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Abstract We present a generic exact method for mini-

mizing the project duration of the resource-constrained

project scheduling problem with generalized precedence

relations (Rcpsp/max). This is a very general schedul-

ing model with applications areas such as project man-

agement and production planning. Our method uses

lazy clause generation, i.e., a hybrid of finite domain

and Boolean satisfiability solving, in order to apply no-

good learning and conflict-driven search to the solution

generation. Our experiments show the benefit of lazy

clause generation for finding an optimal solution and

proving its optimality in comparison to other state-of-

the-art exact and non-exact methods. In comparison to

other methods, our method is able to find better solu-

tions faster on the Rcpsp/max benchmarks. Indeed our

method closes 573 open problem instances and gener-

ates better solutions in most of the remaining instances.

Surprisingly, although ours is an exact method, it out-

performs the published non-exact methods on these

benchmarks in terms of the quality of solutions.
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1 Introduction

The resource-constrained project scheduling problem

with generalized precedence relations (Rcpsp/max)1

consists of scarce resources, activities and precedence

constraints between pairs of activities. Each activity

requires some units of resources during its execution.

The aim is to build a schedule that obeys the resource

and precedence constraints. Here, we concentrate on re-

newable resources (i.e., their supply is constant during

the planning period), non-preemptive activities (i.e.,

once started their execution cannot be interrupted),

and finding a schedule with a minimal project dura-

tion. This problem is denoted as PS|temp|Cmax by

Brucker et al. (1999) and m, 1|gpr|Cmax by Herroelen

et al. (1998). Bartusch et al. (1988, Theorem 3.10) show

that the feasibility problem, whether an instance is fea-

sible given an unlimited project duration, is NP-hard.

Rcpsp/max is a very general problem. Practical

scheduling problems can include substantially varied

restrictions on the resources and activities. The follow-

ing restrictions can be modeled with generalized prece-

dence relations: minimal and maximal overlaps of activ-

ities, synchronization of start or end times for activities,

change of the resource requirement during the activity’s

execution, fixed start times of activities, setup times,

or non-delay execution of activities (see, e.g. Bartusch

et al., 1988; Neumann and Schwindt, 1997; Dorndorf

et al., 2000). Moreover, a variation of the resource avail-

ability over time can be modeled by adding fictitious

activities.

Rcpsp/max is widely studied and some of its appli-

cations can be found in Bartusch et al. (1988), e.g. civil

1 In the literature Rcpsp/max is also called as Rcpsp with
temporal precedences, arbitrary precedences, minimal and
maximal time lags, and time windows.
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engineering, building projects, and processor schedul-

ing. A problem instance consists of a set of resources,

a set of activities, and a set of generalized precedence

constraints between activities. Each resource is charac-

terized by its integral capacity, and each activity by its

integral duration and its resource requirements. Gener-

alized precedence relations express relations of start-to-

start, start-to-end, end-to-start, and end-to-end times

between pairs of activities. All these relations can be

formulated as start-to-start time precedences. They have

the form si + dij ≤ sj where si and sj are the start

times of the activities i and j, respectively, and dij is

an integral distance between them. If dij ≥ 0 this im-

poses a minimal time lag, while if dij < 0 this imposes

a maximal time lag between start times.

Example 1 A simple example of an Rcpsp/max prob-

lem consists of the five activities a, b, c, d, and e with

start times sa, sb, sc, sd, and se, durations 2, 5, 3, 1, and

2 and resource requirements on a single resource 3, 2, 1, 2,

and 2 with a resource capacity of 4. Suppose we also

have the generalized precedence relations sa + 2 ≤ sb
(activity a ends before activity b starts), sb + 1 ≤ sc
(activity b starts at least 1 time unit before activity c

starts), sc− 6 ≤ sa (activity c cannot start later than 6

time units after activity a starts), sd+3 ≤ se (activity d

starts at least 3 time units before activity e starts), and

se − 3 ≤ sd (activity e cannot start later than 3 time

units after activity d starts). Note that the last two

precedence relations express the relation sd + 3 = se
(activity d starts exactly 3 time units before activity e).

Let the maximal project duration, in which all ac-

tivities must be completed, be 8. Figure 1 illustrates the

precedence graph between the five tasks and source at

the left (time 0) and sink at the right (time 8), as well as

a potential solution to this problem in the Gantt chart,

where a rectangle for activity i has width equal to its

duration and height equal to its resource requirements.

Note that additional edges between the source (sink)

are drawn in the precedence graph. These edges reflect

the constraints that the activities must be executed in

the planning period created by start time of the source

and end time of the sink, which is [0, 8). ��

Standard benchmarks for Rcpsp/max consist of a

number of challenging testsets: Sm, CD, and UBO; ac-

cessible from PSPLib (PSPLib, 2010). The first exact

method we are aware of to tackle Rcpsp/max was pro-

posed by Bartusch et al. (1988). They use a branch-and-

bound algorithm to tackle the problem. Their branch-

ing is based on resolving (minimal) conflict sets2 by the

2 Conflict sets are set of activities for which their execu-
tion might overlap in time and violate at least one resource
constraint if they are executed at the same time.
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Fig. 1: The precedence graph and the Gantt chart of a

solution to a small Rcpsp/max.

addition of precedence constraints breaking these sets.

Other branch-and-bound methods based on the same

idea were developped later (e.g. De Reyck and Her-

roelen, 1998; Schwindt, 1998a; Fest et al., 1999). The

results from Schwindt are the best published ones for

an exact method on the testset Sm.

Dorndorf et al. (2000) use a time-oriented branch-

and-bound combined with constraint propagation for

precedence and resource constraints. In every branch

one unscheduled and “eligible” activity is selected and

its start time is assigned to the earliest point in time

that does not violate any constraint regarding the cur-

rent partial schedule. On backtracking they apply dom-

inance rules to fathom the search space. As far as we

can determine, this exact approach outperforms other

exact methods for Rcpsp/max on the CD benchmark

set.

Franck et al. (2001) compare different solution meth-

ods on the benchmark set UBO with instances hav-

ing from 10 to 1000 activities. Their methods are trun-

cated branch-and-bound algorithms, filter-beam search,

heuristics with priority rules, genetic algorithms and

tabu search. All methods share a preprocessing step to

determine feasibility or infeasibility. The preprocessing

step decomposes the precedence network into strongly

connected components (SCCs) (which are denoted “cy-

clic structures” in Franck et al. (2001)). The preprocess-

ing then determines a solution or infeasibility for each

SCC individually using constraint propagation and a

destructive lower bound computation. Once a solution

for all SCCs is determined a first solution can be deter-

ministically generated for the original instance; other-

wise infeasibility is proven.

Ballest́ın et al. (2011) employ an evolutionary al-

gorithm based on a serial generation scheme with an

unscheduling step. Their crossover operator is based on

so-called conglomerates, i.e., set of cycle structures and

other activities which cannot move freely inside a sched-

ule. It tries to keep the “good” conglomerates of the

parents for their children. This is the best published

metaheuristic so far on the testsets UBO (up to in-

stances with 100 activities) and CD.
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Cesta et al. (2002) propose a two layered heuris-

tic that is based on a temporal precedence network

and extension of this network by new temporal prece-

dence relations in order to resolve minimal conflict sets.

For guidance, constraint propagation algorithms are ap-

plied on the network. Their method is competitive on

the benchmark set SM.

Oddi and Rasconi (2009) apply a generic iterative

search consisting of a relaxation and flattening step

based on temporal precedence relations which are used

for resolving resource conflicts. In the first step, some of

the temporal precedence relations are removed from the

problem, and then, in the second step, others are added

if a resource conflict exists. Their method is evaluated

on some larger instances from UBO.

A special case of Rcpsp/max is the intensively-

studied Resource-constrained Project Scheduling Prob-

lem (Rcpsp) where the precedence constraints si +

dij ≤ sj express that the activity j must start after

the end of i, i.e., dij equals to the duration of i. In con-

trast to Rcpsp/max, the feasibility problem of Rcpsp,

i.e., with no restriction on the project duration, is poly-

nomial solvable, while both the decision and optimiza-

tion problem are NP-hard (Blazewicz et al., 1983). The

reason for this is the absence of maximal time lags,

i.e., here activity executions can always be delayed to a

point in time where enough resource units are available

without breaking any precedence constraints. That is

not possible for Rcpsp/max.

To our knowledge, The best exact methods forRcpsp

are the methods that use the advanced Boolean sat-

isfiability (Sat) technology based on Davis-Putnam-

Logemann-Loveland (Dpll) procedure (Schutt et al.,

2009, 2011; Horbach, 2010). The Sat technology en-

ables them to take advantage of its nogood learning

facilities in order to prune the search space. The meth-

ods (Schutt et al., 2009, 2011) are generic and based on

lazy clause generation (Lcg) (Ohrimenko et al., 2009)

using the G12 Constraint Programming Platform (Stuckey

et al., 2005). Lcg is a hybrid of a finite domain (Fd)

and a Sat solver. Their approaches model the cumula-

tive resource constraint by either decomposing it into

smaller primitive constraints, or creating a global cu-

mulative propagator. The global propagation approach

performs better as the size of the problem grows. In con-

trast, Horbach’s approach is also based on a hybrid with

Sat solving, but hand-tailored for Rcpsp. He uses a lin-

ear programming solver to determine activity schedules

and hybridize with the Sat solver. Overall, the global

approach (Schutt et al., 2011) gives the best current

results for Rcpsp.

