
ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES

JOSÉ VERSCHAE* AND ANDREAS WIESE*

ABSTRACT. One of the most important open problems in machine scheduling is the problem of scheduling
a set of jobs on unrelated machines to minimize the makespan. The best known approximation algorithm
for this problem guarantees an approximation factor of 2. It is known to be NP -hard to approximate with
a better ratio than 3/2. Closing this gap has been open for over 20 years.

The best known approximation factors are achieved by LP-based algorithms. The strongest known
linear program formulation for the problem is the configuration-LP. We show that the configuration-LP
has an integrality gap of 2 even for the special case of unrelated graph balancing, where each job can be
assigned to at most two machines. In particular, our result implies that a large family of cuts does not
help to diminish the integrality gap of the canonical assignment-LP. Also, we present cases of the problem
which can be approximated with a better factor than 2. They constitute valuable insights for constructing
an NP -hardness reduction which improves the known lower bound.

Very recently Svensson [22] studied the restricted assignment case, where each job can only be assigned
to a given set of machines on which it has the same processing time. He shows that in this setting the
configuration-LP has an integrality gap of 33/17 ≈ 1.94. Hence, our result imply that the unrelated graph
balancing case is significantly more complex than the restricted assignment case.

Then we turn to another objective function: maximizing the minimum machine load. For the case
that every job can be assigned to at most two machines we give a purely combinatorial 2-approximation
algorithm which is best possible, unless P = NP . This improves on the computationally costly LP-based
(2 + ε)-approximation algorithm by Chakrabarty et al. [6].

1. INTRODUCTION

The problem of minimizing the makespan on unrelated machines, usually denoted R||Cmax, is one
of the most prominent and important problems in the area of machine scheduling. In this setting we
are given a set of n jobs and a set of m unrelated machines to process the jobs. Each job j requires
pi,j ∈ N+ ∪ {∞} time units of processing if it is assigned to machine i. The scheduler must find
an assignment of all jobs to machines with the objective of minimizing the makespan, i. e., the largest
completion time of a job.

In a pioneering work, Lenstra, Shmoys, and Tardos [15] give a 2-approximation algorithm based on
a natural LP-relaxation. On the other hand, they show that the problem is NP -hard to approximate
within a better factor than 3/2, unless P = NP . Reducing this gap is considered to be one of the most
important open questions in the area of machine scheduling [19] and it has been opened for more than
20 years.

Given the apparent difficulty of this problem, people have turned to consider simpler cases. One spe-
cial case that has drawn a lot of attention is the restricted assignment problem. In this setting each job
can only be assigned to a subset of machines, and it has the same processing time on all its available
machines. That is, the processing times pi,j of a job j equal either a machine-independent processing
time pj ∈ N+ or infinity. Surprisingly, the best approximation guarantee known for this problem con-
tinues to be the 2-approximation algorithm by Lenstra et al. [15]. However, very recently Svensson [22]
shows that the so called configuration-LP has an integrality gap of 33/17 ≈ 1.94, and thus is possible to
compute in polynomial time a lower bound that is within a factor 33/17 + ε ≈ 1.94 + ε to the optimum.
However, no polynomial time algorithm is known to construct a solution with a performance guarantee
which is strictly better than 2.

*Technische Universität Berlin, Germany, {verschae,wiese}@math.tu-berlin.de. This work was partially sup-
ported by Berlin Mathematical School (BMS) and by DFG Focus Program 1307 within the project “Algorithm Engineering for
Real-time Scheduling and Routing”.

ar
X

iv
:1

01
1.

49
57

v1
 [

cs
.D

M
]

 2
2

N
ov

 2
01

0

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 1

Another restricted setting that has considered significantly less attention is the unrelated graph bal-
ancing problem1. In this setting each job has finite (possibly different) processing times on at most two
machines. Let us remark that the complexity of this case and the restricted assignment has different
roots. In the restricted assignment case, the difficulty is given by the fact that the set of available ma-
chines for each job is arbitrary, but its processing time is identical on all these machines. On the other
hand, in the unrelated graph balancing problem each job has at most two machines available but the
processing times may be different on these two machines. Moreover, for instances which have these
two properties together, i.e., each job can be assigned to at most two machines on which it has the same
processing time, there exists a 1.75-approximation algorithm [8]. In the first part of this paper we focus
on the unrelated graph balancing problem and show that it is significantly different than the restricted
assignment problem. We show that the integrality gap of the configuration-LP is 2 in this setting. In
contrast, the integrality gap for the restricted assignment case is at most 33/17 < 2 [22].

In the second part of this paper we consider another related problem that has been in the eyes of the
scheduling community in recent years. In the MaxMin-allocation problem we are also given a set of jobs,
a set of unrelated machines and processing times pi,j as before. The load of a machine i, denoted by `i,
is the sum of the processing times assigned to machine i. The objective is to maximize the minimum
load of the machines, i.e., to maximize mini `i. The idea behind this objective function is a fairness
property: Consider that jobs represent resources that must be assigned to machines. Each machine i
has a personal valuation of job (resource) j, namely pi,j . The objective of maximizing the minimum
machine load is equivalent to maximizing the total valuation of the machine that receives the least total
valuation.

