2

2 paths of length 1, and n3

vertices covered by exactly α3 paths of length strictly
greater than 1 (see illustration Figure 7). The cost of

an optimal solution is equal to the sum of sequential

time and idle time:

Copt
max =

processing times
︷ ︸︸ ︷

n(a+ b) +

idle time for matched vertices
︷︸︸︷
n2

2
a

+

idle time for isolated vertices
︷ ︸︸ ︷

(a+ b)n1 +

idle time for path of length > 1
︷ ︸︸ ︷

(a+ b)α3

2 The equality is obtained when the graph Gc possesses an
hamiltonian path, otherwise we need at least two paths to cover
Gc (where Gc is not only an edge), which leads to increase tidle
by at least 2a ≥ a+ b units of time.

3 The worst case consists in executing tasks sequentially with-
out scheduling any sub-task aj or bj of task Aj during the idle
time of a task Ai.
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Fig. 7 Illustration of the optimal solution on an instance I

Now, we propose a polynomial-time approximation

algorithm with non trivial ratio on an instance I. This
algorithm is based on a maximum matching in Gc in

order to process two coupled-tasks at a time. For two

coupled-tasks Ai and Aj connected by an edge of the

matching, we obtain an idle time of length a (see Figure
5(a)).

Let M∗ be the cardinality of a maximum matching.

In the worst case, the α3 paths are all odd and a match-

ing of the paths leaves α3 isolated vertices. So, we have

by hypothesis:

M∗ ≥ n2

2
+ (

n3

2
− α3) = Γ (worst case) (2)

Indeed, based on the decomposition given by the

Figure 7, we may deduce a matching within this cardi-

nality: the α2 paths of length one are contained in the
matching; for any path of length greater than one, we

include odd edges to the matching. In the worst case, all

α3 paths have odd length and the number of uncovered

nodes is α3. If the tasks of the matching are processed

first and the isolated vertices in second, the length of
schedule is4:

Ch
max ≤

processing times
︷ ︸︸ ︷

n(a+ b) +

idle time 1
︷ ︸︸ ︷

a× Γ +

idle time 2
︷ ︸︸ ︷

(a+ b)(α3 + n1)

Since a optimal length is Copt
max = n(a+b) +n1(a+

b)+ n2

2 a+α3(a+b), we obtain, with the last equation

involved Ch
max, the following ratio of the polynomial-

time approximation algorithm:

4 Idle time 1 (resp. 2) represents the idle time for matched
vertices (resp. isolated vertices).

Ch
max ≤ Copt

max + (
n3 − α3

2
)a

ρ(h) ≤ 1 +
(n3−α3

2 )a

n(a+b)+n1(a+b)+ n2

2 a+α3(a+b)

ρ(h) ≤ 1 +
(n3−α3

2 )a

(n+ n1 + α3)(a+b)+ n2

2 a

ρ(h) ≤ 1 +
n3

2 a

(n+ n1)(a+b)+ n2

2 a
, max obtained for α3 = 0

ρ(h) ≤ 1 +
n3

2 a

n(a+ b)
≤ 1 +

n
2 a

n(a+ b)
, since n3 ≤ n

ρ(h) ≤ 1 +
a

2(a+ b)
=

3a+ 2b

2a+ 2b

4 Instances with particular topologies

We conclude this work by a study of Min-SLDPC

when Gc admits a particular topology. First we present
a related problem: Minimum Disjoint Path Cover

problem (Min-DPC). This problem has some inter-

esting results on restricted topologies. We establish a

link between Min-DPC and Min-SLDPC and we show

that finding a ρdpc-approximation for Min-DPC on
Gc allows to find a strategy with performance ratio

ρsldpc ≤ min{ρdpc× (a+b
a

), 3a+2b
2a+2b}. This leads to pro-

pose, independently from the values a and b, a 1+
√
3

2 -
approximation for Min-SLDPC when Min-DPC can

be polynomially solved on Gc.

