
J Sched (2012) 15:703–715
DOI 10.1007/s10951-012-0292-y

Finding a robust assignment of flights to gates at Amsterdam
Airport Schiphol

G. Diepen · J.M. van den Akker · J.A. Hoogeveen ·
J.W. Smeltink

Published online: 18 October 2012
© Springer Science+Business Media New York 2012

Abstract In this paper we investigate the gate assign-
ment problem as it appears at Amsterdam Airport Schiphol
(AAS). Currently, the gate planners spend many hours on
adjusting the automatically generated planning during the
day of operation to make it proof against small deviations
from the schedule. To alleviate this problem, we aim at find-
ing a robust solution, given the planned arrivals and depar-
tures for the next day.

We present a completely new integer linear programming
formulation that is based on so-called gate plans. Each gate
plan consists of a subset of the flights that can be assigned to
a single gate of the corresponding type; gates with identical
characteristics are aggregated in gate types. The gate assign-
ment problem then boils down to selecting the best subset of
gate plans such that each flight belongs to one selected gate
plan, and such that the number of selected gate plans for a

Supported by BSIK grant 03018 (BRICKS: Basic Research
in Informatics for Creating the Knowledge Society).
The research was performed while G. Diepen was at Utrecht
University.

G. Diepen
Paragon Decision Technology, Schipholweg 1, 2034 LS Haarlem,
The Netherlands
e-mail: Guido.Diepen@aimms.com

J.M. van den Akker (�) · J.A. Hoogeveen
Department for Information and Computing Sciences, Utrecht
University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands
e-mail: J.M.vandenAkker@uu.nl

J.A. Hoogeveen
e-mail: J.A.Hoogeveen@uu.nl

J.W. Smeltink
National Aerospace Laboratory NLR, Anthony Fokkerweg 2,
1059 CM Amsterdam, The Netherlands
e-mail: smeltink@nlr.nl

certain type of gate is equal to the number of gates of this
type. In the first phase, we solve the LP-relaxation through
column generation, and we describe specific features to find
a very good solution to the ILP quickly. This solution is then
handed to the planners at AAS in order to assign gate plans
to physical gates. This consists of a number of relatively
small problems that can be solved by hand and in which ad-
ditional operational constraints can be incorporated. We also
present the possibility of directly assigning flights to phys-
ical gates using the column generation formulation, where
we then take into account other criteria as well.

Computational results with real-life data provided by
AAS are promising and indicate that the algorithm is able to
solve real-life instances within rather small running times.

Keywords Airport planning · Column generation · Integer
linear programming

1 Introduction

Between the time an aircraft lands at an airport and the time
it departs again many things must happen. One of the most
obvious things is that the passengers need to disembark the
aircraft. Moreover, the aircraft needs to be refueled, new
passengers need to board it, new supplies have to be put on
board, and the aircraft has to get cleaned. These latter two
actions are taken care of by the so-called ground handler.
All of these actions take place while the aircraft is stand-
ing at a gate. We will refer to the arrival of an aircraft till
the following departure of the same aircraft as a flight. Note
that we have no freedom of coupling incoming and outgoing
flights to aircraft; this is input.

Now the gate assignment problem is described as fol-
lows: assign a given set of flights to a (smaller) set of gates

mailto:Guido.Diepen@aimms.com
mailto:J.M.vandenAkker@uu.nl
mailto:J.A.Hoogeveen@uu.nl
mailto:smeltink@nlr.nl

704 J Sched (2012) 15:703–715

while making sure that certain criteria are met. Examples of
such criteria are:

• Gates can handle only flights operated by aircraft of cer-
tain sizes.

• Gates can handle only flights for certain origins/destina-
tions (e.g. because of safety regulations).

• Gates can handle only flights assigned to certain ground
handlers.

• Two adjacent gates cannot be assigned flights operated by
big aircraft at the same time.

• Two adjacent gates should not be assigned flights with
equal departure times.

Depending on the airport and its characteristics, many
variants of the gate assignment problem have been re-
searched and many solution methods have been suggested.
A good overview of explored methods and models is given
in Van Orden (2002). In this paper we consider the situa-
tion at Amsterdam Airport Schiphol (AAS). Depending on
the time horizon of the planning we distinguish between
the following three planning problems: seasonal planning,
daily planning, and tactical planning. The seasonal planning
problem is a capacity planning problem. In this problem the
gate planners must decide to accept or decline new requests
from airlines to have their aircraft visit AAS. The daily plan-
ning concerns the creation of a planning for the upcoming
day on the basis of the available information about the flights
of that day. Finally, the tactical planning concerns the resolv-
ing of conflicts that arise in the planned solution (i.e. the
planning created the day before) due to disturbances. Ob-
serve that in Air Traffic Management tactical planning takes
place within the last few hours before the actual operation
of a flight, opposed to e.g. supply chain management where
tactical planning is defined as the planning a few months
before operation.

The problem we consider in this paper is daily planning.
In contrast to the novel variant of dial-a-flight, as described
in Espinoza et al. (2008a, 2008b), we assume that all flights
have already been scheduled. Hence, for each flight we are
given the arrival and departure time, the type of plane that
carries out the flight, and the ground handler. Given these
data, we are asked to find the best solution to the gate assign-
ment problem. In the literature, there is no agreement on the
criteria that constitute the objective function; this may also
depend on the airport. A criterion occurring in many papers
is passenger comfort, which is measured by minimizing the
total walking distance (Bihr 1990; Haghani and Chen 1998;
Xu and Bailey 2001). Other criteria are the number of flights
that cannot be assigned to a gate, the total waiting time for
the aircraft (i.e. the time an aircraft has to be held after land-
ing before the gate is free), the total number of split flights
(where the flight is towed from the arrival gate to the de-
parture gate), the deviation of a given reference schedule

(which criterion is used to enforce for example that daily
flights are assigned to the same gate each day), robustness
(which is measured on basis of the buffer time between two
consecutive flights on the same gate), and total preference
score (each flight-gate combination obtains a score on ba-
sis of some preferences issued by the airport authorities). In
many papers a linear combination of a number of the above
criteria is optimized. For example, Yan and Huo (2001) con-
sider the situation at Chiang Kai-Shek Airport. Here the op-
timization criteria are a linear combination of total waiting
time for the aircraft and total walking distance of the pas-
sengers (where the walking distance of transfer passengers
is estimated to avoid a quadratic model). Yan et al. (2002)
present a simulation framework for testing the resulting so-
lution for the daily planning problem in combination with a
couple of heuristics for the tactical planning problem. Dorn-
dorf et al. (2007) present a survey of the gate assignment
problem in general and also discuss recent developments
with regard to the multi-criteria objectives. In the follow-
up paper (Dorndorf et al. 2008) evaluate a solution on ba-
sis of three criteria: number of split flights, total preference
score, and robustness. The criteria are aggregated in a linear
objective function, which is then solved through a heuristic
based on the clique partitioning problem; by varying the rel-
ative weights of the criteria, an approximation of the Pareto
optimal frontier is determined. In another follow-up paper,
Dorndorf et al. (2012) consider two further criteria: the num-
ber of unassigned flights and the minimal deviation from
a reference schedule. The authors show that the approach
from Dorndorf et al. (2008) can be applied to find decent
solutions for this problem as well. Drexl and Nikulin (2008)
look for the Pareto optimal frontier, too. Here the criteria are
the number of unassigned flights, total preference score, and
walking distance; the latter criterion is quadratic when trans-
fer passengers are included. Splitting of flights is not possi-
ble, but the authors have included this feature in Nikulin and
Drexl (2010). Here the criteria are the number of split flights,
the total preference score, and deviations from a given refer-
ence schedule. Again, this is tackled by using Pareto Simu-
lated Annealing, where the possible uncertainty in the input
data is treated by using fuzzy numbers.