1.1. The Minimum Makespan Problem.
Unrelated machines. Besides the paper by Lenstra et al. [15] that we have already mentioned, there has
not been much progress on how to diminish the approximation gap forR||Cmax. Shchepin and Vakhania
[20] give a more sophisticated rounding for the LP by Lenstra et al. and improve the approximation guar-
antee to 2− 1/m, which is best possible among all rounding algorithms for this LP. On the other hand,
Gairing, Monien, and Woclaw [10] propose a more efficient combinatorial 2-approximation algorithm
based on unsplittable flow techniques.

In the preemptive version of this problem we are allowed to stop processing a job at an arbitrary time
and resume it later, possibly on a different machine. In contrast to the non-preemptive problem, Lawler
and Labetoulle [13] show a polynomial time algorithm to compute an optimal preemptive schedule.
Thus, it is possible to design an approximation algorithm for R||Cmax by using the value of an optimal
preemptive schedule as a lower bound. Shmoys and Tardos (cited as a personal communication in [17]),
shows that it is possible to obtain a 4-approximation algorithm using this method. More recently, Correa,
Skutella and Verschae [7] show that this is best possible by proving that the power of preemption, i.e., the
worst case ratio between the makespan of an optimal preemptive and non-preemptive schedule, equals 4.
Restricted Assignment. The best approximation algorithm for the restricted assignment problem known
so far is the (2− 1/m)-approximation algorithm that follows from the more general problem R||Cmax.
As mentioned above, Svensson [22] recently shows how to estimate the optimal makespan within a
factor 33/17 + ε in polynomial time. This is done by showing that in this setting the configuration-LP
has an integrality gap of at most 33/17. However, no polynomial time rounding procedure is known.

Other results are known for several special cases, depending on the structure of the set of machines
that the jobs can be assigned to, see [16] for a survey. Also, special cases concerning the processing
times have been studied. In particular, Lin and Li [18] prove that if all processing times are equal the
restricted assignment problem is solvable in polynomial time.
Graph balancing. The graph balancing problem can be interpreted as a problem on an undirected graph.
The nodes of the graph correspond to machines and the edges correspond to jobs. The endpoints of an
edge associated to job j are the machines on which j has finite processing time pj ∈ N+. The objective
is to find an orientation of the edges so as to minimize the maximum load of all nodes, where the load of
a node is defined as the sum of processing time of its incoming edges (jobs). Notice that the graph may
have loops and in that case the corresponding job must be assigned to one particular machine.

1To the best of our knowledge, this setting was first mentioned by Ebenlendr, Krčál, and Sgall [8]. However, in that paper
they focus on the even more restrictive setting that each job has even the same processing on each of the two machines.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 2

Ebenlendr et al. [8] give a 1.75-approximation algorithm based on an tighter version of the LP-
relaxation by Lenstra et al. [15]. They strengthen this LP by adding inequalities that prohibit two large
jobs to be simultaneously assigned to a machine. Additionally to the 1.75-approximation algorithm for
graph balancing, Ebenlendr et al. [8] also show that it is NP -hard to approximate this problem with a
factor better than 3/2. This matches the lower bound for the more general problem R||Cmax. On the
other hand, some special cases are studied. For example, it is known that if the underlying graph is a
tree, the problem admits a PTAS. If the processing times are either 1 or 2, there is a 3/2-approximation
algorithm, which is best possible, unless P = NP . For these and more related results see [14] and the
references therein.

On the other hand, there is not much known for the unrelated graph balancing problem, where the
processing time of a job can be different on its two available machines. To the best of our knowledge,
everything known about this problem follows from the more general case R||Cmax.

1.2. The MaxMin-Allocation Problem.
Unrelated Machines. The MaxMin-allocation problem has drawn a lot of attention recently. For the
general setting of unrelated machines Bansal and Sviridenko [4] show that the configuration-LP has an
integrality gap of Ω (

√
m). On the other hand, Asadpour and Saberi [3] show constructively that this is

tight up to logarithmic factors and provide an algorithm with approximation ratio O
(√
m log3m

)
. Re-

laxing the bound on the running time, Chakrabarty, Chuzhoy, and Khanna [6] present a poly-logarithmic
approximation algorithm that runs in quasi-polynomial time. The best knownNP -hardness result shows
that it is NP -hard to approximate the problem within a factor of 2− ε for any ε > 0 [5, 6]. For the spe-
cial case that there are only two processing times arising in an instance (apart from zero), Golovin [11]
gives an O(