In this paper, we apply the same generic Lcg ap-

proach as in Schutt et al. (2011) to the more general

problem of Rcpsp/max. Because this problem is more

difficult than pure Rcpsp, we need to modify this ap-

proach, in particular to prove feasibility/infeasibility.

We show that the approach to solving Rcpsp/max per-

forms better than published methods so far, especially

for improving a solution once a solution is found, and

proving optimality. We state the limitations of our cur-

rent model and how to overcome them. We compare our

approach to the best known approaches to Rcpsp/max

on several benchmark suites accessible via PSPLib (2010).

The paper is organized as follows. In Section 2 we

give an introduction to Lcg. In Section 3, we present

our basic model for Rcpsp/max and discuss some im-

provements to it. In Section 4, we discuss the various

branch-and-bound procedures that we use to search for

optimal solutions. In Section 5, we compare our algo-

rithm to the best approaches we are aware of on 3 chal-

lenging benchmark suites. Finally, we conclude in Sec-

tion 6.

2 Preliminaries

In this section, we explain Lcg by first introducing Fd

propagation and Dpll-based Sat solving. Then we de-

scribe the hybrid approach. We discuss how the hybrid

explains conflicts and briefly discuss how a cumulative

propagator is extended to explain its propagations.

2.1 Finite Domain Propagation

Finite domain (Fd) propagation (see, e.g. Tsang, 1993;

Marriott and Stuckey, 1998) is a powerful approach to

tackling combinatorial problems. An Fd problem (C,D)

consists of a set of constraints C over a set of variables

V , and a domain D, which determines the finite set of

possible values of each variable in V . A domain D is

a complete mapping from V to finite sets of integers.

Hence given domain D, then D(x) is the set of pos-

sible values that variable x can take. Let minD(x) =

min(D(x)) and maxD(x) = max(D(x)). Let [ l .. u ] =

{d | l ≤ d ≤ u, d ∈ Z} denote a range of integers, where

[ l .. u ] = ∅ if l > u. In this paper, we will concentrate

on domains where D(x) is a range for all x ∈ V . The

initial domain is referred asDinit. LetD1 andD2 be do-

mains, then D1 is stronger than D2, written D1 � D2,

if D1(v) ⊆ D2(v) for all v ∈ V . Similarly, if D1 � D2

then D2 is weaker than D1. For instance, all domains D

that occur will be stronger than the initial domain, i.e.,

D � Dinit. A false domain is a domain D that maps at

least one variable x to the empty set, i.e., ∃x ∈ V with

D(x) = ∅.
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A valuation θ is a mapping of variables to values,

written {x1 �→ d1, . . . , xn �→ dn}. We extend the val-

uation θ to map expressions or constraints involving

the variables in the natural way. Let vars be the func-

tion that returns the set of variables appearing in an

expression, constraint or valuation. In an abuse of no-

tation, we define a valuation θ to be an element of

a domain D, written θ ∈ D, if θ(v) ∈ D(v) for all

v ∈ vars(θ). Note that there a false domain D has

no element valuations. Define a valuation domain D

as one where |D(v)| = 1, ∀v ∈ V . We can define the

corresponding valuation θD for a valuation domain D

as {v �→ d | D(v) = {d}, v ∈ V }.
Then a constraint c ∈ C is a set of valuations over

vars(c) which give the allowable values for a set of

variables. In Fd solvers, constraints are implemented

by propagators. A propagator f implementing c is an

inclusion-decreasing function on domains such that for

all domains D � Dinit: f(D) � D and no solutions

are lost, i.e., {θ ∈ D | θ ∈ c} = {θ ∈ f(D) | θ ∈ c}.
We assume each propagator f is checking, that is if D

is a valuation domain then f(D) = D if and only if

θD restricted to vars(c) is a solution of c. Conversely,

f(D) is a false domain if and only if θD restricted

to vars(c) is not a solution of c. Given a set of con-

straints C we assume a corresponding set of propagators

F = {f | c ∈ C, f implements c}.
A propagation solver solv(F,D) for a set of propaga-

tors F and current domain D repeatedly applies all the

propagators in F starting from domain D until there

is no further change in resulting domain. solv(F,D) is

some weakest domain D′ � D which is a fixed point

(i.e., f(D′) = D′) for all f ∈ F .

Fd solving interleaves propagation with search de-

cisions. Given an initial problem (C,D) where F are

the propagators for the constraints C, we first run the

propagation solver D′ = solv(F,D). If this determines

failure (D′ is a false domain) then the problem has

no solution and we backtrack to visit the next unex-

plored choice. If D′ is a valuation domain then we have

determined a solution. Otherwise we pick a variable

x ∈ V where |D′(x)| ≥ 2 and split its domain D′(x)

into two disjoint parts U1 ∪ U2 = D′(x) creating two

subproblems (C, D1) and (C, D2), where Di(x) = Ui

and Di(v) = D′(v), v �= x, whose solutions are also

solutions of the original problem. We then recursively

explore the first problem, and when we have shown it

has no solutions we explore the second problem.

As defined above Fd propagation is only applica-

ble to satisfaction problems. Finite domain solvers solve

optimization problems by mapping them to repeated

satisfaction problems. Given an objective function o to

minimize under constraints C with domain D, the fi-

nite domain solving approach first finds a solution θ to

(C, D), and then finds a solution to (C ∪{o < θ(o)}, D),

that is, the satisfaction problem of finding a better solu-

tion than previously found. It repeats this process until

a problem is reached with no solution, in which case the

last found solution is optimal. If the process is halted

before proving optimality, then the solving process just

returns the last solution found as the best known. We

note that a dichotomic search on the values of objec-

tive function values is also possible, and requires solv-

ing fewer satisfaction problems to optimally solve the

problem, but it does not allow the reuse of all nogoods

between the different satisfaction problems.

Fd propagation is a powerful generic approach to

solving combinatorial optimization problems. Its chief

strengths are the ability to model problems at a very

high level, and the use of global propagators, that is

specialized propagation algorithms, for important con-

straints.

2.1.1 Generalized Precedence Constraints

A binary inequality propagator f for a precedence con-

straint x + d ≤ y updates the domains of x and y in

constant time as follows

f(D)(u) =

⎧
⎪⎨

⎪⎩

D(x) ∩ (−∞,maxD(y)− d] if u = x,

D(y) ∩ [minD(x) + d,∞) if u = y,

D(u) otherwise

where u ∈ V . Hence, the propagator infers a new upper

bound on x if maxD(y)−d < maxD(x) and a new lower

bound on y if minD(x) + d > minD(y).

2.1.2 Cumulative Resource Constraint

Of particular interest to us in this work is the global

cumulative constraint for cumulative resource schedul-

ing.

The cumulative constraint introduced by Aggoun

and Beldiceanu (1993) takes four arguments, i.e., s, p,

r, and c. Each of the first three arguments are lists

of the same length n and indicate information about

a set of activities. s[i] is the variable start time of the

ith activity, p[i] is the fixed duration of the ith activity,

and r[i] is the fixed resource usage (per time unit) of the

ith activity. The last argument c is the fixed resource

capacity.

The cumulative constraints represent cumulative re-

sources with a constant capacity over the considered

project duration applied to non-preemptive activities,

i.e., if they are started they cannot be interrupted.

Without loss of generality we assume that all values

are integral and non-negative and there is a maximal
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project duration tmax which is the latest time any activ-

ity can finish. Thus the cumulative constraint, denoted

by cumulative, imposes the constraints:

cumulative(s, p, r, c) ≡
∑

i∈V:s[i]≤t<s[i]+p[i]

r[i] ≤ c ∀t ∈ [0, tmax) ,

where V is the set of activities.

Example 2 Consider the five activities a, b, c, d, e from

Example 1 with durations 2, 5, 3, 1, 2 and resource re-

quirements 3, 2, 1, 2, 2 and a resource capacity of 4. This

is represented by the cumulative constraint:

cumulative([sa, sb, sc, sd, se], [2, 5, 3, 1, 2],

[3, 2, 1, 2, 2], 4) .

Imagine each task must start at time 0 or after and fin-

ish before time 8. The cumulative problem corresponds

to scheduling the activities shown in Figure 2(a) into

the Gantt chart shown to the left. ��

There are many propagation algorithms for the cu-

mulative constraint, but the most widely used for project

scheduling problems is based on timetable propagation

(see, e.g. Le Pape, 1994), because the precedence con-

straints usually mean the problem is not highly cumu-

lative, i.e., not many activities can be run concurrently.