Although minimizing passenger walking distance seems
to be most frequently studied in previous work, this is not
a natural objective in the case of AAS. Unlike some other
international airports, the gate planning at Schiphol is per-
formed by airport authorities and not by specific airlines
who own part of the terminal. As a consequence the gate
planners do not have complete passenger data and especially
they do not have all transfer patterns. Although the planners
consider passenger walking distances by putting flights with
many passengers close to the terminal building, they are not
in the position to perform a full-blown minimization of pas-
senger walking distance.

J Sched (2012) 15:703–715 705

The planning software currently in use at AAS is based
on a greedy algorithm that assigns flights to gates on the
basis of an optimal point score per flight, i.e. the total pref-
erence score criterion. This score includes different issues,
such as preferences of airlines and ground handlers. An air-
port is a very dynamic environment and an actual day will
hardly ever go completely as planned; flights arrive either
earlier or later than planned due to all kinds of reason. Expe-
riences from the gate planners at AAS reveal that currently
each day a considerable amount of time (a number of hours)
has to be spent on replanning the automatically generated
schedule in order to make it more robust, because the cur-
rent planning software does not consider robustness at all.
Moreover, every change needed in the gate assignment dur-
ing the actual day has an effect on a very broad range of
parties: the ground handler, the security personnel, the pas-
sengers, etc. Therefore, creating a schedule that needs fewer
changes during the tactical planning is of major importance
for a variety of parties. For the above reasons we consider
robustness as the objective function. We are concerned with
creating a robust schedule in the sense that the schedule is
able to cope with small perturbations (within approximately
half an hour) in arrival or departure time without the need to
replan big parts of the schedule.

The question is how to measure the robustness of a sched-
ule, without knowing the actual instance, which only gets
known during the day of operation. Since the arrival and de-
parture times are subject to uncertainty, we could consider
these times as stochastic variables. However, a stochastic op-
timization model has a much larger computational complex-
ity than a deterministic model. Observe that the ability of the
schedule to absorb small perturbations is determined by the
probability that a conflict arises between two consecutively
scheduled flights at the same gate. The idea of our approach
is that, instead of a stochastic model, we use a determin-
istic model with a cost function that assigns larger cost to
schedules in which the probability of conflicts is higher. The
probability that a conflict arises between two consecutively
scheduled flights at the same gate depends on the ‘reliabil-
ity’ that the aircraft will stick to their assumed departure and
arrival times and on the idle time between these two consec-
utive flights. The ‘reliability’ is related to the variance of the
arrival and departure time. It cannot be influenced by the
gate planners directly, and should be derived from histori-
cal data. Consequently, we focus on optimizing the choice
of the pairs of flights that we put consecutively at a gate; we
want to have as much idle time as possible between the con-
secutive flights, where the preference for larger idle time in-
creases when the reliability of the involved flights becomes
smaller. Since the total amount of idle time is constant, we
look at the division of the idle times.

One approach for optimizing the individual idle times,
and thus finding a robust schedule, is to minimize the vari-
ance of the idle time between successive flights at a gate.

This approach is used in Bolat (2000) where the problem
is formulated as an Integer Linear Program (ILP) using bi-
nary decision variables that link flights to positions at a gate.
Based on this research a similar approach was followed in
Van Orden (2002) for modeling the gate assignment problem
for AAS. Although the suggested model showed promising
results, a major drawback of this model was that it was not
possible to solve problems with more than 80 aircraft and 20
gates in a reasonable amount of time.

In this paper we present a new formulation for the gate
assignment problem which enables us to compute a robust
gate assignment schedule for a full day of traffic at AAS,
i.e., about 600 flights, within a few minutes. We include all
real constraints occurring at the airport that we have identi-
fied in discussions with the gate-planners of the airport. To
attain robustness, we optimize the idle time between all con-
secutive flights at the gates by using an objective function
that assigns high cost to pairs of consecutive flights leading
to high probability of conflicts. Instead of minimizing the
variance of the idle times, we develop an objective function
based on the arctangent, and we make some adjustments to
this function to take the ‘reliability’ of the flights into ac-
count. We formulate this problem as an ILP and use a com-
pletely different representation from the one used in Van Or-
den (2002). This different representation is derived from the
one used in Freling et al. (2001) for the vehicle and crew
scheduling. We present an algorithm based on column gen-
eration to find a very good approximation for the optimum
in this model. Our experiments indicate that this algorithm
is able to solve real-life instances to near-optimality within a
few minutes. Because of the high quality of the approxima-
tion even a near-optimal solution will suffice and techniques
as branch-and-price (Barnhart et al. 1998) to solve the prob-
lem to full optimality will not pay off.

The outline for the remainder of this paper is as follows:
In Sect. 2 we give a detailed description of the gate assign-
ment problem. In Sect. 3 we formulate the gate assignment
problem as an ILP and present our algorithm to find an ap-
proximate solution. In Sect. 4 we will present the experi-
mental results, and finally in Sect. 5 we draw some conclu-
sions and indicate some future research topics.

2 Problem description

As mentioned in the previous section, our objective is to
maximize the robustness of a solution to the gate assignment
problem. To maximize the robustness we maximize the idle
time between all pairs of consecutive flights at a gate, en-
suring that each flight can arrive either a bit too early or a
bit too late without the need for replanning the schedule. An
example of a non-robust schedule can be found in Fig. 1,
where we assume here that each plane can be assigned to

706 J Sched (2012) 15:703–715

Fig. 1 Example of a non-robust schedule

both gates. This schedule does not have a lot of margin be-
tween flight 2 and flight 3. By modifying the schedule such
that flight 3 is assigned to gate 2, while flight 4 gets assigned
to gate 1 we introduce a lot more robustness in the solution.

To evaluate the robustness of a schedule more accurately,
we take into account whether two consecutive flights as-
signed to the same gate, are operated by the same airline
or share the same ground handler. Such a situation is con-
venient, since then the airline and or the ground handler
will have an incentive to make the first flight leave on time.
Moreover, some airlines or airports are known to be unre-
liable, meaning that if a flight of such an airline is due to
depart at a certain time, then there is a great chance that it
is delayed. In a convenient situation the amount of idle time
is less critical, whereas in case of unreliability of the airline
or departure airport the amount of idle time is very critical.
We will model this by adjusting the cost associated to the
amount of idle time between the two flights.

