Skip to main content
Log in

A Complete 4-parametric complexity classification of short shop scheduling problems

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We present a comprehensive complexity analysis of classical shop scheduling problems subject to various combinations of constraints imposed on the processing times of operations, the maximum number of operations per job, the upper bound on schedule length, and the problem type (taking values “open shop,” “job shop,” “mixed shop”). It is shown that in the infinite class of such problems there exists a finite basis system that allows one to easily determine the complexity of any problem in the class. The basis system consists of ten problems, five of which are polynomially solvable, and the other five are NP-complete. (The complexity status of two basis problems was known before, while the status of the other eight is determined in this paper.) Thereby the dichotomy property of that parameterized class of problems is established. Since one of the parameters is the bound on schedule length (and the other two numerical parameters are tightly related to it), our research continues the research line on complexity analysis of short shop scheduling problems initiated for the open shop and job shop problems in the paper by Williamson et al. (Oper. Res. 45(2):288–294, 1997). We improve on some results of that paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bansal, N., Mahdian, M., & Sviridenko, M. (2005). Minimizing makespan in no-wait job shops. Mathematics of Operations Research, 30(4), 817–831.

    Article  Google Scholar 

  • Baptiste, P., Carlier, J., Kononov, A., Queyranne, M., Sevastyanov, S., & Sviridenko, M. (2011). Integrality property in preemptive shop scheduling. Discrete Applied Mathematics, 159(5), 272–280.

    Article  Google Scholar 

  • Brucker, P., & Knust, S. (2000). Operations research: Complexity results of scheduling problems, http://www.mathematik.uni-osnabrueck.de/research/OR/class/.

  • Carlier, J., & Pinson, E. (1989). An algorithm for solving the job-shop problem. Management Science, 35(2), 164–176.

    Article  Google Scholar 

  • Chen, B., Potts, C., & Woeginger, G. (1998). A review of machine scheduling: complexity, algorithms and approximability. In Handbook of combinatorial optimization (Vol. 3, pp. 21–169). Boston: Kluwer Academic.

    Google Scholar 

  • Cole, R., Ost, K., & Schirra, S. (2001). Edge-coloring bipartite multigraphs in O(Elog D) time. Combinatorica, 21(1), 5–12.

    Article  Google Scholar 

  • Creignou, N., Khanna, S., & Sudan, M. (2001). Complexity classifications of Boolean constraint satisfaction problems. SIAM monographs on discrete mathematics and applications. Philadelphia: SIAM.

    Book  Google Scholar 

  • Drobouchevitch, I. G., & Strusevich, V. A. (1999). A polynomial algorithm for the three-machine open shop with a bottleneck machine. Annales of Operations Research, 92, 185–214.

    Article  Google Scholar 

  • Fisher, H., & Thompson, G. L. (1963). Probabilistic learning combinations of local job-shop scheduling rules. In J. F. Muth & G. L. Thompson (Eds.), Industrial scheduling (pp. 225–551). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Gabow, H., & Kariv, O. (1982). Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal of Computing, 11, 117–129.

    Article  Google Scholar 

  • Garey, M., & Johnson, D. (1979). Computers and intractability. A guide to the theory of NP-completeness. A series of books in the mathematical sciences. San Francisco: Freeman.

    Google Scholar 

  • Gonzalez, T. (1979). A note on open shop preemptive schedules, Unit execution time shop problems. IEEE Transactions on Computing, 28, 782–786.

    Article  Google Scholar 

  • Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the Association for Computing Machinery, 23(4), 665–679.

    Article  Google Scholar 

  • Hoogeveen, J., Lenstra, J. K., & Veltman, B. (1994). Three, four, five, six, or the complexity of scheduling with communication delays. Operations Research Letters, 16(3), 129–137.

    Article  Google Scholar 

  • Jackson, J. (1956). An extension of Jhonson’s results on job lot scheduling. Navel Research Logistics Quartely, 3(3), 201–203.

    Article  Google Scholar 

  • Jeavons, P., Cohen, D., & Gyssens, M. (1997). Closure properties of constraints. Journal of ACM, 44(4), 527–548.

    Article  Google Scholar 

  • Kashyrskikh, K. N., Sevastianov, S. V., & Tchernykh, I. D. (2000). Four-parametric complexity analysis of the open shop problem. Diskretnyi Analiz i Issledovanie Operatsii, Seriya 1, 7(4), 59–77 [in Russian].

    Google Scholar 

  • Kashyrskikh, K. N., Kononov, A. V., Sevastianov, S. V., & Tchernykh, I. D. (2001). Polynomially solvable case of the 2-stage 3-machine open shop problem. Diskretnyi Analiz i Issledovanie Operatsii, Seriya 1, 8(1), 23–39 [in Russian].