An activity i has a compulsory part given domain

D from [maxD s[i]..minD s[i] + p[i]), that requires that

activity imakes use of r[i] resources at each of the times

in [maxD s[i] .. minD s[i] + p[i]− 1 ] if the range is non-

empty. The timetable propagator for cumulative first

determines the resource usage profile ru[t] which sums

for each time t the resources required for all compulsory

parts of activities at that time. If at some time t the

profile exceeds the resource capacity, i.e., ru[t] > c, the

constraint is violated and failure detected. If at some

time t the resources used in the profile are such that

there is not enough left for an activity i, i.e., ru[t] +

r[i] > c, then we can determine that activity i cannot be

scheduled to run during time t. If the earliest start time

minD s[i] of activity i, is such that the activity cannot

be scheduled completely before time t, i.e., minD s[i] +

p[i] > t, we can update the earliest start time to be

t+ 1, similarly if the latest start time of the activity is

such that the activity cannot be scheduled completely

after t, i.e., maxD s[i] ≤ t, then we can update the

latest start time to be t− p[i]. For a full description of

timetable propagation for cumulative see Schutt et al.

(2011).

Example 3 Consider the cumulative constraint of Ex-

ample 2. We assume that the domains of the start times

are D(sa) = [ 1 .. 2 ], D(sb) = [ 0 .. 3 ], D(sc) = [ 3 .. 5 ],

D(sd) = [ 0 .. 2 ], D(se) = [ 0 .. 4 ]. Then there are com-

pulsory parts of activities a and b in the ranges [2..3)

and [3..5) respectively shown in Figure 2(b) in red (dark).

No other activities have a compulsory part. Hence the

red contour illustrates the resource usage profile. Since

activity b cannot be scheduled in parallel with activ-

ity a, and the earliest start time of activity b, which

is 0, means that the activity cannot be scheduled be-

fore activity a we can reduce the domain of the start

time for activity b to the singleton [ 3 .. 3 ]. This is illus-

trated in Figure 2(b). The opposite holds for activity a

that cannot be run after activity b, hence the domain

of its start time shrinks to the singleton range [ 1 .. 1 ].

Once we make these changes the compulsory parts of

the activities a and b increase to the ranges [1..3) and

[3..8) respectively. This in turn causes the start times of

activities d and e to become [ 0 .. 0 ] and [ 3 .. 4 ] respec-

tively, creating compulsory parts in the ranges [0..1)

and [4..5) respectively. The latter causes the start time

of activity c to become fixed at 5 generating the com-

pulsory part in [5..8) which causes that the start time

of activity e becomes fixed at 3. This is illustrated in

Figure 2(c). In this case the timetable propagation re-

sults in a final schedule in the right of Figure 1. ��

2.2 Boolean Satisfiability Solving

Let B be a set of Boolean variables. A literal l is either

a Boolean variable b ∈ B, i.e., l ≡ b, or its negation,

i.e., l ≡ ¬b. The negation of a literal ¬l is defined as ¬b
if l ≡ b and b if l ≡ ¬b. A clause C is a set of literals

understood as a disjunction. Hence clause {l1, . . . , ln} is

satisfied if at least one literal li is true. An assignment A

is a set of Boolean literals that does not include a vari-

able and its negation, i.e., �b ∈ B : {b,¬b} ⊆ A. An as-

signment can be seen as a partial valuation on Boolean

variables, {b �→ true |b ∈ A} ∪ {b �→ false |¬b ∈ A}.
A theory T is a set of clauses. A Sat problem (T,A)

consists of a set of clauses T and an assignment A over

(some of) the variables occurring in T . Thus, the assign-

ment A can be a partial, possible empty, assignment. A

solution for the theory T is an assignment A contain-

ing each Boolean variable in either positive or negative

context, and satisfying all clauses in T . Consequently,

a solution for a Sat problem (T,A) is a solution A′ of

the theory T that is a superset of A, i.e., A′ ⊇ A.

A Sat solver based on the Dpll procedure (Davis

et al., 1962; Davis and Putnam, 1960) is a form of

Fd propagation solver specialized for Boolean clauses.

Each clause is propagated by so-called unit propagation.

Given an assignment A, unit propagation detects failure
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Fig. 2: Figure illustrates the timetable propagation of the cumulative constraint for activities b and c where red

(dark) boxes describe compulsory parts of unfixed activities.

using clause C if {¬l | l ∈ C} ⊆ A, and unit propaga-

tion detects a new unit consequence l if C ≡ {l} ∪ C ′

and {¬l′ | l′ ∈ C ′} ⊆ A, in which case it adds l to the

current assignment A. Unit propagation continues until

failure is detected, or no new unit consequences can be

determined.

Sat solvers exhaustively apply unit propagation to

the current assignment A to generate all the conse-

quences resulting in a new assignment A′. They then

choose an unfixed variable b and create two equivalent

problems (T,A′ ∪ {b}), (T,A′ ∪ {¬b}) and recursively

search these subproblems. The literals added to the as-

signment by choice are termed decision literals.

Modern Dpll-based Sat solving is a powerful ap-

proach to solving combinatorial optimization problems

because it records nogoods that prevent the search from

revisiting similar parts of the search space. The Sat

solver records an explanation for each unit consequence

discovered (the clause that caused unit propagation),

and on failure uses these explanations to determine a

set of mutually incompatible decisions, a nogood, which

is added as a new clause to the theory of the prob-

lem. These nogoods drastically reduce the size of the

search space needed to be examined. Another advan-

tage of Sat solvers is that they track which variables

are involved in the most failures (called active vari-

ables), and use a powerful autonomous search proce-

dure which concentrates on the variables that are most

active. The disadvantages of Sat solvers are the restric-

tion to Boolean variables and the sometime huge mod-

els that are required to represent a problem because the

only constraints expressible are clauses.

2.3 Lazy Clause Generation

Lcg is a hybrid of Fd propagation and Sat solving.

The key idea in Lcg is to run a Fd propagation solver,

but to build an explanation of the propagations made

by the solver by recording them as clauses on a Boolean

variable representation of the problem. Hence, as the

Fd search progresses, we lazily create a clausal repre-

sentation of the problem. The hybrid has the advan-

tages of Fd solving, but inherits the Sat solvers ability

to create nogoods to drastically reduce search, and uses

activity based search.

2.3.1 Variable Representation

An Lcg problem is stated as an Fd problem, but each

integer variable has a clausal representation in the Sat

solver. In the remainder of this work, we use �.� as the

names of Boolean variables. An integer variable x ∈ X
with the initial domain Dinit(x) = [ l .. u ] is represented

by 2(u − l) + 1 Boolean variables �x = l�, �x = l + 1�,

. . . , �x = u� and �x ≤ l�, �x ≤ l + 1�, . . . , �x ≤ u− 1�.

The variable �x = d� is true if x takes the value d, and

false if x takes a value different from d. Similarly, the

variable �x ≤ d� is true if x takes a value less than or

equal to d and false for a value greater than d.

We use the notation �d ≤ x� to refer to the literal

¬�x ≤ d− 1�.

Not every assignment of Boolean variables is con-
sistent with the integer variable x, for example {�x =

3�, �x ≤ 2�} (i.e., both Boolean variables are true) re-

quires that x is both 3 and ≤ 2. In order to ensure that

assignments represent a consistent set of possibilities

for the integer variable x we add to the Sat solver the

clauses DOM (x) that encode

�x ≤ d� → �x ≤ d+ 1�, l ≤ d < u− 1,

(1)

�x = l� ↔ �x ≤ l�, (2)

�x = d� ↔ (�x ≤ d� ∧ ¬�x ≤ d− 1�), l < d < u, (3)

�x = u� ↔ ¬�x ≤ u− 1� (4)

whereDinit(x) = [ l .. u ]. This equates to u−l−1 clauses

for (Eq. 1) and 3(u − l − 1) + 4 clauses for (Eq. 2–4).

Note that clauses in (Eq. 2–4) are generated lazily on

demand when propagation needs to express something

using the literal �x = d� (see (Feydy, 2010) for details).

JOSH285_source [08/17 10:00]     Large, APA, NameYear, rh:Standard 6/18



Solving RCPSP/max by Lazy Clause Generation 7

Any assignment A on these Boolean variables can be

converted to a domain: domain(A)(x) = {d ∈ Dinit(x)

| ∀�c� ∈ A, vars(�c�) = {x} : x = d |= c}, i.e., the
domain includes all values for x that are consistent with

all the Boolean variables related to x. It should be noted

that the domain may assign no values to some variable.

Example 4 Consider Example 1 and assume Dinit(si)

= [ 0 .. 15 ] for i ∈ {a, b, c, d, e}. The assignment A =

{¬�sa ≤ 1�,¬�sa = 3�,¬�sa = 4�, �sa ≤ 6�,¬�sb ≤
2�, �sb ≤ 5�,¬�sc ≤ 4�, �sc ≤ 7�,¬�se ≤ 3�} is con-

sistent with sa = 2, sa = 5, and sa = 6. Therefore

domain(A)(sa) = {2, 5, 6}. For the remaining variables

domain(A)(sb) = [ 3 .. 5 ], domain(A)(sc) = [ 5 .. 7 ],

domain(A)(sd) = [ 0 .. 15 ], and domain(A)(se) = [ 4 .. 15 ].