There are several hard constraints in the gate assignment
problem. Obviously, each flight must be assigned to a gate,
and two flights cannot be assigned to the same gate at the
same time. But there are many more hard constraints, con-
cerning the properties connected with the flights and the
gates. The properties that are known for each flight are:

• The region of the origin of the flight.
• The region of the destination of the flight.
• The size category of the aircraft performing the flight.
• The ground handler for the flight.

The region can be either Schengen (which refers to the coun-
tries that signed the Schengen Agreement), European Union
(EU), or Non-EU. Often the region of the origin and the re-
gion of the destination of a flight are the same, but there
are many exceptions, including e.g. transit flights that do
not have AAS as their final destination. With respect to the
size category of the flight, there are eight categories at AAS:
category 1 for the smallest aircraft up to category 8 for the
biggest aircraft. Finally, the ground handlers are divided into
two groups at AAS: KLM Ground Services and all other
companies. Each group in principle works at its own part
of the apron which means that the gates (including plat-
form stands) are divided into gates that are served by KLM
Ground Service and gates that are served by others.

For each of the gates it is known which regions and which
size categories can be served, and by which ground handler
it is operated. When assigning flights to a certain gate, we
need to satisfy the following three essential properties:

• The regions of origin and destination of the flight must
match the possible regions of the gate.

• The size category of the flight must match the possible
size categories of the gate.

• The ground handler of the flight must match the possible
ground handlers of the gate.

One important issue of the gate assignment problem is
that some of the flights stay at AAS for a longer period
of time; for example, they arrive early in the morning and
leave again late in the afternoon. If there are many such
long-stay flights that stay at the gate, then the number of
available gates quickly decreases. In case the capacity at the
gates in not enough to handle all flights, the gate planners
at AAS have the possibility of splitting the stay of long-stay
flights into three different parts. According to operational
rules used at AAS this proceeds as follows:

• Arrival part. After the aircraft lands, it will stay at the
gate for 65 minutes, after which it is towed to some buffer
stand.

• Intermediate part. During this part the aircraft resides on
a buffer stand, where it does not use precious gate capac-
ity.

• Departure part. The aircraft is taken from the buffer to
the appropriate gate, 95 minutes before the aircraft will
depart.

At AAS only flights that stay longer than three hours are
considered for such a splitting. The advantages of splitting
long-stay flights are three-fold. First, there is the obvious
extra capacity that becomes available for the assignment of
other aircraft. The second advantage concerns flights with
different regions for the origin and destination: such flights
normally would have to be assigned to a gate that is multi-
purpose with respect to the region property, and these gates
are quite scarce. When such a flight is split into parts, the
separate parts do not have to be assigned to the same gate
and thus can be assigned to two single-region gates. Third,
the decoupling of the parts yields additional flexibility.

Currently the process of splitting the long-stay flights
is done manually. First the gate planners try to solve the
gate assignment problem without splitting any flights. If
the available capacity is not sufficient to accommodate all
flights, the gate planners determine which flights should be
split and then solve the problem again. This step is repeated
several times until sufficient capacity is available.

3 Solution approach

Recall that our main objective is robustness, which depends
on the amount of idle time between two consecutive flights
at the same gate. To value the idle time between two con-
secutive flights, Bolat (2000) considers minimizing the vari-
ance of the idle time. Here the idle times before the first

J Sched (2012) 15:703–715 707

Fig. 2 Cost function to value idle time

flight and after the last flight on a gate are taken into account
as well, which implies that the total idle time is a constant.
As a result, minimizing the variance becomes equivalent to
minimizing the sum of the squared idle times.

A disadvantage of minimizing the total squared idle time
is that it looks counter-intuitive: large idle times are penal-
ized heavily, whereas small idle times get low cost. As a
consequence, it becomes hard to adjust the cost in case of
a convenient pair of consecutive flights as discussed before.
Therefore, we have defined a new cost function. An impor-
tant criterion here was that it should penalize solutions with
large conflict probability. Moreover, it should mimic the ap-
preciation of a solution by a planner: the solution that is
liked the most by the planner should be the one that gets the
minimum score. Our cost function is based on the cost for
idle time, with an adjustment for convenience. The function
that we use to measure the cost of idle time should possess
the following characteristics. First of all, it should penalize
very small idle-times with very high cost and it should only
mildly penalize rather large idle times. Second, the func-
tion should be steep in the beginning (for small idle times)
and then flatten out, to reflect that for small idle times any
improvement is very beneficial, whereas for already large
idle times an extra increase is of minor importance. Third, it
should be possible to combine this with a refinement reflect-
ing the convenience of certain combinations and the unrelia-
bility of certain flights, as mentioned in the previous section.
We found that a cost-function based on the arctangent fulfills
the desired properties best. This function is defined as

c(t) =
{

1000(arctan(0.21(5 − t)) + π
2) if t ≥ 20

∞ otherwise

where t is the amount of idle time. The lower bound of 20
minutes follows the regulations at AAS. This function is de-
picted in Fig. 2. Initial experiments showed that it was not
beneficial to make use of a cut-off value (i.e. a threshold after
which any increase in idle time will not result in a decrease
of the costs). Such a cut-off value resulted in longer running
times for the ILP, which can be explained by the fact that the
cut-off value introduces a lot of symmetry in the problem.

Recall from the previous section that there could be an
advantage (or disadvantage) in assigning certain pairs of
flights consecutively to the same gate. Since we want to
mimic the appreciation that the planners have for a solution,
we adjust the cost function for each pair of flights v and w,
if necessary. Hereto, we introduce a convenience multiplier
conv(v,w) for flights v and w. To compute the cost of plac-
ing flight w immediately after flight v at the same gate, the
cost corresponding to the idle time in between these flights
will be multiplied by this multiplier. If putting flight w af-
ter flight v is desirable (e.g. flight v and w are operated by
the same airline or handled by the same ground handler),
then the convenience multiplier is given a value less than 1,
thus decreasing the cost. On the other hand, inconvenient
situations (e.g. when flight v is operated by an unreliable
airline) can be penalized by giving the multiplier for these
situations a value greater than 1, thus increasing the cost of
such an assignment. In deliberation with the planners we de-
fine some criteria that we use in the computation, like for
example “do the planes belong to the same airline and/or
ground handler?”, “what is their reliability record?”, etc. On
basis of this, we determine for each possible outcome a suit-
able value of the convenience multiplier. As a consequence,
the convenience multiplier can be defined beforehand for all
possible pairs of successive flights, while during run-time
only one additional multiplication per pair of consecutive
flights is needed.

Since instances of the complete gate assignment prob-
lem consist of around 600 flights and 120 gates, we would
like to see if we can decompose the problem into a set of
smaller subproblems based on one of the properties asso-
ciated with each gate (i.e. the possible regions, sizes, and
ground handlers). Unfortunately for each of those properties
gates exist that are multi-purpose for that particular property.
This means that a strict division into multiple independent
subproblems based on any of the properties is not possible
without discarding available capacity: a given multi-purpose
gate can only be assigned to one of the subproblems. Hence,
such a static division is not desired.