√
n)-approximation algorithm. He also provides an algorithm that gives at least a (1− 1/k)

fraction of the machines a load of at least OPT/k.
Restricted Assignment. Bansal et al. [4] study the case where every job has the same processing time
on every machine that it can be assigned to. They show that the configuration-LP has an integrality gap
of O(log logm/ log log logm) in this setting. Based on this they provide an algorithm with the same
approximation ratio. The bound on the integrality gap was improved to O(1) by Feige [9] and to 5 and
subsequently to 4 by Asadpour, Feige, and Saberi [2, 1]. The former proof is non-constructive using the
Lovász Local Lemma, the latter two are given by an (possibly exponential time) local search algorithm.
However, Haeupler et al. [12] make the proof by Feige [9] constructive, yielding a polynomial time
constant factor approximation algorithm.
Unrelated Graph balancing. For the special case that every job can be assigned to at most two ma-
chines (but still with possibly different execution times on them) Bateni et al. [5] give a 4-approximation
algorithm. Chakrabarty et al. [6] improve this by showing that the configuration-LP has an integrality
gap of 2, yielding a (2 + ε)-approximation algorithm. Moreover, it is NP -hard to approximate even
this special case with a better ratio than 2 [5, 6]. In fact, the proofs use only jobs which have the same
processing time on their two respective machines. Interestingly, the case that every job can be assigned
to at most three machines is essentially equivalent to the general case [5].

1.3. Our Contribution. As mentioned before, our main result for the minimum makespan problem is
that the configuration-LP has an integrality gap of 2, even in the case of unrelated graph balancing. This
implies that any set of cuts that involves only one machine per inequality cannot help to improve the
integrality gap of the LP-relaxation of Lenstra et al. [15]. Recall that for the restricted assignment case
the configuration-LP has an integrality gap of 33/17 < 2 [22]. Hence, our result gives an indication that
the core complexity of R||Cmax lies in the unrelated graph balancing case rather than in the restricted
assignment case. In particular, our instances use processing times from the set {ε, 1,∞}. For this case,
Svennson [22] proves even an upper bound of 5/3 + ε for the integrality gap of the configuration-LP for
the restricted assignment problem.

Additionally, we study special cases for which we obtain better approximation factors than 2. In
particular, we obtain a 1 + 5/6 approximation guarantee for the special case of R||Cmax where the
processing times belong to the set [γ, 3γ] ∪ {∞} for some γ > 0. Note that the strongest known
NP -hardness reductions create instances with this property. Moreover, we show that there exists a
(2− g/pmax)-approximation algorithm, where g denotes the greatest common divisor of the processing

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 3

times, and pmax the largest finite processing time. This result generalizes the result by Lin et al. [18],
that says that the case where the processing times are either 1 or infinity is polynomially solvable.

We also give a 5/3-approximation algorithm for the case that an optimal solution assigns only a
constant number of jobs to machines where they need more processing time than a 2/3 fraction of the
makespan. We achieve the same approximation guarantee for the case that for all butO(log n) machines
it is priorly known whether they execute such big jobs. These results yield necessary properties for an
NP -hardness reduction which shows a non-approximability of 2 for R||Cmax.

We also consider restricted cases of the MaxMin-allocation problem. Our main result for this problem
is in the unrelated graph balancing setting, for which we present a simple purely combinatorial algorithm
with quadratic running time which has a performance guarantee of 2. This improves on the LP-based
(2 + ε)-approximation algorithm by Chakrabarty et al. [6]. Their algorithm resorts to the ellipsoid
method to approximately solve a linear program with exponentially many variables where the separation
problem of the dual is the KNAPSACK problem and can only be solved approximately. Our algorithm
is significantly simpler to implement and moreover best possible, unless P = NP . Finally, we study
what is achievable by allowing half-integral solutions, that is, solutions where we allow each job to be
split into two halves. We give a polynomial time algorithm that computes a half integral solution whose
objective value is within a factor of 2 of the optimal integral solution. Moreover, by loosing an extra
factor of 2 in the cost we can transform this solution to a solution with at most m/2 fractional jobs. This
result contrasts the integral version of the problem for which only an O(

√
m log3m)-approximation

algorithm is known.

2. LP-BASED APPROACHES

In this section we revise the classical rounding procedure by Lenstra et al. [15] and elaborate on the
implications of our results. In the sequel we denote by J the set of jobs and M the set of machines of a
given instance.
The Natural LP-Relaxation. The natural IP-formulation used by Lenstra et al. [15] uses assignment
variables xi,j ∈ {0, 1} that denote whether job j is assigned to machine i. This formulation, which we
denote by LST-IP, takes a target value for the makespan T (which will be determined later by a binary
search) and does not use any objective function.∑

i∈M
xi,j = 1 for all j ∈ J,(2.1) ∑

j∈J
pi,jxi,j ≤ T for all i ∈M,(2.2)

xi,j = 0 for all i, j : pi,j > T,(2.3)

xi,j ∈ {0, 1} for all i ∈M, j ∈ J.(2.4)

The corresponding LP-relaxation of this IP, which we denote by LST-LP, can be obtained by replacing
the integrality condition by xi,j ≥ 0. Let CLP be the smallest integer value of T so that LST-LP is
feasible, and let C∗ be the optimal makespan of our instance (or equivalently, C∗ is the smallest target
makespan for which LST-IP is feasible). Thus, since the LP is feasible for T = C∗ we have that CLP

is a lower bound on C∗. Moreover, we can easily find CLP in polynomial time with a binary search
procedure.