Note that for brevity A is not a fixed point of unit

propagation for DOM(sa) since we are missing many

implied literals such as ¬�sa = 0�, ¬�sa = 8� etc. ��

2.3.2 Explaining Propagators

In Lcg, a propagator is extended from a mapping from

domains to domains to a generator of clauses describing

propagation. When f(D) �= D we assume the propaga-

tor f can determine a clause C to explain each do-

main change. Similarly, when f(D) is a false domain

the propagator must create a clause C that explains

the failure.

Example 5 Consider the binary inequality propagator

f for the precedence constraint sa+2 ≤ sb from Exam-

ple 1. When applied to the domainsD(si) = [ 0 .. 15 ] for

i ∈ {a, b} it obtains f(D)(sa) = [ 0 .. 13 ], and f(D)(sb) =

[ 2 .. 15 ]. The clausal explanation of the change in do-

main of sa is �sb ≤ 15� → �sa ≤ 13�, similarly the

change in domain of sb is ¬�sa ≤ −1� → ¬�sb ≤ 1�

(�0 ≤ sa� → �2 ≤ sb�). These become the clauses

¬�sb ≤ 15� ∨ �sa ≤ 13� and �sa ≤ −1� ∨ ¬�sb ≤ 1�. ��

The explaining clauses of the propagation are passed

to the Sat solver on which unit propagation is per-

formed. Because the clauses will always have the form

C → l where C is a conjunction of literals true in the

current assignment, and l is a literal not true in the

current assignment, the newly added clause will always

cause unit propagation, adding l to the current assign-

ment.

Example 6 Consider the propagation from Example 5.

The clauses ¬�sb ≤ 15� ∨ �sa ≤ 13� and �sa ≤ −1� ∨
¬�sb ≤ 1� are added to the Sat theory. Unit prop-

agation infers that �sa ≤ 13� is true and ¬�sb ≤ 1�

is true since ¬�sb ≤ 15� and �sa ≤ −1� are false, and

adds these literals to the assignment. Note that the unit

propagation is not finished, since for example the im-

plied literal �sa ≤ 14�, can be detected true as well. ��

The unit propagation on the added clauses C is

guaranteed to be as strong as the propagator f on

the original domains. This means if domain(A) � D

then domain(A′) � f(D) where A′ is the resulting as-

signment after addition of C and unit propagation (see

Ohrimenko et al., 2009).

Note that a single new propagation could be ex-

plained using different set of clauses. In order to get

maximum benefit from the explanation we desire a “stron-

gest” explanation as possible. A set of clauses C1 is

stronger than a set of clauses C2 if C2 implies C1. In

other words, C1 restricts the search space at least as

much as C2.

Example 7 Consider explaining the propagation of the

start time of the activity c described in Example 3 and

Figure 2(c). The domain change �5 ≤ sc� arises from

the compulsory parts of activity b and e as well as the

fact that activity c cannot start before time 3. An ex-

planation of the propagation is hence �3 ≤ sc� ∧ �3 ≤
sb� ∧ �sb ≤ 3� ∧ �3 ≤ se� ∧ �se ≤ 4� → �5 ≤ sc�.

We can observe that if 2 ≤ sc then the same domain

change �5 ≤ sc� follows due to the compulsory parts of

activity b and e. Therefore, a stronger explanation is

obtained by replacing the literal �3 ≤ sc� by �2 ≤ sc�.

Moreover, the compulsory parts of the activity b

in the ranges [ 3 .. 3 ] and [ 5 .. 8 ] are not necessary for

the domain change. We only require that there is not

enough resources at time 4 to schedule task c. Thus the

refined explanation can be further strengthened by re-

placing �3 ≤ sb�∧ �sb ≤ 3� by �sb ≤ 4� which is enough

to force a compulsory part of sb at time 4. This leads

to the stronger explanation �2 ≤ sc� ∧ �sb ≤ 4� ∧ �3 ≤
se� ∧ �se ≤ 4� → �5 ≤ sc�. ��

In this example the final explanation corresponds to

a pointwise explanation defined in Schutt et al. (2011).

In this work, we use the timetable propagation, as ear-

lier described in this section, that generates pointwise

explanations. The maximum size of these explanations

(maxLenCumu) is bounded by 2×max{T ⊆ {1, 2, . . . , n} |
∑

i∈T r[i] > c and ∀j ∈ T :
∑

i∈T−j r[i] ≤ c} literals

where n is the number of activities requiring some re-

source units of the cumulative resource and c is the

resource capacity. For a full discussion about the best

way to explain propagation of cumulative see Schutt

et al. (2011).

2.3.3 Nogood generation

Since all propagation steps in Lcg have been mapped

to unit propagation on clauses, we can perform nogood

generation just as in a Sat solver. Here, the nogood

generation is based on an implication graph and the
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first unique implication point (1UIP). The graph is a

directed acyclic graph where nodes represent fixed lit-

erals and directed edges reasons why a literal became

true, and is extended as the search progresses. Unit

propagation marks the literal it makes true with the

clause that caused the unit propagation. The true liter-

als are kept in a stack showing the order that they were

determined as true by unit consequence or decisions.

For brevity, we do not differentiate between literals

and nodes. A literal is fixed either by a search decision

or unit propagation. In the first case, the graph is ex-

tended only by the literal and, in the second case, by

the literal and incoming edges to that literal from all

other literals in the clause on that the unit propagation

assigned the true value to the literal.

Example 8 Consider the strongest explanation �2 ≤ sc�

∧�sb ≤ 4� ∧ �3 ≤ se� ∧ �se ≤ 4� → �5 ≤ sc� from

Example 7. It is added to the Sat database as clause

¬�2 ≤ sc�∨¬�sb ≤ 4�∨¬�3 ≤ se�∨¬�se ≤ 4�∨�5 ≤ sc�

and unit propagation sets �5 ≤ sc� true. Therefore the

implication graph is extended by the edges �2 ≤ sc� →
�5 ≤ sc�, �sb ≤ 4� → �5 ≤ sc�, �3 ≤ se� → �5 ≤ sc�,

and �se ≤ 4� → �5 ≤ sc�. ��

Every node and edge is associated with the search

level at which they are added to the graph. Once a

conflict occurs, a nogood which is the 1UIP in Lcg is

calculated based on the implication graph. A conflict is

recognized when the unit propagation reaches a clause

where all literals are false. This clause is the starting

point of the analysis and builds a first tentative no-

good. Literals in the tentative nogood are replaced one

by one by the literals from their incoming edges, in the

reverse order that these literals were added to the impli-

cation graph. This process continues until the tentative

nogood contains exactly one literal associated with the

current conflict level. Thus, the time complexity of the

nogood computation is bounded by the size of the ex-

tension of the implication graph at the conflict level.

Given that in our case the timetable propagation of

cumulative creates the largest explanations, the time

complexity is bounded by nprop×maxLenCumu where

nprop is the number of domain reductions performed in

the conflict level and maxLenCumu is maximal length

of an explanation for cumulative, which is described

earlier. The resulting nogood is called the 1UIP no-

good (Moskewicz et al., 2001).

Example 9 Consider theRcpsp/max instance from Ex-

ample 1 on page 2. Assume an initial domain of Dinit =

[ 0 .. 15 ] then after the initial propagation of the prece-

dence constraints the domains are D(sa) = [ 0 .. 8 ],

D(sb) = [ 2 .. 10 ], D(sc) = [ 3 .. 12 ], D(sd) = [ 0 .. 10 ],

and D(sb) = [ 3 .. 13 ]. Note that no tighter bounds can

be inferred by the cumulative propagator.

Assume search now sets sa ≤ 0. This sets the literal

�sa ≤ 0� as true, and unit propagation on the domain

clauses sets �sa = 0�, �sa ≤ 1�, �sa ≤ 2�, etc. In the

remainder of the example, we will ignore propagation of

the domain clauses and concentrate on the “interesting

propagation.”

The precedence constraint sc − 6 ≤ sa forces sc ≤ 6

with explanation �sa ≤ 0� → �sc ≤ 6�. The precedence

constraint sb + 1 ≤ sc forces sb ≤ 5 with explanation

�sc ≤ 6� → �sb ≤ 5�.

The timetable propagator for cumulative uses the

compulsory part of activity a in [0..2) to force sd ≥
2. The explanation for this is �sa ≤ 0� → �2 ≤ sd�.

The the precedence sd + 3 ≤ se forces se ≥ 5 with

explanation �sd ≥ 2� → �5 ≤ se�.

Suppose next that search sets sb ≤ 2. It creates a

compulsory part of b from [2..7) but there is no propa-

gation from precedence constraints or cumulative.