The standard approach for modeling the problem as an
ILP uses variables that denote whether a flight is assigned to
a certain gate, see Van Orden (2002). One major disadvan-
tage of this kind of model is that many additional variables
are needed to determine the order of the flights, which is
necessary to compute the idle time between two consecu-
tive flights and hence the cost of a solution. Moreover, the
number of constraints grows rapidly when relations between
multiple gates and flights are present in the problem. This
rapid growth of both variables and constraints makes it im-
possible to solve a gate assignment problem of the size that
occurs at AAS. Therefore, a new approach is needed.

Based on the approach used by Freling et al. (2001)
for the single-depot vehicle scheduling problem, we split

708 J Sched (2012) 15:703–715

the gate assignment problem into two phases. In the first
phase we aggregate gates with the same properties (iden-
tical gates) into groups of gates and each such group we
refer to as a gate type. A certain gate type is characterized
by at least the three essential properties: origin and destina-
tion area, ground handler and size category, which have to
be equal for two gates to belong to the same gate type. The
model has the flexibility to make the gate type more specific;
for example flights of the airline El Al have to be handled at
specific gates. We now introduce a gate plan as a series of
flights that are to be assigned to the same gate of a certain
gate type. Gate plans enable us to check feasibility easily: all
flights present in the gate plan must satisfy the properties of
the gate type that the gate plan corresponds to and between
each pair of consecutive flights there should be an interval
of at least 20 minutes. From now on, we define a gate plan
to be feasible if it satisfies these two constraints. The cost
of a feasible gate plan is equal to the cost of all idle times
between consecutive flights within the gate plan. With this
representation solving the first phase comes down to finding
a set of gate plans such that we have a gate plan for each
physical gate, and such that each flight is present in exactly
one of the gate plans.

After we have obtained a solution for the first phase, for
each gate type we have as many gate plans as there are gates
of that gate type. We guarantee that all ‘single gate’ con-
straints concerning separation time, and concerning the cor-
rect gate type with respect to at least the size of the flight,
origin–destination area and ground handler are met. In the
second phase we undo the aggregation of identical gates into
groups of gate types and we have to assign each gate plan
to a physical gate. Here we consider ‘multiple gate’ con-
straints, such as that it is impossible to have simultaneous
push-backs at opposite gates.

Besides the two step approach, we can also directly as-
sign flights to gates. This is achieved by defining a sepa-
rate type for each single physical gate. This allows us to in-
clude more details on the cost or benefits of assigning certain
flights to certain gates, e.g. putting a flight with a large num-
ber of passengers far away from the main part of the terminal
leads to an additional penalty.

We further want to remark here that our solution ap-
proach is independent from the cost function that we devel-
oped: it can be used for any cost function that is based on the
idle times between consecutive flights. Suppose for example
that we would know the exact probability distribution of the
arrival and departure times, which allows us to compute the
probability that putting flights i and j consecutively on a
gate will lead to a conflict between these two flights. Then
we can compute the cost of a gate plan as the expected num-
ber of conflicts for the flights involved. Hence, we can then
use our approach to minimize the expected number of con-
flicts (where it might be wise to use a threshold probability

that must be respected for each pair of consecutive flights to
avoid ending up with some gates in which all ‘difficult-to-
schedule’ flights are accumulated). Moreover, we can easily
work with reward functions for assigning flights to a given
gate-type.

3.1 The ILP formulation

When we look at the number of possible gate plans, we can
clearly see that the number of possible gate plans is enor-
mous. Suppose for the moment that we do have the com-
plete set of all possible gate plans. Then the gate assignment
problem can be formulated as determining which of these
gate plans we must select. Now for each gate plan i we in-
troduce a decision variable xi as follows:

xi =
{

1 if gate plan i is selected
0 otherwise

We define ci as the cost of gate plan i which can easily be
computed from the idle times between consecutive flights.
Let V denote the number of flights, let A denote the number
of gate types, let Sa denote the number of gates of type a,
and let N denote the number of gate plans. Now the basic
model for the gate assignment problem is as follows:

Minimize
N∑

i=1

cixi

subject to

N∑
i=1

gvixi = 1 for v = 1, . . . , V (1)

N∑
i=1

eiaxi = Sa for a = 1, . . . ,A (2)

xi ∈ {0,1} for i = 1, . . . ,N (3)

where

gvi =
{

1 if flight v is in gate plan i

0 otherwise

eia =
{

1 if gate plan i is of type a

0 otherwise

We will extend this basic model to cover more possibilities.
One important issue not addressed by the above model is the
fact that it should be possible to promote placing a flight at
a certain gate type. We will add constraints to model that
certain flights are preferably assigned to certain gate types,
e.g. because of the size of the waiting area or because of
airlines having their ‘own’ gates where at least a certain per-
centage of their flights have to be assigned to. Such an ad-
ditional constraint consists of a set of flights, a set of gate

J Sched (2012) 15:703–715 709

types, and the minimum number of flights out of the given
set that should be assigned to the given set of gate types.

Preferences can be modeled in the ILP by adding the fol-
lowing constraints to the model:

N∑
i=1

V∑
v=1

A∑
a=1

pvakeiagvixi ≥ Pk for k = 1, . . . ,K (4)

where

pvak =
⎧⎨
⎩

1 if flight v has preference for gate type a

in preference k

0 otherwise

Pk denotes the minimum number of flights that have to be
assigned to a given gate type according to preference k, e.g.
an airline must have at least six flights at their ‘own’ gates.
K denotes the total number of preferences.

We further extend the above model to deal with the case
that there is not enough capacity to accommodate all flights.
To solve this problem we add a penalty variable UAFv

(unassigned flight) for every flight v to constraint (1) in the
following way:

N∑
i=1

gvixi + UAFv = 1 for v = 1, . . . , V

UAFv ≥ 0 for v = 1, . . . , V

(5)

The extra variable UAFv for flight v is added with a very
high cost coefficient Qv in the objective function. Now it
is possible to have flights not being assigned to gates, but
the cost of this option are so large it only occurs when it
is infeasible to assign more flights to gates. The existence
of these unassigned flights in the final solution is then re-
ported to the planners. In contrast to our computer program,
the planners are allowed to overrule some of the constraints,
if necessary. Then, the planners can either make the solu-
tion feasible by manually planning the unassigned flights,
or change the input according to their breaking of the rules,
after which the program can be run again, starting from the
final solution of the previous run. We can select the cost co-
efficients of the UAFv variables to model the effort it takes
to assign a flight manually; for example, in general it is eas-
ier to assign a flight operated by a small aircraft somewhere
manually than a flight operated by a big aircraft. The values
for these cost coefficients were determined via preliminary
computations.

One thing not addressed in the model yet is the fact that
flights with a long stay can be split into three parts: an Ar-
rival part, an Intermediate part, and a Departure part. To
model this possibility, for each long-stay flight v we create
two split flights vA and vB , which refer to the arrival and de-
parture part of flight v, respectively. The intermediate parts

of the flights are not modeled because the buffer stands for
these intermediate parts are not part of the gate assignment
problem.