Lenstra et al. [15] give a rounding procedure that takes a feasible solution of LST-LP with target
makespan T and returns an integral solution with makespan at most 2T . By taking T = CLP ≤ C∗ this
yields a 2-approximation algorithm. The rounding, which we call LST-rounding, consists in interpreting
the xi,j variables as a fractional matching in a bipartite graph, and then rounding this fractional matching
to find an integral solution. The rounding procedure we refer here is a refinement of the original one,
derived by Shmoys and Tardos [21] for the generalized assignment problem.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 4

Theorem 1 ([21]). Let (xi,j)j∈J,i∈M be a feasible solution of LST-LP with target makespan T . Then,
there exists a polynomial time rounding procedure that computes a binary solution {x̄i,j}j∈J,i∈M satis-
fying Equation (2.1) and∑

j∈J
x̄i,jpi,j ≤ T + max{pi,j : j ∈ J and xi,j > 0} for all i ∈M.

By noting that max{pi,j : j ∈ J and xi,j > 0} ≤ T , the previous theorem yields that the rounding
procedure embedded in a binary search framework is a 2-approximation algorithm for the makespan
problem on unrelated machines.
Integrality gaps and the configuration-LP. Shmoys and Tardos [21] implicitly show that the rounding
just given is best possible by means of the integrality gap of LST-LP. For an instance I of R||Cmax,
let CLP (I) be the smallest integer value of T so that LST-LP is feasible, and let C∗(I) the minimum
makespan of this instance. Then the integrality gap of this LP is defined as supI C

∗(I)/CLP (I). It
is easy to see that if CLP is used as a lower bound for deriving an approximation algorithm then the
integrality gap is the best possible approximation guarantee that we can show. Shmoys and Tardos [21]
give an example showing that the the integrality gap of LST-LP is arbitrarily close to 2, and thus the
rounding procedure is best possible. This together with Theorem 1 implies that the integrality gap of
LST-LP equals 2.

It is natural to ask whether adding a family of cuts can help to obtain a formulation with smaller inte-
grality gap. Indeed, for special cases of our problem it has been shown that adding certain inequalities
reduces the integrality gap. In particular, Ebenlendr et al. [8] show that adding the following inequalities
to LST-LP yields an integrality gap of at most 1.75 in the graph balancing setting:∑

j∈J :pi,j>T/2

xi,j ≤ 1 for all i ∈M.(2.5)

In this paper we study whether it is possible to add similar cuts to strengthen the LP for the unre-
lated graph balancing problem or for the general case of R||Cmax. For this we consider the so called
configuration-LP, defined as follows. Let T be a target makespan, and define Ci(T) as the collection of
all subsets of jobs with total processing time at most T , i.e.,

Ci(T) :=

C ⊆ J :
∑
j∈C

pi,j ≤ T

 .

We introduce a binary variable yi,C for all i ∈M andC ∈ Ci(T), representing whether the jobs assigned
to machine i equal to the jobs in C. The configuration-LP is defined as follows:∑

C∈Ci(T)

yi,C = 1 for all i ∈M,

∑
i∈M

∑
C∈Ci(T):C3j

yi,C = 1 for all j ∈ J,

yi,C ≥ 0 for all i ∈M,C ∈ Ci(T).

It is not hard to see that an integral version of this LP is a formulation for R||Cmax. Also notice
that the configuration-LP suffers from an exponential number of variables, and thus it is not possible to
solve it directly in polynomial time. However, it is easy to show that the separation problem of the dual
corresponds to an instance of KNAPSACK and thus we can solve the LP approximately in polynomial
time. More precisely, given a target makespan T there is a polynomial time algorithm that either asserts
that the configuration-LP is infeasible or computes a solution which uses only configurations whose
makespan is at most (1 + ε)T , for any constant ε > 0 [22]. The following result, which will be proven
in the next section, shows that the integrality gap of this formulation is as large as the integrality gap of
LST-LP even for the unrelated graph balancing case.

Theorem 2. The integrality gap of the configuration-LP is 2 for the unrelated graph balancing problem.

Notice that a solution (yi,C) of the configuration-LP yields a feasible solution to LST-LP with the
same target makespan by using the following formula

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 5

xi,j =
∑

C∈Ci(T):C3j

yi,C for all i ∈M, j ∈ J.(2.6)

This implies that the integrality gap of the configuration-LP is smaller than the integrality gap of
LST-LP, and thus it is at most 2. On the other hand, there are solutions to LST-LP that do not yield
feasible solutions to the configuration-LP. For example, consider an instance with three jobs and two
machines, where pi,j = 1 for all jobs j and machines i. If we have a target makespan T = 3/2, it is easy
to see that LST-LP is feasible, but the solution space of the configuration-LP is empty for any T < 2.