Suppose now that the search sets sd ≤ 2. Then the

precedence constraint se − 3 ≤ sd forces se ≤ 5 with

explanation �sd ≤ 2� → �se ≤ 5�. This creates a com-

pulsory part of d in [2..3) and a compulsory part of e

in [5..7). In fact all the activities a, b, d and e are fixed

now. Timetable propagation sees, since all resources are

used at time 5, that activity c cannot start before time

6. A reason for this is �2 ≤ sb� ∧ �sb ≤ 5� (which forces

b to use 2 resources in [5..7)), plus �5 ≤ se� ∧ �se ≤ 5�

(which forces e to use 2 resources in [5..7)), plus �3 ≤ sc�

(which forces c to overlap this time). Hence an expla-

nation is �2 ≤ sb�∧ �sb ≤ 5�∧ �5 ≤ se�∧ �se ≤ 5�∧ �3 ≤
sc� → �6 ≤ sc�.

This forces a compulsory part of c at time 6 which

causes a resource overload at that time. An explanation

of the failure is �2 ≤ sb� ∧ �sb ≤ 5� ∧ �5 ≤ se� ∧ �se ≤
5�∧ �6 ≤ sc�∧ �sc ≤ 6� → fail. The edges are shown in

the implication graph of Figure 3 as dashed (for clarity).

The nogood generation process starts from this orig-

inal explanation of failure. It removes the last literal in

the nogood by replacing it by its explanation. Replac-

ing �6 ≤ sc� by its explanation creates the new nogood

�2 ≤ sb�∧�sb ≤ 5�∧�5 ≤ se�∧�se ≤ 5�∧�3 ≤ sc�∧�sc ≤
6� → fail. Since this nogood has only one literal that

was made true after the last decision level �se ≤ 5�

this is the 1UIP nogood. Rewritten as a clause it is

�sb ≤ 1� ∨ ¬�sb ≤ 5� ∨ �se ≤ 4� ∨ ¬�se ≤ 5� ∨ �sc ≤
2� ∨ ¬�sc ≤ 6�.

Now the solver backtracks to the previous decision

level, undoing the decision sd ≤ 2 and its consequences.

The newly added nogood unit propagates to force se ≥
6 with explanation �2 ≤ sb� ∧ �sb ≤ 5� ∧ �5 ≤ se� ∧
�3 ≤ sc� ∧ �sc ≤ 6� → �6 ≤ se�, and the precedence
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Fig. 3: (Part of) The implication graph for the propagation of Example 9. Decision literals are shown double boxed,

while literals set by unit propagation are shown boxed.

constraint se − 3 ≤ sd forces sd ≥ 3 with explanation

�6 ≤ se� → �3 ≤ sd�. Search proceeds looking for a

solution. ��

Nogoods generated by this process can have a size as

large as the number of possible Boolean variables in the

Sat representation, except that there can be at most

two non-redundant inequality literals for each integer

variable involved. Note that all generated nogoods en-

code redundant information, and we could delete any

of them at any time, but also lose the search reduction

that their propagation creates. In this paper, all gen-

erated nogoods are kept permanently which requires

space bounded by the maximal size of a nogood times

the number of conflicts during the search.

3 Models for RCPSP/max

In this section, a basic model for Rcpsp/max is first

presented and then a number of model improvements.

An Rcpsp/max can be represented as follows: A

set of activities V = {1, . . . , n} is subjected to gen-

eralized precedence relations in E ⊂ V2 × Z between

two activities, and scarce resources in R. The goal is to

find a schedule s = (si)i∈V that respects the precedence

constraints and resource constraints, and minimizes the

project duration where si is the start time of the activ-

ity i.

Each activity i has a finite duration pi and requires

(non-negative) rik units of resource k, k ∈ R for its

execution, where rik is the resource requirement or us-

age of activity i for resource k. A resource k ∈ R has

a constant capacity Rk over the planning period which

cannot be exceeded at any point in time. The planning

period is given by [0, tmax) where tmax is the maximal

project duration. Each resource k is modeled by a single

cumulative constraint:

cumulative(s, p, [rik|i ∈ V ], Rk)

Generalized precedence relations (i, j, dij) ∈ E be-

tween the activities i and j are subject to the constraint

si+dij ≤ sj . If a minimal time lag d+ij , i.e., 0 ≤ d+ij , and

a maximal time lag d−ji,i.e., 0 > d−ji, exist for an activity

j concerning to i then the start time sj is restricted to

[si+d+ij ..si−d−ji]. In the case of d+ij = −d−ji, the activity

j must start exactly d+ij time units after i.

The Rcpsp/max problem can be stated as follows:

minimize MS (5)

subject to

si + dij ≤ sj ∀(i, j, dij) ∈ E ,
(6)

cumulative(s, p, [rik|i ∈ V], Rk) ∀k ∈ R, (7)

si + pi ≤ MS ∀i ∈ V , (8)

0 ≤ si ≤ tmax − pi ∀i ∈ V . (9)

The objective is to minimize the project duration MS

(Eq. 5) which is subjected to the generalized precedence

constraints (Eq. 6), the resource constraints (Eq. 7),

and the objective constraints (Eq. 8). All start times

must be non-negative and all activities must be sched-

uled in the planning period (Eq. 9).

A basic constraint model uses a binary inequality

propagator for each precedence relation (Eq. 6), one

cumulative propagator for each resource constraint,

and a binary inequality propagator for each objective

constraint (Eq. 8). Since none of the propagators either

generate or use equality literals of the form �x = d�

they and their defining clauses in DOM(x) are never

generated during execution. Hence only (n+1)×tmax−∑
i∈V pi Boolean variables and (n + 1) × (tmax − 1) −

∑
i∈V pi clauses are needed for the domain representa-

tion of the start time variables and the objective vari-

able. Thus, the number of literals in a nogood is bounded

to 2× n+ 2.

For the remainder of this section, let an Rcpsp/max

instance be given with activities V = {1, 2, . . . , n}, gen-
eralized precedences E , resources R, and a planning pe-

riod [0, tmax).

This basic (constraint) model has a number of weak-

nesses: first the initial domains of the start times are

JOSH285_source [08/17 10:00]     Large, APA, NameYear, rh:Standard 9/18



10 Andreas Schutt et al.

large, second each precedence constraint is modeled as

one individual propagator, and finally the Sat solver in

Lcg has no structural information about activities in

disjunction.

A smaller initial domain reduces the size of the prob-

lem because fewer Boolean variables are necessary to

represent the integer domain in the Sat solver. It can

be computed in a preprocessing step by taking into ac-

count the precedences in E as described in the next

subsection. Individual propagators for precedence con-

straints may not be so bad for a small number of prece-

dence constraints, but for a larger number of propa-

gators, their queuing behavior may result in long and

costly propagation sequences. A global propagator can

efficiently adjust the time-bounds inO(n log n+m) time

(see Feydy et al., 2008) if the set of precedence con-

straints is feasible. Since the solver used herein does

not offer this global propagator, an individual propaga-

tor is used for each precedence constraint.

3.1 Initial Domain

A smaller initial domain can be obtained for the start

time variables by applying the Bellman-Ford single source

shortest path algorithm (see Bellman, 1958; Ford and

Fulkerson, 1962) on the digraph G = (V ′, E ′) where

V ′ = V ∪ {v0, vn+1}, E ′ = {(i, j,−dij) | (i, j, dij) ∈
E} ∪ {(v0, i, 0), (i, vn+1,−pi) | i ∈ V}, v0 is the source

node, and vn+1 is the sink node. The digraph is referred

to as the activity-on-node network in the literature (e.g.

Bartusch et al., 1988; Neumann and Schwindt, 1997).

If the digraph contains a negative-weight cycle then

the Rcpsp/max instance is infeasible. Otherwise the

shortest path v0 � i from the source v0 to an activ-

ity i determines the earliest possible start time for i,

i.e., −w(v0 � i) where w(.) is the length of the path.

Similarly the shortest path from an activity i to the

sink vn+1 determines the latest possible start time for i

in any schedule, i.e., tmax+w(i � vn+1). The Bellman-

Ford algorithm has a runtime complexity ofO(|V|×|E|).
These earliest and latest start times can not only

be used for initial smaller domains, but also to improve

the objective constraints by replacing them with

si − w(i � vn+1) ≤ MS ∀i ∈ V

since the start time will push back the minimum project

duration by at least this much. These smaller domains

result in
∑

i∈V(−w(v0 � i)−w(i � vn+1)) less Boolean

variables and clauses for the variable representation in

the Sat solver. The maximal size of a nogood is not

affected.

Preliminary experiments confirmed that starting the

solution process with a smaller initial domain offers ma-

jor improvements in the runtime for solving an instance

and generating a first solution, especially on larger in-

stances.

3.2 Activities in Disjunction

Two activities i and j ∈ V are in disjunction, if they

cannot be executed at the same time, i.e., the sum of

their resource requirements for at least one resource k ∈
R is greater than the available capacity: rik+rjk > Rk.

Activities in disjunction can be exploited in order to

reduce the search space.

The simplest way to model two activities i and j

in disjunction is by two half-reified constraints (Feydy

et al., 2011) sharing the same Boolean variable Bij .