Since these three flights v, vA, and vB concern the same
flights, we must ensure we model their dependency. This can
be achieved by splitting the original constraint (1) for flight
v into two separate constraints

N∑
i=1

(gvi + gvA,i)xi + UAFvA
= 1 and

N∑
i=1

(gvi + gvB,i)xi + UAFvB
= 1

Here UAFvA
and UAFvB

indicate the possibility of not as-
signing (a part of) flight v; their cost coefficients each get a
value half of the value of the original cost coefficient UAFv .

Furthermore, we have to include the split flights in the
additional constraints (4). Since each split flight only repre-
sents half of the original flight, each gets a coefficient 0.5 by
redefining pvak as follows

pvak =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if flight v has preference on gate type a

in preference k

0.5 if the split version of flight v has
preference on gate type a in preference k

0 otherwise

The ILP formulation presented above models the prob-
lem correctly, but unfortunately the size of the problem is
enormous, since the number of possible gate plans is enor-
mous. To reduce the size of the problem, we only take a
subset of the gate plans into account; when we solve the
ILP problem for this subset, we find an approximate solu-
tion. In our selection of the gate plans, we try to identify
gate plans that we expect to have some chance of getting
selected in the optimum solution; we call these presumably
useful gate plans. To identify these, we solve a relaxation
of the problem; we assume here that gate plans that show
up in the solution process of this relaxation will be reason-
able candidates for the original ILP problem as well. The
relaxation we consider is the LP-relaxation: thereto, we re-
lax the integrality constraints (3) and solve the LP-relaxation
through column generation. Eventually, we reinstate the in-
tegrality constraints and solve the resulting ILP formulation
with the columns generated. As a side-effect, we can use the
value of the LP-relaxation as a measure for the quality of the
obtained ILP formulation.

3.2 Pricing problem

We start by generating a set of columns that constitute a fea-
sible solution to the LP-relaxation. After we have solved the

710 J Sched (2012) 15:703–715

LP-relaxation for a given set of columns, we find a dual mul-
tiplier πv for the constraint (1) corresponding to flight v,
a dual multiplier λa for the constraint (2) corresponding to
type a, and a dual multiplier ψk for the constraint (4) corre-
sponding to preference k. Therefore, the reduced cost for a
gate plan i is equal to

ci −
A∑

a=1

eiaλa −
V∑

v=1

(
gviπv +

K∑
k=1

A∑
a=1

gvieiapvakψk

)

Note that for the original parts of a long-stay flight the above
must be slightly changed. Since the original part of a long-
stay flight is present in two constraints, we must subtract the
two dual multipliers πvA

and πvB
instead of only πv .

It is well-known from the theory of linear programming
that we have solved the LP-relaxation to optimality if the re-
duced cost of each gate plan is greater than or equal to zero.
To check this, we compute the minimum reduced cost over
all feasible gate plans; this is called the pricing problem. We
solve this problem by composing a network such that each
feasible gate plan corresponds to a path in this network, and
vice versa. Moreover, we choose the lengths of the arcs such
that the length of a path equals the reduced cost of the cor-
responding gate plan. Hence, we can then solve the pricing
problem by solving a shortest-path problem in this network.

We solve the pricing problem for each gate type sep-
arately. For each type of gate a we introduce a directed
acyclic graph Ga = (Va,Ea). We add a vertex to this graph
for every flight v that is allowed to be assigned to a gate of
type a. Furthermore, we add vertices s and t , denoting the
source and sink respectively. If two flights v and w are al-
lowed on a gate of type a and the arrival time T arr

w of flight

w is greater than or equal to the departure time T
dep
v of flight

v plus the minimum idle time T min
v required after flight v (at

AAS this is assumed to be 20 minutes independent from the
flights v and w), then a directed edge from vertex v to w is
added to the graph. Furthermore, a directed edge from the
source vertex s to every vertex v is added, as well as a di-
rected edge from every vertex v to the sink vertex t . Hence,

Ea = {
(v,w) | T arr

w ≥ T
dep
v + T min

v

}
∪ {

(s, v), (v, t) | for all v
}

It can be easily seen that every path from s to t in Ga repre-
sents a feasible gate plan of type a and vice versa. What is
left is to set the lengths of the arcs, such that the length of a
path is equal to the reduced cost of the corresponding gate
plan. The cost ci of gate plan i is equal to the sum of the
cost of the idle time intervals. Since including the arc (v,w)

in the path implies that v and w are consecutive flights in
the gate plan, we assign the cost of the idle time interval be-
tween v and w to the arc (v,w). Looking at the remainder

of the reduced cost, we see that the additional contribution
of including flight v in a gate plan of type a amounts to

−πv −
K∑

k=1

pvakψk

which we add to the cost of the arc (v,w) in Ga . The addi-
tional arcs (s, v) and (s, t) get cost −λa , and the additional
arcs (v, t) get cost equal to −πv − ∑K

k=1 pvakψk . Since ex-
actly one of the outgoing edges of vertex v will be used if
v occurs in a path, the total cost of a path equals the re-
duced cost of the corresponding gate plan. Note that the cost
c(T

dep
w − T arr

v) of putting flight w immediately after flight v

in the gate plan is constant; after each iteration, we only have
to update the cost terms containing the dual multipliers.

For solving the pricing problem we need to find the gate
plan with minimal reduced cost. Since each path in the graph
corresponds to a possible, feasible gate plan and the path
length corresponds to the reduced cost of the represented
gate plan, finding the gate plan with minimal reduced cost
comes down to finding the shortest path in the presented
graph. Without loss of generality we assume that all flights
are sorted by their arrival times. This assumption implies a
topological order on the vertices in the graph, namely the
order of the flight indices. Because we now have a directed
acyclic graph with a topological order it is possible to find
the shortest path in O(|V | + |E|) time (cf. Cormen et al.
2001).

When a gate plan with minimum reduced cost has been
found, there are two possibilities:

• The new gate plan has negative reduced cost. This means
that by adding this gate plan to the master problem, the
objective value of the master problem might decrease and
thus we add this gate plan to the master problem.

• The gate plan has zero reduced cost in which case there
exists no gate plan with negative reduced cost.

For each of the gate types, we need to check whether a gate
plan with negative reduced cost exists. If for none of the gate
types a gate plan with negative reduced cost exists, then the
master problem has been solved to optimality.

3.3 Solving the restricted ILP

After the master problem has been solved to optimality we
only have a solution for the LP-relaxation. If this solution
happens to be integral, then we have a solution to the orig-
inal ILP formulation of the gate assignment problem, too.
If the solution is fractional, then we have to convert it to
an integer solution. One possibility for this is to make use
of branch-and-price. But since this is computationally infea-
sible, and since a good approximation suffices, we go for
an approximate solution. To this end, we use the ILP-solver

J Sched (2012) 15:703–715 711

CPLEX to solve the ILP with the limited set of columns. In
our preliminary computations, we only used the restricted
set of columns generated by the column generation. It turned
out that this took too much time and memory. Moreover, if
solutions were found within reasonable running time, then
the quality of these solutions was really bad. The large run-
ning time and memory consumption can be explained by
the fact that the restricted set of columns generated for solv-
ing the LP is too restrictive for already covered flights. As
the first-choice column was generated once, when solving
a pricing problem, we decided to create a set of additional
second-choice columns each time when solving the pricing
problem.