In the sequel we elaborate on the relation of the two LPs, by giving a formulation in the space with
xi,j variables that is equivalent to the configuration-LP. The proof of the following proposition can be
found in Appendix A.1. For any set S ∈ Rn we define conv{S} to be its convex closure.

Proposition 3. Let xC ∈ {0, 1}J be the characteristic vector of a configuration C ∈ Ci(T), i.e., xCj is
one if j ∈ C and zero otherwise. The feasibility of the configuration-LP is equivalent to the feasibility
of the linear program defined by Equations (2.1) and

(xi,j)j∈J ∈ conv{xC : C ∈ Ci(T)} for all i ∈M.(2.7)

The last proposition implies that adding any family of cuts to LST-LP that does not remove any vector
of the form (xC1 , . . . , xCm) ∈ Rn·m, where Ci ∈ Ci(T), cannot help to reduce the integrality gap of
the linear relaxation. As an example of the implications of this proposition, we note that that adding
the cuts given by Inequality (2.5) does not help diminishing the integrality gap of LST-LP for unrelated
graph balancing. The same argument shows that the following generalization of these cuts do not help
to diminish the gap either:

∑
j:pi,j>T/k xi,j ≤ k for each machine i and each k ∈ N.

As another example, we introduce another set of cuts representing the following fact: Given a subset
of jobs S with total processing time larger than T on a given machine i, at least one job in S must
be processed on another machine. Therefore, it must hold that

∑
j∈S xi,j ≤ |S| − 1. More generally,

recall that a job can only be assigned to machine i if pi,j ≤ T . Then, if the total processing time of
S on i is larger than αT for some α ∈ N+, then at least α jobs in S must be processed elsewhere,
i.e.

∑
j∈S xij ≤ |S| − α. If we strengthen LST-LP with these cuts, we get a linear program whose

set of feasible solutions contains the whole polytope defined by expressions (2.1) and (2.7). Proposi-
tion 3 together with Theorem 2 implies that these inequalities does not help improve the integrality gap
of LST-LP.

3. THE CONFIGURATION-LP

We have seen in the previous section that the configuration-LP implicitly contains a vast class of linear
cuts. Hence, it is at least as strong (in terms of its integrality gap) as any linear program that contains any
subset of these cuts. However, in this section we prove that the configuration-LP has an integrality gap
of 2, even for the special case of unrelated graph balancing. This implies that even all the cuts that are
contained in the configuration-LP are not enough to construct an algorithm with a better approximation
factor than 2. This is somewhat surprising: if one additionally requires that each job has the same
processing time on its two machines then Sgall et al. [8] implicitly proved that the configuration-LP has
an integrality gap between 1.5 and 1.75. This indicates that having jobs with different processing times
on different machines makes the problem significantly harder.

3.1. Integrality Gap for Unrelated Graph Balancing. We construct a family of instances Ik such that
pi,j ∈ { 1k , 1,∞} for each machine i and each job j for some integer k. We will show that for Ik there
is a solution of the configuration-LP which uses only configurations with makespan 1 + 1

k . However,
every integral solution for Ik has a makespan of at least 2− 1

k .

Let k ∈ N and letN be the smallest integer satisfying
(

k
k−1

)N
1

k−1 ≥
1
2 . Consider two k-ary trees of

height N − 1, i.e., two trees of height N − 1 in which apart from the leaves every vertex has k children.
For every leaf v, we introduce another vertex v′ and k edges between v and v′. (Hence, v is no longer a
leaf.) Hence, the resulting “tree” has height N .

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 6

..
....

. . .

...

1 1

1
k

111

1

1

.........
1
k

1 1 1 1

1

1
k

1
k

1

1 1

1
k

11 1

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

1
k

FIGURE 3.1. A sketch of the construction for the instance of unrelated graph balanc-
ing with an integrality gap of 2 − O(1k). The jobs on the machines correspond to the
fractional solution of the configuration-LP for this instances with T = 1 + 1

k .

Based on this, we describe our instance of unrelated graph balancing. For each vertex v we introduce
a machine mv. For each edge e = {u, v} we introduce a job je. Assume that u is closer to the root
than v. We define that je has processing time 1

k on machine mu, processing time 1 on machine mv,

and infinite processing time on any other machine. Finally, let m(1)
r and m(2)

r denote the two machines
corresponding to the two root vertices. We introduce a job jbig which has processing time 1 on m(1)

r

and m(2)
r . Denote by Ik the resulting instance. See Figure 3.1 for a sketch.

As mentioned before, we claim that any integral solution for Ik has a makespan of at least 2− 1
k . We

prove this in the following lemma.

Lemma 4. Any integral solution for Ik has a makespan of at least 2− 1
k .

Proof. We can assume w.l.o.g. that job jbig is assigned to machine m(1)
r . If the makespan of the whole

schedule is less than 2 then there must be at least one job which has processing time 1
k on m(1)

r which is

not assigned tom(1)
r but to some other machinem. We can apply the same argumentation to machinem.

Iterating the argument shows that there must be a leaf v such that machine mv has a job with processing
time 1 assigned to it. Hence, either mv has a load of at least 2 − 1

k or machine mv′ has a load of at
least 2.