Bij → si + pi ≤ sj ∀i < j in disjunction (10)

¬Bij → sj + pj ≤ si ∀i < j in disjunction (11)

If Bij is true then i must end before j starts (denoted

by i � j), and if Bij is false then j � i. The literals Bij

and ¬Bij can be directly represented in the Sat solver,

consequently Bij represents the relation (structure) be-

tween these activities. The propagator of such a reified

constraint can only infer new bounds on left hand side

of the implication if the right hand side is false, and on

the start times variables if the left hand side is true. For

example, the right hand side in the second constraint is

false if and only if maxD si−minD sj < pj . In this case

the literal ¬Bij must be false and therefore i � j.

We add these redundant constraints to the model

which allows the propagation solver to determine in-

formation about start time variables more quickly. For

each constraint, the Boolean variable is directly mod-

eled in the Sat solver and the maximal size of a nogood

increases by one.

The detection of which activity runs before another

can be further improved by considering the domains

of the start times, and the minimal distances in the

activity-on-node-network (see Dorndorf et al., 2000).

This requires keeping track of the minimal distance be-

tween each pair of activities in the network. Since such

a propagator is not offered by the Lcg solver, we do

not use their improvement for the benchmarks.

4 The Branch-and-Bound Algorithm

Our branch-and-bound algorithms are based on start-

time and conflict-driven branching strategies. We use

them alone or in combination. After each branch all
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constraints from the model, including constraints for

activities in disjunctive, are propagated until a fixpoint

is reached or the inconsistency for the partial schedule

or the instance is proven. In the first case a new node is

explored and in the second case an unexplored branch

is chosen if one exists or backtracking is performed.

The propagation solver uses a priority queue in which

the unit propagation in the Sat solver has the high-

est priority followed by propagators for precedence con-

straints, objective constraints, and the constraints for

activities in disjunction. The propagators for cumula-

tive constraints have the lowest priority. Thus, they

are executed after no further domain reduction can be

made by any other propagators.

4.1 Start-time Branching

The start-time branching strategy selects an unfixed

start time variable si with the smallest possible start

time minD si. If there is a tie between several variables

then the variable with the biggest size, i.e., maxD si −
minD si, is chosen. If there is still a tie then the variable

with the lowest index i is selected. The binary branch-

ing is as follows: left branch si ≤ minD si, and right

branch si > minD si. In the remainder this branching

is denoted by Mslf.

This branching creates a time-oriented branch-and-

bound algorithm similar to Dorndorf et al. (2000), but

it is simpler and does not involves any dominance rules.

Hence, it is weaker than their algorithm.

4.2 Conflict-driven Branching

The conflict-driven branching is a binary branching over

literals in the Sat solver. In the left branch, the literal

is set to true and, in the right branch, to false. As de-

scribed in Subsection 2.3.1 on page 6 the Boolean vari-

ables in the Sat solver represent values in the integer

domain of a variable x (e.g. ¬�x ≤ 3� and �x ≤ 10�)

or a disjunction between activities. Hence, it creates a

branch-and-bound algorithm that can be considered as

a mixture of time oriented and conflict-set oriented.

As a branching heuristic, an activity-based heuris-

tic is used which is a variant of the Variable-State-

Independent-Decaying-Sum (Vsids) (Moskewicz et al.,

2001). This heuristic is embedded in the Sat solver. In

each branch, it selects the literal with the highest ac-

tivity counter where an activity counter is assigned to

each literal, and is increased during conflict analysis if

the literal is related to the conflict. The analysis results

in a nogood which is added to the clause data base.

Here, we use the 1UIP as a nogood. Once in a while all

counters are decreased by the same factor not only to

avoid a (possible) overflow, but also to give literals in

recent conflicts more weight.

In order to accelerate the finding of solutions and

increase the robustness of the search on hard instances,

Vsids can be combined with restarts, which has been

shown beneficial in Sat solving. On restart the set of

nogoods and the activity counters have changed, so that

the search will explore a very different part of the search

tree. In the remainder Vsids with restart is denoted by

Restart. Different restart policies can be applied. Here

a geometric restart on failed nodes with an initial limit

of 250 and a restart factor of 2.0 is used (Walsh, 1999;

Huang, 2007).

4.3 Hybrid Branching

At the beginning of a search, the activity counters of

the variables have to be initialized somehow. By default

they are all initialized to the same value. With no use-

ful information in this initial setting, these activities

can mislead Vsids resulting in poor performance. To

avoid this, we consider a hybrid search that uses Mslf

to search initially, which has the effect of modifying the

activity counts to reflect some structure of the prob-

lem, and then switch to Vsids after the first restart.

Here, we switch the searches after exploration of the

first 500 nodes unless otherwise stated. The strategy

is denoted by Hot Start, and Hot Restart when

Vsids is combined with restart.

5 Computational Results

We carried out experiments on Rcpsp/max instances

available from Project Duration Problem RCPSP/max

(2010) and accessible from the PSPLib (2010). Our ap-

proach is compared to the best known exact and non-

exact methods so far on each testset. The detailed re-

sults can be found in the electronic supplementary ma-

terial and at http://www.cs.mu.oz.au/~pjs/rcpsp.

Our methods are evaluated on the following testsets

which were systematically created using the instance

generator ProGen/max (Schwindt, 1995):

CD: c, and d: each consisting of 540 instances with

100 activities and 5 resources.

UBO: ubo10, ubo20, ubo50, ubo100, and ubo200:

each containing 90 instances with 5 resources and

10, 20, 50, 100, and 200 activities resp. (cf. Franck

et al., 2001).

SM: j10, j20, and j30: each containing 270 instances

with 5 resources and 10, 20, and 30 activities resp.

(cf. Kolisch et al., 1998).
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Note that although the testset SM consists of small in-

stances they are considerably harder than, e.g., ubo10

and ubo20.

The experiments were run on an Intel(R) Xeon(R)

CPU E54052 processor with 2 GHz clock running GNU

Linux. The code was written in Mercury using the G12

Constraint Programming Platform and compiled with

the Mercury Compiler using grade hlc.gc.trseg. All clauses

created during propagation and all nogoods inferred

during conflict analysis were permanently added to the

original problem, i.e., there is no garbage collection of

clauses. Each run was given a 10 minute runtime limit.

5.1 Setup and Table Notations

In order to solve each instance, a two-phase process was

used. Both phases used the basic model with the two

described extensions (cf. Subsections 3.1 and 3.2).

In the first phase, a Hot Start search was run

to determine a first solution or to prove the infeasi-

bility of the instance. The feasibility runs were set up

with the trivial upper bound on the project duration

tmax =
∑

i∈V max(pi,max{dij | (i, j, dij) ∈ E}). The
feasibility test was run until a solution was found or

infeasibility proved. If a solution was found, we use UB

to denote the project duration of the resulting solution.

In the first phase, the search strategy should be good at

both finding a solution or proving infeasibility, but not

necessarily at finding and proving the optimal solution.

Hence, it could be exchanged with methods that might

be more suitable than Hot Start. To improve Hot

Start for finding a solution, when we used it in the

first phase we explored 5×n nodes using the start-time

branching strategy before switching to Vsids.

In the second optimization phase, each feasible in-

stance was set up again this time with tmax = UB. The

tighter bound is highly beneficial to lazy clause gener-

ation since it reduces the number of Boolean variables

required to represent the problem. The search for op-

timality was performed using one of the various search

strategies defined in the previous section.

The execution of the two-phased process leads to

the following measurements.

rtmax: The runtime limit in seconds (for both phases

together).

rtavg: The average runtime in seconds (for both phases).

fails: The average number of infeasible nodes encoun-

tered in both phases of the search.

feas: The percentage of instances for which a solution

was found.

infeas: The percentage of instances for which the infea-

sibility was proven.

opt: The percentage of instances for which an optimal

solution was found and proven.

ΔLB : The average relative deviation (as a percentage)

from the best known lower bounds of feasible in-

stances given in Project Duration Problem RCP-

SP/max (2010). The relative deviation is (bestk −
LBk)/LBk for an instance k where bestk and LBk

are the best found and best known lower bound of

the instance k respectively.

cmpr(i): Columns with this header give measurements

only related to those instances that were solved by

each procedure where i is the number of these in-

stances.

all(i): Columns with this header compare measurements

for all instances examined in the experiment where

i is the number of these instances.

Entries with the symbol “-” indicate no comparable

number was available. Entries with two numbers in-

dicate that the corresponding procedure was applied

several times to the instance and the first number gives

the average over all runs and the number in parenthe-

ses gives the best number from all runs. Entries marked

by a star “�” indicate that a procedure was not able to

find a solution for all feasible instances and therefore

the corresponding number may not be comparable with

the number from other procedures.

5.2 Comparison of the different strategies

In the first experiment, we compare all of our search

strategies against each other on all testsets. The strate-

gies are compared in terms of rtavg and fails for each

testset.

The results are summarized in the Table 1. Sim-

ilar to the results for Rcpsp in Schutt et al. (2011)

all strategies using Vsids are superior to the start-

time methods (Mslf), and similarly competitive. Hot

Restart is the most robust strategy, solving the most

instances to optimality and having the lowest ΔLB .