To create these second-choice columns we used the fol-
lowing procedure. We first solve the pricing problem, that
is, we find the shortest path. We then take out the nodes
in the shortest path one by one and solve the shortest path
problems for each of the resulting graphs. These additional
columns are added to a column pool. After the master LP
problem has been solved to optimality, we determine the set
of unique columns from the ones that are in the column pool.
This set of unique columns is then added to the restricted
ILP problem. After these unique columns were added to the
ILP problem, the ILP solver was able to solve the problem
in a matter of minutes and sometimes even seconds instead
of running for hours or even days. A possible reason for this
tremendous speed improvement may be that, since the num-
ber of unique gate plans that are in the column pool is quite
large, it might be easier for the branch-and-bound subrou-
tine of CPLEX to find a good lower or upper bound quickly,
thus speeding up the process.

3.4 Assigning gate plans to gates

After solving the ILP, we have a set of gate plans with just
as many gate plans of type a as there are physical gates of
type a, such that the total schedule is robust against small
variations caused by for example delays of flights. In the
second phase of the problem we have to determine which
gate plan is assigned to which physical gate.

In the first phase we have introduced constraints dealing
with just one gate type. We did not consider relations be-
tween specific physical gates, like for example the constraint
that two flights having the same departure time cannot be
assigned to directly opposite gates due to the impossibility
of a simultaneous push-back of both flights. We consider
these types of constraint when we assign the gate plans to
the physical gates in the second phase.

In Van Orden (2002) some additional constraints have
been formulated that need to be addressed in the second
phase. These are:

• Avoid putting two flights next to each other that have an
overlapping wingspan.

• Avoid putting two flights with equal departure time next
to each other because of conflicting push-back.

• Avoid putting two flights that have the same departure
time on opposite gates because they cannot have a push-
back at the same time.

• Minimize the walking distance for the passengers. This
concerns both arriving or departing passengers and trans-
fer passengers.

Although the first one of these constraints at first sight seems
to be a good example of a second phase constraint, it turned
out to be not important at all. After receiving detailed infor-
mation of the gates at AAS from the gate planners it turned
out that this constraint did not exist for any gate at AAS. But
there does exist a strongly related constraint at AAS though,
which decrees that it is possible to combine two gates of a
small category to one gate of a bigger category. This con-
straint cannot be addressed in the first phase, since we do
not know then which two gate plans will be next to each
other in the final solution. In theory it is possible to take this
constraint into consideration when solving the first phase
by creating a new category of gates consisting of the two
smaller gates. The pricing problem for this gate type would
then consist of two paths that both contain the selected ver-
tices corresponding to the aircraft of a bigger category. This
problem is harder to solve. Therefore, and also since there
are not so many of these possibilities, we have decided not
to take this constraint into consideration.

After completing the second phase it will be known
which gate plans and thus which flights will be assigned to
the gates that can be combined. When there are big flights
left that are still not assigned, the gate planner will be able
to manually combine a set of these smaller gates into one
gate of a bigger category and assign a bigger flight to this
combined gate.

Although the gate planners at AAS do not have informa-
tion regarding possible connecting flights of the passengers,
one way they try to maximize passenger comfort is to min-
imize the maximum walking distance. This is achieved by
putting flights with a large number of passengers at the best
gates. Since we are assigning entire gate plans to gates now,
we have less flexibility, but we can use the same principle.
Gates that are closer to the beginning of the pier are consid-
ered to be better gates. So also in this case the number of
passengers will be an important factor in the decision: when
there are more gate plans to choose from, the one with the
largest number of departing passengers will be assigned to
the best gate.

The full assignment problem of the second phase can be
decomposed into a number of smaller assignment problems,
one for each type of gate. Most of these subproblems can
be solved independently, but some are dependent, since they
involve gates that have a neighboring or opposite gate of a

712 J Sched (2012) 15:703–715

different type. The dependent subproblems need more atten-
tion. To determine the benefit of assigning a flight to a cer-
tain physical gate, the gate planners at AAS use a number of
different rules.

Presumably, the best option is to present the gate planners
with the results from the first phase and have them assign the
gate plans to the physical gates. This can be done manually
since the size of these problems is rather small; generally the
maximum number of gates within one gate type is around
eight. Only for remote stands this number is higher, but the
flexibility for assigning gate plans to these remote stands is
really high. Finally, sometimes it may turn out to be benefi-
cial to swap two flights from two gate plans, resulting in a
better solution with respect to the additional constraints, at
the expense of a small deterioration of the robustness.

3.5 Directly assigning flights to gates

The two phases of first assigning flights to gate plans and
then assigning the gate plans to gates can be integrated by
modeling each single physical gate as a separate type.

We considered all the gates except for the remote stands
as separate types. The reason we do not consider each re-
mote stand as a separate type is that there does not exist any
significant difference between these gates (e.g. they do not
have waiting rooms and they all require a bus to transport
passengers to and from the terminal building). Our compu-
tational experiments reveal that considering all gates as sep-
arate types is still computationally feasible. Furthermore, it
decreases the amount of work in the second phase, because
it limits the second phase to swapping some gate plans be-
tween physical gates and if necessary including unassigned
flights and swapping flights between gate plans.

The advantage of directly assigning flights to gates is that
we can include other criteria than just robustness to assess
the solution. We can use here any criterion that can be com-
puted when the combination flight-gate is known, like walk-
ing distance, total score (appreciation of a flight to be put on
a gate) and deviation from a reference schedule. Given any
composite objective function that we want to apply for this
combination of criteria, we can compute the cost of the gate
plans and solve the problem. The pricing problem for find-
ing a gate plan for a given gate can be solved as before, since
the flight-gate appreciation yields a constant reward that can
be computed before. The problem can be solved for various
composite objective functions (not necessarily linear) in an
incremental fashion. Nonetheless, robustness remains most
important.

The disadvantage is that there is no freedom left to deal
with constraints in which a combination of gates is in-
volved. For example, preventing simultaneous push backs
will require additional constraints, since this requires that
we forbid a combination of conflicting gate plans. To find

out which constraints should preferably be included in the
model and which constraints can better be handled manu-
ally by the gate planners, is a matter of further research. Pre-
sumably, there will always be need for some kind of second
phase especially if it is necessary to manually violate some
of the constraints to accommodate all flights.

4 Computational experiments

We have implemented the model and its solution in C++ and
performed extensive computational experiments. All of the
tests were conducted on a Pentium 4, 2.8 GHz with 1 GB of
RAM. For solving the LP problems and for solving the re-
sulting ILP problem by branch-and-bound the Concert Tech-
nology interface of CPLEX 9.1.2 (ILOG 2005) was used.