�

Now we want to show that there is a feasible solution of the configuration-LP for Ik which uses
only configurations with makespan 1 + 1

k . To this end, we introduce the concept of j-α-solutions for the
configuration-LP. A j-α-solution is a solution for the configuration-LP whose right hand side is modified
as follows: job j does not need to be fully assigned but only to an extend of α ≤ 1.

For any h ∈ N denote by I(h)k a subinstance of Ik defined as follows: Take a vertex v of height h
and consider the subtree T (v) rooted at v. For the subinstance I(h)k we take all machines and jobs which
correspond to vertices and edges in T (v). (Note that since our construction is symmetric it does not
matter which vertex of height h we take.) Additionally, we take the job which has processing time 1
on mv. We denote the latter by j(h).

We prove inductively that there are j(h)-α(h)-solutions for the subinstances I(h)k for values α(h) which
depend only on h. These values α(h) increase for increasing h. The important point is that α(N) ≥ 1

2 .

Hence, there are solutions for the configuration-LP which distribute jbig on the two machines m(1)
r

and m(2)
r (which correspond to the two root vertices).

The following lemma gives the base case of the induction.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 7

Lemma 5. There is a j(1)- 1
k−1 -solution for the configuration-LP for I(1)k which uses only configurations

with makespan at most 1 + 1
k .

Proof. Letmv be the machine in I(1)k which corresponds to the root of I(1)k . Similarly, letmv′ denote the
machine which corresponds to the leaf v′. For ` ∈ {1, ..., k} let j(0)` be the jobs which have processing
time 1 on mv′ and processing time 1

k on mv.

For mv′ the configurations with makespan at most 1 + 1
k are C` :=

{
j
(0)
`

}
for each ` ∈ {1, ..., k}.

We define ymv′ ,C`
:= 1

k for each `. Hence, for each job j(0)` a fraction of k−1
k remains unassigned. For

machine mv there are the following (maximal) configurations: Csmall :=
{
j
(0)
1 , ..., j

(0)
k

}
and C`

big :={
j(1), j

(0)
`

}
for each ` ∈ {1, ..., k}. We define ymv ,C`

big
:= 1

k(k−1) for each ` and ymv ,Csmall
:= 1− 1

k−1 .

This assigns each job j(0)` completely and job j(1) to an extend of k · 1
k(k−1) = 1

k−1 . �

After having proven the base case, the following lemma yields the inductive step.

Lemma 6. Assume that there is a j(n)-
(

1
k−1

(
k

k−1

)n)
-solution for the configuration-LP for I(n)k which

uses only configurations with makespan at most 1 + 1
k . Then, there is a j(n+1)-

(
1

k−1

(
k

k−1

)n+1
)

-

solution for the configuration-LP for I(n+1)
k which uses only configurations with makespan at most

1 + 1
k .

Proof. Note that I(n+1)
k consists of k copies of I(n)k , one additional machine and one additional job.

Denote by mv the additional machine (which forms the “root” of I(n+1)
k). Recall that j(n+1) is the

(additional) job that can be assigned to mv but to no other machine in I(n+1)
k . For ` ∈ {1, ..., k} let j(n)`

be the jobs which have processing time 1
k on mv.

Inside of the copies of I(n)k we use the solution defined in the induction hypothesis. Hence, each job

j
(n)
` is already assigned to an extend of 1

k−1

(
k

k−1

)n
. Like in Lemma 5 the (maximal) configurations

for mv are Csmall :=
{
j
(n)
1 , ..., j

(n)
k

}
and C`

big :=
{
j(n+1), j

(n)
`

}
for each ` ∈ {1, ..., k}. We define

ymv ,C`
big

:= 1
k−1

(
k

k−1

)n
1

k−1 for each ` and ymv ,Csmall
:= 1− k

k−1

(
k

k−1

)n
1

k−1 . This assigns each job

j
(n)
` completely and the job j(n+1) to an extend of k · 1

k−1

(
k

k−1

)n
1

k−1 = 1
k−1

(
k

k−1

)n+1
. �

Now our main theorem, which we restate here, follows from the previous lemmas.

Theorem 2. The integrality gap of the configuration-LP is 2 for the unrelated graph balancing problem.

Proof. Due to the above reasoning and the choice of N for each of the two subinstances I(N)
k there

are jbig-12 -solutions. Hence, there is a solution for the configuration-LP using only configurations with
makespan at most 1 + 1

k . With Lemmas 4 this implies that for the instance Ik the integrality gap of the
configuration-LP is at least (2− 1

k)/(1 + 1
k). The claim follows by choosing k arbitrarily large. �

4. CASES WITH BETTER APPROXIMATION FACTORS THAN 2

It has been open for a long time whether the approximation factor of 2 [15] for R||Cmax can be
improved. Our results from Section 3 can be seen as an indicator that this is not possible unlessP = NP .
In this section we identify classes of instances for which a better approximation factor than 2 is possible.
This can be understood as a guideline of properties that a NP -hardness reduction must fulfill to rule out
a better approximation factor than 2.