Restart makes the search more robust for the conflict-

driven strategies, whereas the impact of restart onMslf

is minimal.

In contrast to the results in Schutt et al. (2011)

for Rcpsp the conflict-driven searches were not uni-

formly superior to Mslf. The three instances 67, 68,

and 154 from j30 were solved to optimality by Mslf

and Mslf with restart, but neither Restart and Hot

Restart could prove the optimality in the given time

limit, whereas Vsids and Hot Start were not even

able to find an optimal solution within the time limit.

Furthermore, none our methods could find a first solu-

tion for the ubo200 instances 2, 4, and 70 nor prove
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Table 1: Comparison on the testsets CD, UBO, and SM.

Procedure feas opt infeas ΔLB
cmpr(2230) all(2340)

rtavg fails rtavg fails
Mslf 85.0 80.60 15.0 3.96785 7.73 6804 35.96 23781
Mslf with restart 85.0 80.60 15.0 3.96352 7.80 6793 36.04 23787
Vsids 85.0 82.26 15.0 3.76928 2.16 1567 22.91 13211
Restart 85.0 82.26 15.0 3.73334 2.02 1363 22.38 12212

Hot Start 85.0 82.31 15.0 3.84003 2.22 1684 22.71 12933
Hot Restart 85.0 82.35 15.0 3.73049 2.04 1475 22.36 12341

the infeasibility for the ubo200 instance 40 within 10

minutes. Only for these instances we let our methods

run until a first solution was found or infeasibility was

proven. The corresponding numbers are included in Ta-

ble 1. A detailed discussion of these instances follows in

Subsection 5.4.

5.3 Results on the testset CD

Table 2 presents the results for the testset CD where

98.1% (1.9%) of the instances are feasible (infeasible).

Here, we compare Restart and Hot Restart with

the time-oriented branch-and-bound procedure (denoted

by B&BD00) from Dorndorf et al. (2000) and the evo-

lutionary algorithm Eva from Ballest́ın et al. (2011).

The method B&BD00 performs better on this testset

than the methods proposed by De Reyck and Herroelen

(1998); Schwindt (1998a); Fest et al. (1999)3. Moreover,

B&BD00 is the best published exact method on this

testset so far. Their B&BD00 method was implemented

in C++ using Ilog Solver and Ilog Scheduler.

Their experiments were run on a Pentium Pro/200 PC

with NT 4.0 as operating system, thus their results were

obtained on a machine approximately ten times slower.

We compare our results achieved with a runtime

limit of 1 second to their results with a limit of 100 sec-

onds which should be clearly in favor of them. While

B&BD00 can prove feasibility and infeasibility of all in-

stances, the first-phase Hot Start search with one

second was unable to prove infeasibility of four infeasi-

ble instances or find solutions to two feasible instances.

It does prove infeasibility of these four infeasible in-

stances in less than 2.1 seconds and finds a first so-

lution for these two feasible instances in 4.80 seconds

and 5.04 seconds respectively. Within one second both

our methods Restart and Hot Restart were able

to prove the optimality of substantially more instances

than B&BD00. With more time our methods are able to

prove optimality of almost all instances in the testsets.

3 Results from Schwindt (1998a) are taken from Dorndorf
et al. (2000)

One reason for the first-phase results at one second

may simply be that there is a reasonable set up time

required for lazy clause generation to generate all the

Boolean variables and hence there is not much time

for search. Another reason for the weakness of proving

infeasibility is that our model only contains propaga-

tors that determine the order of activities in disjunction

concerning their domains, but not also their minimal

distance in the transitive closure of all precedences.4

Dorndorf et al. (2000) show that these propagators are

important for a fast detection of infeasibility. That Hot

Start is not so good in finding a first solution is not

surprising, since the search is not as problem specific as

that of B&BD00. In order to overcome these problems,

we could replace our first phase with, e.g., the method

of B&BD00 to prove infeasibility and generate a first so-

lution, and then use our second phase approach to find

and prove optimality.

The method Eva is the best published metaheuris-

tic on this testset. Their results were obtained on a

Samsung X15 Plus computer with Pentium M proces-

sor with 1400 MHz clock speed. This means that our

machine is at least 1.46 times faster than theirs. Their

limits are a maximum of 5000 schedules, halting the

process at any time after 10 generations where the best

schedule could not be improved. Our methods generate

better schedules within 10 seconds than their approach,

which can be seen from the lower ΔLB 3.20 which is less

than 3.24.

Overall, our methods are able to close 310 open

problems and improve the upper bound for all 21 re-

maining open problems in testset CD, according to the

results recorded in Project Duration Problem RCPSP/-

max (2010).

5.4 Results on testset UBO

Table 3 compares our procedures Restart and Hot

Restart with the truncated branch-and-bound meth-

ods FbsF01, the heuristic DmF01, and the genetic algo-

4 The missing propagators are not available in the G12
Constraint Programming Platform.
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Table 2: Results on the testset CD.

Procedure rtmax rtavg feas opt infeas ΔLB

B&BD00 100 - 98.1 71.7 1.9 4.6�
Eva - 0.62 98.1 ≥ 65.9 - 3.24 (3.16)

Restart

1 0.38 97.9 78.1 1.6 4.73�

10 1.39 98.1 89.8 1.9 3.20
100 6.17 98.1 94.0 1.9 2.86

600 19.32 98.1 95.8 1.9 2.81

Hot Restart

1 0.44 97.9 76.8 1.6 4.87�

10 1.49 98.1 89.6 1.9 3.20
100 6.27 98.1 93.9 1.9 2.86
600 19.42 98.1 96.0 1.9 2.79

The ΔLB entry marked by � is based on the lower bounds presented in Schwindt (1998b) which were not accessible for us.

rithm GaF01 all proposed by Franck et al. (2001) on the

UBO instances with up to 100 activities where 81.7%

(18.3%) of the instances are feasible (infeasible). In this

table, we add the column feas + infeas showing the sum

of percentage of feas and infeas because the correspond-
ing numbers for FbsF01 are not available. Their results

were obtained on personal computer PII with a 333MHz

processor running NT 4.0 as operating system, i.e., our

machine is about 6.2 times faster. They imposed a time

limit of n seconds, e.g., an instance with 100 activities

was given at most 100 seconds. We compare our meth-

ods with 10 (100) times lower time limit, which should

be favorable to the other methods.

Their methods were able to prove the feasibility or

infeasibility for all instances (except one instance for

the method FbsF01). Indeed DmF01 is extremely fast

requiring just 0.03 seconds on average, but it does not

necessarily find very good solutions, as shown by the

high ΔLB .

In contrast, our first-phase was not always able to

find a first solution or prove infeasibility with the time

limit n/100. No solution was found for 6 instances with

100 activities and the infeasibility was not shown for

11 (1) instances with 100 (50) activities. Once the time

limit was extended to n/10 then the first phase was

always able to find a solution or prove infeasibility.

If we compare ΔLB achieved with a time limit n/10

(note for a time limit n/100 the data is not compa-

rable, since our methods could not find a solution for

all feasible instances) then our methods have a sub-

stantially better ΔLB than their approaches, i.e., our

methods are quicker in improving the project duration.

Our approaches could prove optimality for a substantial

fraction of these problems even with time limit n/100.

In the Table 4, we compare our results with the

best metaheuristic Eva from Ballest́ın et al. (2011) on

the UBO instances with up to 100 activities. Our meth-

ods create better schedules within 100 seconds than the

evolutionary algorithm Eva leading to a smaller lower

bound deviation.

The Table 5 presents the results on ubo200 which

are compared to the iterative flattening searches Ifs,

Ifs-Fr, and Ifs-Mcsr from Oddi and Rasconi (2009).5

The table contains the extra column ΔUB that reports

the percentage of the average relative deviation from

the best known upper bounds of feasible instances given

in Project Duration Problem RCPSP/max (2010). It is

calculated similarily to ΔLB , but using the best known

upper bound. Here, 88.9% (11.1%) instances are feasi-

ble (infeasible). Note Franck et al. (2001) also run their

methods on ubo200, but the presented results are ac-

cumulated with the results on instances with 500 and

1000 activities, so that a comparison is not possible.

Within the given time limit Hot Start was not

able to find a solution for the instances 2, 4, and 70 nor

to prove the infeasibility for the instance 40. In order

to compare the results with Oddi and Rasconi, we let

our solution method run until a solution was found or

infeasibility proven. The runtimes for the instances 2,

4, 40, and 70 are 1030, 1478, 1139, and 3103 seconds,

respectively. Interestingly, the first obtained solutions

have a better upper bound by 62, 46, and 37 for the

instances 2, 4, and 70, respectively, than the previously

best known upper bound recorded in Project Duration

Problem RCPSP/max (2010).

Comparing these results on ΔUB with Oddi and

Rasconi clearly shows our procedures achieve better

schedules. Restart and Hot Restart perform com-

parably. The ubo200 instances clearly show that Hot

Start as the search strategy in the first phase can have

difficulties in finding a first solution or proving infeasi-

bility.