AAS has provided us with six different sets of data, three
of which contain the flights on busy high season days (HS),
and three on low season days (LS). From each data set we
derived two instances, one instance where we group gates
with equal properties into a type and one instance where,
except for the remote stands, each individual gate forms a
separate type. The sizes of the different data sets are given
in Table 1. For a data set X, instance X-GG denotes the in-
stance with grouped gates and X-SG the instance with a gate
type for each individual gate.

During the column generation process we applied the
dual simplex method for solving the LPs, which is default in
CPLEX, as well as the primal simplex method. In our exper-
iments this hardly made any difference and we report results
on the dual simplex method only. To limit the size of the in-
termediate linear programs, we take out columns with large
positive reduced cost, since these are unlikely to improve
the current solution. After every given number of iterations
we remove all columns from the model with reduced cost

Table 1 Sizes of the provided instances. LS is low season, HS is high
season

Instance Flights Gate types Total gates

HS-1-GG 699 40 128

HS-2-GG 680 40 128

HS-3-GG 688 40 128

LS-1-GG 602 40 128

LS-2-GG 608 40 128

LS-3-GG 593 40 128

HS-1-SG 699 94 128

HS-2-SG 680 94 128

HS-3-SG 688 94 128

LS-1-SG 602 94 128

LS-2-SG 608 94 128

LS-3-SG 593 94 128

J Sched (2012) 15:703–715 713

Table 2 Running time, number
of iterations, and number of
columns generated for various
take-out frequency values

*Take out frequency 40 resulted
in an unsolvable LP

Instance Take out freq 40 Take out freq 80 No take out

sec. iters. cols. sec. iters. cols. sec. iters. cols.

HS-1-GG 139 693 14157 139 634 12892 195 557 12236

HS-2-GG 126 625 13622 128 580 12627 165 582 11971

HS-3-GG 110 642 13629 118 595 12628 158 537 12287

LS-1-GG * * * 61 685 9910 82 640 9198

LS-2-GG 62 681 10861 67 599 9944 89 562 9640

LS-3-GG 62 693 10881 67 651 10124 82 597 9783

HS-1-SG 331 765 33004 310 652 29976 447 572 29116

HS-2-SG 300 631 31628 257 582 28410 505 589 28958

HS-3-SG 257 641 31796 236 631 28163 385 573 28423

LS-1-SG 470 1238 27975 160 700 20895 169 641 19968

LS-2-SG 137 673 24041 146 625 21960 161 562 22169

LS-3-SG 127 668 23650 122 621 22119 137 590 22276

above a certain threshold. This threshold is determined by
taking the average reduced cost of the columns added in the
previous iteration and multiply this average with −0.75.

These removed columns are put in a special repository
and are added again when we solve the ILP. We tested dif-
ferent frequencies of taking out columns: from every 40 it-
erations to every 110 iterations with step size 10, or no take
out. In Table 2 the results are given for 40, 80, and no take
out. We report on the time needed to solve the LP-relaxation,
the number of iterations and the number of columns gener-
ated.

It is clear that the time needed for solving the LP is con-
siderably bigger for the high-season data sets than for the
low-season data sets. Taking out columns every 40 iterations
is faster in many cases. However, in some cases the compu-
tation time is strongly enlarged, while in one case the prob-
lem could not even be solved at all. The reason for this is
that CPLEX gets stuck in a cycle of generating new columns
which need some time before they become useful and before
they do become useful, they are taken out and CPLEX has
to regenerate them again. Our experiments indicate that a
frequency of 80 is the best although, there is not a large dif-
ference with neighboring values.

Recall that in order to solve the resulting ILP in a rea-
sonable time, we need to add the columns from the column
pool. Moreover, we add the columns that were taken out and
put in a repository. To decrease the size of the branch-and-
bound tree we gamble for a small integrality gap. In CPLEX
we manually initialize an upper bound on the best integral
solution at a value of 0.35 percent above the optimal value of
the LP-relaxation, which implies that all nodes with a larger
lower bound are pruned. This turns out to significantly de-
crease the solution time. Moreover, we experimented with
different settings of CPLEX, such as more elaborate pre-
processing and more aggressive cut generation; see Table 3.

Table 3 Running times for solving the ILP with and without enhance-
ments, averaged over three different values for the take-out frequency

Instance ILP default (s) ILP enhanced (s)

HS-1-GG 7 6

HS-2-GG 18 9

HS-3-GG 9 8

LS-1-GG 118* 52*

LS-2-GG 101 24

LS-3-GG 58 24

HS-1-SG 21 19

HS-2-SG 48 24

HS-3-SG 26 15

LS-1-SG 168 120

LS-2-SG 73** 126

LS-3-SG 94 113

*Take out freq 40 resulted in one unsolvable LP
**Default CPLEX was not able to solve three instances within 60 min-
utes

In Table 4 we show the running times for solving the ILP for
the default settings of CPLEX and for the enhanced settings.
For each instance we give the average running time over the
different take-out strategies and the primal and dual simplex
method for solving the LPs during column generation. In
the enhanced settings, after 90 seconds, the solution process
is aborted and more aggressive parameters settings are used
for CPLEX, resulting in more time spent on preprocessing
the problem which led to smaller running times for solving
the restricted ILP. Moreover, using the enhanced settings we
were able to solve more instances.

We will refer to the combination of using a take-out fre-
quency of 80, dual simplex, and the above enhancements for
the ILP as the best variant.

714 J Sched (2012) 15:703–715

Table 4 LP and ILP for the
best variant Instance LP (s) Convert (s) ILP (s) Total (s) Iters. Columns Poolsize Gap (%)

HS-1-GG 139 13 6 160 634 12892 85225 0.00

HS-2-GG 128 12 6 148 580 12627 82558 0.00

HS-3-GG 118 13 5 138 595 12628 84036 0.00

LS-1-GG 61 8 21 91 685 9910 58374 0.19

LS-2-GG 67 8 23 100 599 9944 59527 0.21

LS-3-GG 67 8 5 81 651 10124 59099 0.09

HS-1-SG 310 30 12 355 652 29976 185970 0.00

HS-2-SG 257 28 13 300 582 28410 173453 0.00

HS-3-SG 236 28 13 279 631 28163 172979 0.00

LS-1-SG 160 16 161 340 700 20895 113413 0.18

LS-2-SG 146 18 21 187 625 21960 122092 0.21

LS-3-SG 122 17 196 339 621 22119 118663 0.09

Finally, we report more details for the best variant. In Ta-
ble 4, the running times, the number of iterations, number
of generated columns, the number of columns in the col-
umn pool, together with the integrality gap are given. Here
Convert denotes the time required to add all unique columns
from the pool and repository to the model plus the time
needed to convert the LP into an ILP. Again, a clear dif-
ference can be seen between the high season data sets and
the low season data sets for both the number of generated
columns and the number of columns in the column pool.
The same holds for the groups of gates and single gates.