The inapproximability results forR||Cmax given in [8, 15] use only jobs such that pi,j ∈ {1, 2, 3,∞}.
We show now that for classes of instances which use only a finite set of processing times, there exists an
approximation algorithm with a performance guarantee which is strictly better than 2. This implies that

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 8

NP -hardness reductions which rule out approximation algorithms with a ratio of 2− ε need an infinite
set of processing times for the jobs.

Theorem 7. There exists a (2−α)-approximation algorithm for the problem of minimizing makespan on
unrelated machines, where α = gcd{pi,j |i ∈M, j ∈ J, pi,j <∞}/max{pi,j |i ∈M, j ∈ J, pi,j <∞}.

Proof. We follow similar lines as the 2-approximation algorithm by Lenstra et al. [15]. Let g :=
gcd{pi,j |i ∈ M, j ∈ J, pi,j < ∞} and M := max{pi,j |i ∈ M, j ∈ J, pi,j < ∞}. Note that the
optimal makespan of our instance is a multiple of g, and therefore we can restrict our target makespan
T to be of the form k · g with k ∈ N. Let T ∗ be the target makespan defined as the smallest multiple
of g that yields a feasible solution to LST-LP. Note that T ∗ can be found by a binary search procedure.
Assume we have computed a fractional solution for LST-LP with target makespan T ∗. We apply LST-
rounding to this fractional solution, obtaining a schedule with load `i on each machine i. With basically
the same argument as in the proof of Theorem 1, it is easy to see that `i < T ∗ + M . Since `i, M and
T ∗ are multiples of g, we conclude that `i ≤ T ∗+M − g. A simple calculation then shows the claimed
approximation guarantee. �

Now we show that if the execution times of the jobs differ by at most a factor of three then the
configuration-LP has an integrality gap of at most 1 + 5

6 ≈ 1.83. Hence, using reductions of this type
one cannot rule out a 2− ε approximation algorithm.

Theorem 8. Consider an instance of R||Cmax with a value γ such that pi,j ∈ [γ, 3γ] ∪ {∞} for all
machines i and all jobs j. Then for this instance the configuration-LP has an integrality gap of at
most 1 + 5

6 ≈ 1.83.

Proof. Assume we are given a value T such that there is a solution for the configuration-LP that uses
only configurations with makespan at most T . We interpret such a solution as a fractional assignment
by using Equation (2.6) and then perform LST-rounding.

Consider a machine i. If T ≥ 18
5 γ then due to Theorem 1 the makespan of i is bounded by 18

5 γ+3γ ≤(
1 + 5

6

)
T . So now assume that T < 18

5 γ. As mentioned before, the configuration-LP implicitly contains
all cuts which are valid for all integral solutions. In particular, it contains the cuts

∑
j:pi,j>

T
2
xi,j ≤ 1,∑

j:pi,j>
T
3
xi,j ≤ 2, and

∑
j xi,j ≤ 3. From the proof of Theorem 1 it follows that the integral solution

obtained after the rounding obeys these cuts as well. This yields a bound T + T
2 + T

3 = T (1 + 5
6) for

the makespan of i. �

Note that the above proof implies that adding the three mentioned cuts to the LST-LP yields a (1+ 5
6)-

approximation algorithm for R||Cmax.
Finally, we prove that for an improved NP -hardness reduction it is crucial that it is not clear what

machines execute big jobs. Here, we call a job big on machine i if pi,j ≥ 2
3OPT . Formally, assume

we are given an instance of R||Cmax and assume we know exactly what machines execute a big job.
For this setting we give a 5/3-approximation algorithm. The key for this algorithm is to incorporate the
information about the big jobs into the linear program LST-LP. Then, a similar rounding procedure as
LST-rounding yields a bound of 5

3OPT . In particular, big machines (i.e., machines which run a big job)
can have at most one job which is larger than 1

3OPT . On these machines, the load of the small jobs can
increase by at most 1

3OPT . Also, the load corresponding to a big job can increase by at most 1
3OPT

(from 2
3OPT toOPT). Also, on small machines (i.e., where no job is larger than 2

3OPT) the makespan
can increase by at most 2

3OPT . This yields a bound of 5
3OPT for all machines.

If only for m − O(log n) the additional information is given then we can enumerate the types the
unknown machines in polynomial time. See our technical report [23] for details.

Theorem 9. Consider an instace of R||Cmax where we know for all but O(log n) machines whether in
an optimal solution they execute a big job. In this case there exists a 5/3-approximation algorithm.

With a similar technique we can obtain the following theorem.