In total our approaches close 178 open instances and

improve the upper bound for 27 instances of 31 remain-

ing open instances with 200 activities or less in the test-

set UBO, according to the results recorded in Project

Duration Problem RCPSP/max (2010).

5 No machine details are given in Oddi and Rasconi (2009).

JOSH285_source [08/17 10:00]     Large, APA, NameYear, rh:Standard 14/18



Solving RCPSP/max by Lazy Clause Generation 15

Table 3: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100 instances in comparison with FbsF01,

DmF01, and GaF01.

Procedure rtmax rtavg feas + infeas feas opt infeas ΔLB

FbsF01 n 12.4 99.66 - - - 6.82�

DmF01 n 0.03 100 81.7 - 18.3 10.72
GaF01 n 3.16 100 81.7 - 18.3 6.93

Restart
n/100 0.21 95.0 80.0 70.8 15.0 5.73�

n/10 0.78 100 81.7 75.3 18.3 4.99

Hot Restart
n/100 0.25 95.0 80.0 69.7 15.0 5.73�

n/10 0.81 100 81.7 75.3 18.3 5.04

Table 4: Results on the testset UBO for ubo10, ubo20, ubo50 and ubo100 instances in comparison with Eva.

Procedure rtmax rtavg feas opt infeas ΔLB

Eva - 0.38 81.7 - - 4.82 (4.79)

Restart

1 0.22 80.0 71.4 15.3 5.60�

10 0.89 81.7 75.3 18.3 4.92
100 5.32 81.7 77.2 18.3 4.51
600 24.47 81.7 78.1 18.3 4.40

Hot Restart

1 0.26 80.0 70.6 15.3 5.65�

10 0.92 81.7 75.3 18.3 5.01
100 5.26 81.7 77.2 18.3 4.55
600 24.14 81.7 78.1 18.3 4.43

Table 5: Results on the testset UBO for ubo200 instances.

Procedure rtmax rtavg feas opt infeas ΔLB ΔUB

Ifs - 2148.7 88.9 - - - 2.06
Ifs-Fr - 2024.7 88.9 - - - 1.81
Ifs-Mcsr - 1716.7 88.9 - - - 1.65

Restart
100 29.55 81.1 67.8 7.8 7.37� -0.41�

600 139.0 85.6 68.9 10.0 10.11� -1.110�

600+� 187.5 88.9 68.9 11.1 11.88 -1.249

Hot Restart
100 29.9 81.1 68.9 7.8 7.22� -0.48�

600 139.0 85.6 68.9 10.0 10.10� -1.111�

600+� 186.9 88.9 68.9 11.1 11.87 -1.250

� For comparison purposes the instances 2, 4, 40, and 70 were run until a first solution was found or infeasibility proven.

5.5 Results on testset SM

Finally for the testset SM we compare our approaches

Mslf, Restart, and Hot Restart with the method

B&BS98 from Schwindt (1998a)6, Ises from Cesta et al.

(2002), and Swo(br) from Smith and Pyle (2004). The

method B&BS98 (Schwindt, 1998a) is a branch-and-

bound algorithm that resolves resource conflicts by adding

precedence constraints between activities and has been

run on a Pentium 200 with a 100 seconds time limit.

Ises is a heuristic that also adds precedence constraints

between activities in order to resolve/avoid resource

conflicts, uses restarts and has been run on a SUN Ul-

traSparc 30 (266 MHz) with the same time limit. The

method Swo(br) (Smith and Pyle, 2004) is a squeaky

wheel optimization. Their method is divided into two

6 The paper (Schwindt, 1998a) was not accessible for us,
so that here the reported results are taken from Cesta et al.

(2002).

stages: schedule generation and prioritization where the

schedule is created by a heuristic with priority scheme

and the latter changes the priorities on variables de-

pending on how “well” it is handled in the former stage.

Their benchmarks were performed on a 1700 Mhz Pen-

tium 4. Note that Ises and Swo(br) are not exact

methods, i.e., they cannot prove infeasibility unless the

precedence graph contains a positive weight cycle, and

optimality is only proven if the project duration of the

solution found equals the known lower bound.

Table 6 presents the results for the 270 instances

from SM with 30 activities. From these instances 185,

i.e., 68.5% are feasible and 85, i.e., 31.5% infeasible.

All our approaches could prove feasibility and infeasibil-

ity of all instances within one second whereas B&BS98

could not find a solution for a few feasible instances.

Moreover, our methods could prove optimality signifi-

cantly more often than the exact method B&BS98 (and

clearly also the incomplete methods). All our methods
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Table 6: Results on the j30.

Procedure rtmax rtavg feas opt infeas ΔLB

B&BS98 100 - 67.7 42.6 - 9.56�
Ises 100 22.68 68.5 33.9 (35.6) - 10.99 (10.37)
Swo(br) 10 1.07 68.5 35.0 - 10.3
Mslf 1 0.16 68.5 58.1 31.5 8.91

10 0.82 68.5 61.9 31.5 8.40
100 4.90 68.5 64.8 31.5 8.23
600 21.61 68.5 65.5 31.5 8.20

Restart 1 0.12 68.5 61.5 31.5 8.38
10 0.57 68.5 64.1 31.5 8.19
100 3.92 68.5 64.8 31.5 8.17
600 21.34 68.5 65.2 31.5 8.12

Hot Restart 1 0.12 68.5 61.5 31.5 8.37
10 0.59 68.5 64.4 31.5 8.18

100 3.93 68.5 64.8 31.5 8.16
600 21.47 68.5 65.2 31.5 8.13

The ΔLB entry marked by � is based on the lower bounds presented in Schwindt (1998b) which were not accessible for us.

were, on average, able to find on better solutions in one

second than these approaches as indicated by a lower

ΔLB . For these harder benchmarks, our methods clearly

outperform the competition. One reason could be that

constraint propagation over cumulative has a greater

benefit than on other testsets because here more activ-

ities can be run simultaneously.

Our approaches each give similar results: Restart

and Hot Restart are superior to Mslf up to 10 sec-

onds, and all are similar to each other with longer time

limits. For this problem set, Mslf could prove opti-

mality for three instances where Restart and Hot

Restart only found the optimal solution. On the other

hand, Mslf could not find an optimal solution for two

instances where Restart and Hot Restart could. It

seems that Mslf may better suit problems where more

activities can be executed in parallel, but this needs

further investigation.

Experiments were also carried out on the instances

with 10 or 20 activities. All our methods could solve

all 270 instances with 10 activities within 0.05 sec-

onds. And all our methods could solve all 270 instances

with 20 activities within 30 seconds. Moreover, for the

instances with 20 activities, an optimal solution was

found within 1 second for all feasible instances.

Here, our approaches close 85 open problems and

improve the upper bound for 3 problems of the 6 re-

maining open problems in the testset SM, according to

the results recorded in Project Duration Problem RCP-

SP/max (2010).

6 Conclusion

In this paper, we minimize the project duration of Rcpsp/

max using a generic constraint programming solver that

includes nogood learning facilities and conflict-driven

search. Experiments on three well-established bench-

mark suites show that our solver is able to find better

solutions quicker than competing approaches, and prove

optimality for many more instances than competing ap-

proaches.

We use a two-phase process. In the first phase, a so-

lution is generated or infeasibility is proven and, in the

second phase, a branch-and-bound algorithm is used for

optimization where the problem is set up with an upper

bound on the project duration found from the first so-

lution. In contrast to some previous approaches, we use

individual propagators for precedence constraints in-

stead of a propagator taking all precedence constraints

into account at once. This yields not only weaker propa-

gation, but also slower detection of infeasibility, in par-

ticular for instances with a large number of precedence

constraints. Hence, our generic search used in the first

phase is sometimes slower in finding a first solution than

some other problem-specific approaches in the litera-

ture. However, the first-phase generic search could be

replaced by one of these methods.

Overall, our method closes 573 open problems and

improves a further 51 upper bounds on the project du-

ration of the 58 remaining open problems, according

to the best known results given in Project Duration

Problem RCPSP/max (2010). We note though that the

methods from Ballest́ın et al. (2011), and Oddi and

Rasconi (2009) may have found better upper bounds

on some of these problems, but we could not find any

record of them. Note that our method is highly robust:

our method proves the optimal value for each already

closed instance in every test. Furthermore, for every

open instance in every test set we either close the in-

stance or improve the upper bounds, except for 7 in-
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stances, in 4 of which we still regenerate the best known

upper bound.

Acknowledgements We are thankful to the reviewers for
their helpful comments and suggestions. NICTA is funded
by the Australian Government as represented by the Depart-
ment of Broadband, Communications and the Digital Econ-
omy and the Australian Research Council through the ICT
Centre of Excellence program.

References

Aggoun A, Beldiceanu N (1993) Extending CHIP in

order to solve complex scheduling and placement

problems. Mathematical and Computer Modelling

17(7):57–73

Ballest́ın F, Barrios A, Valls V (2011) An evolution-

ary algorithm for the resource-constrained project

scheduling problem with minimum and maximum

time lags. Journal of Scheduling 14:391–406, DOI

10.1007/s10951-009-0125-9
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