4.1 A related problem: Min-DPC

The graph problem Min-SLDPC is very close to the

well-known problem Minimum Disjoint Path Cover

(Min-DPC) which consists in covering the vertices of a
graph with a minimum number of vertex-disjoint paths5.

This problem has been studied in depth in several graph

classes: it is known that this problem is polynomial on

cographs [16], blocks graphs and bipartite permutation
graphs [23], distance-hereditary graph [12], and on in-

terval graphs [2]. In [5] and [9], the authors have pro-

posed (independently) a polynomial-time algorithm in

the case where the graph is a tree. Few years later,
in [13] the authors showed that this algorithm can be

implemented in linear time. Among the other results,

there is a polynomial-time algorithm for the cacti [15],

and another for the line graphs of a cactus [7]. In circular-

arc graphs the authors [11] have proposed an approxi-
mation algorithm of complexity O(n), which returns an

5 Sometimes referenced as the Path-Partition problem (PP).
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optimal number of paths to a nearly constant additive

equal to 1.

The problem Min-DPC is directly linked to Hamil-

tonian Completion [8], which consists in finding the

minimum number of edges, noted HC(G), that must be
added to a given graph G, in order to make it hamilto-

nian (to guarantee the existence of a Hamiltonian cy-

cle). It is known that if G is not hamiltonian, then the

cardinality of a minimum disjoint path cover is clearly
equal to HC(G).

The dual of Min-DPC is Maximum Disjoint-Path

Cover [8]. It consists in finding in G a collection of

vertex-disjoint paths of length at least 1, which max-

imises the edges covered in G. This problem is known
to be 7

6 -approximable [3].

4.2 Relation between Min-DPC and Min-SLDPC

From the literature, we know that Min-DPC is polyno-

mial on trees [9,13,5], distance-hereditary graphs [12],

bipartite permutation graphs [23], cactis [15] and many

others classes. There are currently no result about the

complexity of Min-SLDPC on such graphs: since the
values of of a and b have a high impact, techniques

used to prove the polynomiality of Min-DPC cannot

be adapted to prove the polynomiality of Min-SLDPC.

Despite all our effort, the complexity of Min-SLDPC
remains an open problem. However using known results

on Min-DPC, we show how the approximation ratio

can be decreased for these class of graphs. We propose

the following lemma:

Lemma 2 If Min-DPC can be solved polynomial com-

putation time, then there exists a polynomial-time
(a+b)

a
-

approximation for Min-SLDPC.

Proof Let I1 = (G) be an instance of Min-DPC, and

I2 = (G, a, b) an instance of Min-SLDPC. Let P∗
1 be

an optimal solution of Min-DPC of cost |P∗
1 | , and P∗

2

an optimal solution of Min-SLDPC of cost OPTsldpc.

According to the definition of Min-SLDPC, we have

|P∗
2 | ≥ |P∗

1 |6. Since each path of a Min-SLDPC solu-
tion increments the cost of the solution by at least a,

then we have:

OPTsldpc =
∑

p∈P∗
2

w(p)+n(a+b)

≥ a|P∗
2 |+n(a+b)≥a|P∗

2 | (3)

⇒ OPTsldpc

a
≥ |P∗

2 | (4)

Let us consider the partition P∗
1 as a solution (not

necessarily optimal) to the instance I2 of Min-SLDPC,

6 The best solution for Min-SLDPC is not necessarily a solu-
tion with a minimum cardinality of k.

and let us evaluate it cost. Since each path of a Min-

SLDPC solution increments the cost of the solution by

at most a+ b, then we have:

∑

p∈P∗
1

w(p) + n(a+ b) ≤ (a+ b)|P∗
1 |+ n(a+ b)

≤ (a+ b)|P∗
2 |+ n(a+ b)

≤ b|P∗
2 |+OPTsldpc according to (3)

≤ b

a
OPTsldpc +OPTsldpc according to (4)

≤ a+ b

a
OPTsldpc (5)