    Google Scholar 

  • König, D. (1916). Graphok és alkalmazásuk a determinánsok és a halmazok elméletére. Mathematikai és Természettudományi Értesitö, 34, 104–119. [German translation: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Mathematische Annalen, 77(1916), 453–465.]

    Google Scholar 

  • Kononov, A. V., & Sevastianov, S. V. (2000). On the complexity of the connected list vertex-coloring problem. Diskretnyi Analiz i Issledovanie Operatsii, Seriya 1, 7(2), 21–46 [in Russian].

    Google Scholar 

  • Kononov, A., Sevastianov, S., & Sviridenko, M. (2009). Complete complexity classification of short shop scheduling. In A. Frid et al. (Eds.), Lecture notes in computer science: Vol. 5675. Computer science—theory and applications, 4th international computer science symposium in Russia, CSA 2009, Novosibirsk, Russia, August 2009 (pp. 227–236). Berlin: Springer. Proceedings

    Google Scholar 

  • Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., & Shmoys, D. B. (1993). Sequencing and scheduling: algorithms and complexity. In S. Graves, A. H. G. Rinnooy Kan, & P. Zipkin (Eds.), Logistics of production and inventory: Vol. 4. Handbooks in operations research and management science (pp. 445–522). Amsterdam: North-Holland.

    Google Scholar 

  • Lenstra, J. K., & Rinnooy Kan, A. H. G. (1978). Complexity of scheduling under precedence constraints. Operations Research, 26(1), 22–35.

    Article  Google Scholar 

  • Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine scheduling problems. Annales of Discrete Mathematics, 1, 343–362.

    Article  Google Scholar 

  • Lenstra, J., Shmoys, D., & Tardos, E. (1990). Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming, Ser. A, 46(3), 259–271.

    Article  Google Scholar 

  • Leung, J. Y.-T. (Ed.) (2004). Handbook of scheduling. Algorithms, models, and performance analysis. Boca Raton: Chapman & Hall/CRC Computer and Information Science Series.

    Google Scholar 

  • Masuda, T., Ishii, H., & Nishida, T. (1985). The mixed shop scheduling problem. Discrete Applied Mathematics, 11(2), 175–186.

    Article  Google Scholar 

  • Melnikov, L., & Vizing, V. (1999). The edge chromatic number of a directed/mixed multigraph. Journal of Graph Theory, 31(4), 267–273.

    Article  Google Scholar 

  • Neumytov, J., & Sevastianov, S. (1993). An approximation algorithm with best possible bound for the counter routs problem with three machines. Upravlyaemye Sistemy, 31, 53–65 [in Russian].

    Google Scholar 

  • Schaefer, T. J. (1978). The complexity of satisfiability problems. STOC, 1978, 216–226.

    Google Scholar 

  • Schrijver, A. (2003). Combinatorial optimization. Polyhedra and efficiency. Algorithms and combinatorics (Vol. 24B). Berlin: Springer.

    Google Scholar 

  • Sevastianov, S. (2005). An introduction to multi-parameter complexity analysis of discrete problems. European Journal of Operational Research, 165(2), 387–397.

    Article  Google Scholar 

  • Shakhlevich, N. V., Sotskov, Y. N., & Werner, F. (2000). Complexity of mixed shop scheduling problems: a survey. European Journal of Operational Research, 120, 343–351.

    Article  Google Scholar 

  • Timkovsky, V. G. (2003). Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity. European Journal of Operational Research, 149, 355–376.

    Article  Google Scholar 

  • Vizing, V. G. (1999). On a connected graph coloring in prescribed colors. Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 6(4), 36–43 [in Russian].

    Google Scholar 

  • Vizing, V. G. (2002). A bipartite interpretation of a directed multigraph in problems of the coloring of incidentors. Diskretnyi Analiz i Issledovanie Operatsii, Ser. 1, 9(1), 27–41 [in Russian].

    Google Scholar 

  • Vizing, V. G. (2008). On the coloring of incidentors in a partially ordered multigraph. Diskretnyi Analiz i Issledovanie Operatsii, 15(1), 17–22 [in Russian].

    Google Scholar 

  • Williamson, D., Hall, L., Hoogeveen, J., Hurkens, C., Lenstra, J. K., Sevastianov, S., & Shmoys, D. (1997). Short shop schedules. Operations Research, 45(2), 288–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Sevastyanov.

Additional information

A preliminary version of this paper was published in Kononov et al. (2009).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononov, A., Sevastyanov, S. & Sviridenko, M. A Complete 4-parametric complexity classification of short shop scheduling problems. J Sched 15, 427–446 (2012). https://doi.org/10.1007/s10951-011-0243-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-011-0243-z

Keywords

Navigation