Our results indicate that the integrality gap is very small.
This implies that our method is able to find practically op-
timal solutions for real-life instances in about 10 minutes.
Moreover, the results indicate it is feasible to consider sin-
gle gates as a group. Although this does not make the second
phase unnecessary, it makes it easier.

5 Conclusion and further research

We have investigated the gate assignment problem at AAS
and developed a two phase solution approach. In the first
phase we assign the flights to gate plans, while in the sec-
ond phase we assign the gate plans to the actual gates. It
turns out that the second phase boils down to a set of small
problems that can be solved manually. For the first phase,
we have presented a different way of formulating the gate
assignment problem as an ILP. Our model includes all real-
istic constraints that are actually used for solving the gate as-
signment problem at AAS. Furthermore, we have described
a method to find an approximate solution for this new ILP
formulation. We have implemented it in C++, where we use
CPLEX 9.1.2 for solving the (I)LPs.

Our implementation was tested with real life input data,
provided by AAS. These instances could be solved in a mat-

ter of minutes to near-optimality and sometimes even to op-
timality.

The planning software currently in use at AAS is based
on a greedy algorithm that assigns flights to gates on the ba-
sis of an optimal point score per flight. This score includes
different issues, such as preferences of airlines and ground
handlers, but it does not contain any robustness measure.
Our advanced LP-based algorithm and the planning soft-
ware of AAS using a greedy algorithm have comparable run-
ning times. During meetings we had with the gate planners
at AAS, finding a robust schedule was identified as a ma-
jor improvement in the support of their daily planning ac-
tivities. Our algorithm focuses explicitly on robustness, and
is expected to give the gate planners more time for solving
larger conflicts that arise during the actual day.

A next step is to test the effect of optimizing our robust-
ness objective in more detail and to analyze the quality of
our solutions compared to the solutions presented by the cur-
rent planning software. This needs an extensive simulation
study, which is an important topic for further research. In
Diepen et al. (2011) we presented a column generation algo-
rithm for robust planning of platform busses at AAS, with a
similar type of objective function. This paper also includes a
simulation study which reveals that schedules from the col-
umn generation algorithm require fewer interventions from
the planners than the schedules computed by a first-come-
first-served algorithm as is used in current practice.

As a first step towards the integration of the first and
second phase, we defined in our first phase model every
individual gate as a separate type, except for the platform
stands. Our experiments show that the problem then still can
be solved within a few minutes. By increasing the number
of types and defining the gate types more restrictively, we
could include more constraints and preferences in the first
phase. Further research possibilities are to model and imple-
ment more of the rules that the gate planners use to assign
the flights to gates.

J Sched (2012) 15:703–715 715

Finally, our algorithm allows parallelization, e.g. solving
in parallel the pricing problems for different gate type and
determining in parallel different columns for the column
pool by omitting a single flight. This might be of interest
when the algorithm is applied for replanning during the day
of operation, because then speed is a crucial factor.

Acknowledgements We would like to thank Prof. Dr. Jan van
Leeuwen for his helpful comments on an earlier version of the pa-
per. Moreover, we thank two anonymous referees for their suggestions
to improve the paper.

References

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P.,
& Vance, P. H. (1998). Branch-and-price: column generation for
solving huge integer programs. Operations Research, 46, 316–
329.

Bihr, R. A. (1990). A conceptual solution to the aircraft gate assign-
ment problem using 0,1 linear programming. In Proceedings of
the 12th annual conference on computers and industrial engineer-
ing (pp. 280–284). Elmsford: Pergamon Press

Bolat, A. (2000). Procedures for providing robust gate assignments
for arriving aircrafts. European Journal of Operational Research,
120, 63–80.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001).
Introduction to algorithms (2nd ed.). Cambridge/New York: MIT
Press/McGraw Hill.

Diepen, G., Pieters, B., van den Akker, J., & Hoogeveen, J. (2011,
in press). Robust planning of airport platform buses. Computers
and Operations Research. Available at: http://www.sciencedirect.
com/science/article/pii/S0305054811002267

Dorndorf, U., Drexl, A., Nikulin, Y., & Pesch, E. (2007). Flight gate
scheduling: state-of-the-art and recent developments. Omega, 35,
326–334.

Dorndorf, U., Jaehn, F., & Pesch, E. (2008). Modelling robust flight-
gate scheduling as a clique partitioning problem. Transportation
Science, 42, 292–301.

Dorndorf, U., Jaehn, F., & Pesch, E. (2012). Flight gate scheduling with
respect to a reference schedule. Annals of Operations Research,
194, 177–187. doi:10.1007/s10479-010-0809-8.

Drexl, A., & Nikulin, N. (2008). Multicriteria airport gate assignment
and Pareto simulated annealing. IIE Transactions, 40, 385–397.

Espinoza, D., Garcia, R., Goycoolea, M., Nemhauser, G., & Savels-
bergh, M. (2008a). Per-seat, on-demand air transportation part I:
problem description and an integer multi-commodity flow model.
Transportation Science, 42, 263–278.

Espinoza, D., Garcia, R., Goycoolea, M., Nemhauser, G., & Savels-
bergh, M. (2008b). Per-seat, on-demand air transportation part II:
parallel local search. Transportation Science, 42, 279–291.

Freling, R., Wagelmans, A. P. M., & Paixao, J. M. P. (2001). Models
and algorithms for single-depot vehicle scheduling. Transporta-
tion Science, 35(2), 165–180.

Haghani, A., & Chen, M.-C. (1998). Optimizing gate assignments at
airport terminals. Transportation Research. Part A, Policy and
Practice, 32, 437–454.

ILOG (2005). ILOG CPLEX v9.1. http://www.ilog.fr.
Nikulin, N., & Drexl, A. (2010). Theoretical aspects of multicriteria

flight gate scheduling: deterministic and fuzzy models. Journal of
Scheduling, 13, 261–280.

Van Orden, A. (2002). Gate assignment: methods and models. Master’s
thesis, Department of Mathematics, Utrecht University.

Xu, J., & Bailey, T. G. (2001). The airport gate assignment problem:
mathematical model and a tabu search algorithm. In HICSS’01:
proceedings of the 34th annual Hawaii international conference
on system sciences (HICSS-34) (Vol. 3).

Yan, S., & Huo, C.-M. (2001). Optimization of multiple objective gate
assignments. Transportation Research. Part A, Policy and Prac-
tice, 35, 413–432.

Yan, S., Shieh, C.-Y., & Chen, M. (2002). A simulation framework
for evaluating airport gate assignments. Transportation Research.
Part A, Policy and Practice, 36(5), 885–898.

http://www.sciencedirect.com/science/article/pii/S0305054811002267
http://www.sciencedirect.com/science/article/pii/S0305054811002267
http://dx.doi.org/10.1007/s10479-010-0809-8
http://www.ilog.fr

	Finding a robust assignment of flights to gates at Amsterdam Airport Schiphol
	Abstract
	Introduction
	Problem description
	Solution approach
	The ILP formulation
	Pricing problem
	Solving the restricted ILP
	Assigning gate plans to gates
	Directly assigning flights to gates

	Computational experiments
	Conclusion and further research
	Acknowledgements
	References