The same proof may be applied if there exists a
ρdpc-approximation for Min-DPC, and then there ex-

ists a ρdpc×(a+b
a

)-approximation for Min-SLDPC. Let

us suppose that we know a constant ρdpc such that

there exists a ρdpc-approximation for Min-DPC on Gc.
Let S1 be the strategy, which consists in determining a

ρdpc×(a+b
a

)-approximation for Min-SLDPC from ρdpc,

and S2 the strategy, which consists in using the algo-

rithm introduced in section 3. Clearly, S1 is particu-

larly relevant when b is very small in comparison with
a. Whereas S2 gives better ratio when b is close to a.

Both strategies are complementary along the value of b,

which varies from 0 to a. Choosing the best result be-

tween the execution of S1 and S2, gives a performance
ratio ρsldpc such that:

ρsldpc ≤ min
{
ρdpc ×

(
a+ b

a

)

,
3a+ 2b

2a+ 2b

}
. (6)

Compared to executing S1 only, this new strategy

increases the obtained results if and only if ρdpc is lower
than 3

2 (see Figure 8).
PSfrag replacements

aa
2

a
4

3a
4

0

1

ρdpc

5

4

3

2
S1

S2

bound

value of b

approximation ratio

Fig. 8 Finding a good ρdcp-approximation helps to increase the
results of Section 3

We propose the following remark, which is not good

news:

Remark 2 There is no ρdpc-approximation for Min-DPC

in general graphs for some ρdpc < 2
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This result is a consequence of the Impossibility

Theorem [6]. It can be checked by considering an ins-

tance of Min-DPC which has an hamiltonian path:

the optimal solution of Min-DPC has cost 1, thus any

polynomial-time ρdpc - approximation algorithm with
ρdpc < 2 will return a solution of cost 1, which is not

allowed under the assumption that P 6= NP . This re-

sult also implies that constant-factor approximation al-

gorithms for max-DPC do not necessarily give the same
performance guarantees on min-DCP, since the best ap-

proximation ratio for max-DCP is 7
6 , which is lower

than the inapproximability bound for min-DCP.

It is good news that Min-DPC is polynomial for

some compatibility graphs such as trees [9,13,5], distance-

hereditary graphs [12], bipartite permutation graphs

[23], cactis [15] and many others classes; thus ρdpc = 1.
For all these graphs we obtain an approximation ratio

of min{ (a+b)
a

, 3a+2b
2a+2b} which is maximal when (a+b)

a
=

3a+2b
2a+2b , i.e.:

(a+ b)

a
=

3a+ 2b

2a+ 2b
⇔ −a2 + 2ab+ 2b2 = 0. (7)

The only solution of this equation with a and b ≥ 0

is a = b(1 +
√
3). By replacing a by this new value on

(a+b)
a

or on 3a+2b
2a+2b , we show that in the worst case the

approximation ratio is reduced from 3
2 down to 1+

√
3

2 ≈
1.37.

5 Conclusion

We investigate a particular coupled-tasks scheduling
problem Π1 in presence of a compatibility graph. We

have shown how this scheduling problem can be reduced

to a graph problem. We have proved that adding the

compatibility graph leads to the NP-completeness of
Π1, whereas the problem is obviously polynomial when

there is a complete compatibility graph (each task is

compatible with each other). We have proposed a ρ-

approximation of Π1 where ρ is between 3
2 and 5

4 ac-

cording to value of a and b. We have also decreased the
upper bound of 3

2 down to ≈ 1.37 on instances where

Minimum Disjoint Path Cover can be polynomially

solved on the compatibility graph.

As perspectives of this work, we plan to test the
pertinence of our polynomial-time approximation algo-

rithm through simulations in order to determine the av-

erage gap between the optimal solution and the results

obtained with our strategy on significant instances. We
also aim to classify the complexity of other configura-

tions, especially Π1 : 1|coupled − task, (ai = a, bi =

b, Li = L)|Cmax with a complete compatibility graph.
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