Theorem 10. There is a 5/3-approximation algorithm for instances of R||Cmax with at most a constant
number of jobs which are big on some machine.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 9

5. MAXMIN ON UNRELATED MACHINES

In this section we study the MaxMin-allocation problem on unrelated machines. First, we investigate
the MaxMin-balancing problem, where every job can be assigned to at most two machines (with possibly
different processing times on each machine). For this case it is known that the configuration-LP has an
integrality gap of 2. However, when allowing only polynomial running time it can only be solved
approximately which yields a (2 + ε)-approximation algorithm for the overall problem. Also, it requires
to solve a linear program with a PTAS for KNAPSACK as a separation oracle. In particular, for small
ε this algorithm needs a lot of time and it is highly non-trivial to implement. Instead, we present here
a purely combinatorial 2-approximation algorithm with quadratic running time which is quite easy to
implement.

After that we present approximation algorithms which compute 2- and 4-approximate half-integral
solutions for the general MaxMin-allocation problem. Recall that for this setting the best known approx-
imation algorithm (which computes integral solutions) has a performance guarantee of O

(√
m log3m

)
.

5.1. 2-Approximation for MaxMin-Balancing. We present our purely combinatorial 2-approximation
algorithm for MaxMin-balancing. Let I be an instance of the problem and let T be a positive integer.
Our algorithm either finds a solution with value T/2 or asserts that there is no solution with value T or
larger. With an additional binary search this yields a 2-approximation algorithm. For each machine i
denote by Ji = {ji,1, ji,2, ...} the list of all jobs which can be assigned to i. We partition this set into the
sets Ai∪̇Bi where Ai = {ai,1, ai,2, ...} denotes the jobs in Ji which can be assigned to two machines
(machine i and some other machine) and Bi denotes the jobs in Ji which can only be assigned to i. We
define A′i to be the set Ai without the job with largest processing time (or one of those jobs in case there
is a tie). For any set of jobs J ′ we define p(J ′) :=

∑
j∈J ′ pi,j .

Denote by pi,` the processing time of job ai,` on machine i. We assume that the elements of Ai are
ordered non-increasingly by processing time, i.e., pi,` ≥ pi,`+1 for all respective values of `. If there is a
machine i such that p(Ai)+p(Bi) < T we output that there is no solution with value T or larger. So now
assume that p(Ai) + p(Bi) ≥ T for all machines i. If there is a machine i such that p(A′i) + p(Bi) < T
(but p(Ai) +p(Bi) ≥ T) then any solution with value at least T has to assign ai,1 to i. Hence, we assign
ai,1 to i. This can be understood as moving ai,1 from Ai to Bi. We rename the remaining jobs in Ai

accordingly and update the values p(Ai), p(A′i), and p(Bi). We do this procedure until either
• there is one machine i such that p(Ai) + p(Bi) < T , in this case we output that there i
• for all machines i we have that p(A′i) + p(Bi) ≥ T .

We call this phase the preassignment phase. If during the preassignment phase the algorithm outputs
that that no solution with value T or larger exists, then clearly there can be no such solution.

Now we construct a graph G as follows: For each machine i and each job ai,` ∈ Ai we introduce
a vertex 〈ai,`〉. We connect two vertices 〈ai,`〉 ,

〈
ai′,`′

〉
if ai,` and ai′,`′ represent the same job (but on

different machines). Also, for each machine i we introduce an edge between the vertices 〈ai,2k+1〉 and
〈ai,2k+2〉 for each respective value k ≥ 0.

Lemma 11. The graph G is bipartite.

Proof. Since every vertex inG has degree two or less the graph splits into cycles and paths. It remains to
show that all cycles have even length. There are two types of edges: edges which connect two vertices
〈ai,`〉 ,

〈
ai′,`′

〉
such that i = i′ and edges connecting two vertices which correspond to the same job

on two different machines. On a cycle, the edges of these two types alternate and hence the graph is
bipartite. �

Due to Lemma 11 we can color G with two colors, black and white. Let i be a machine. We assign
each job ai,` to i if and only if 〈ai,`〉 is black. Also, we assign each job in Bi to i. In order to turn
the above algorithm into an algorithm for the entire problem an additional binary search is necessary
to find the correct value of T . With appropriate data structures and a careful implementation the whole
algorithm has a running time of O

(
|I|2
)

where |I| denotes the overall input length in binary encoding,
see [23] for details.

Theorem 12. There is a 2-approximation algorithm for the MaxMin-balancing problem with running
time O

(
|I|2
)
.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 10

Proof. It remains to prove the approximation ratio. Let i be a machine. We show that the total weight of
the jobs assigned to i is at least p(A′i)/2+p(Bi). For each connected pair of vertices 〈ai,2k+1〉 , 〈ai,2k+2〉
we have that either ai,2k+1 or ai,2k+2 is assigned to i. We calculate that

∑
k∈N pi,2k+2 ≥ p(A′i)/2. Since

pi,2k+1 ≥ pi,2k+2 (for all respective values k) we conclude that the total weight of the jobs assigned to i
is at least p(A′i)/2 + p(Bi). Since p(A′i) + p(Bi) ≥ T the claim follows. �

5.2. Half-Integral Solutions. From Theorem 1 we see that during the LST-rounding the load of a
machine can increase by at most max{pi,j : j ∈ J, xi,j > 0} ≤ T . Assume that one tries to solve the
MaxMin-allocation problem with a similar technique. Then the load of a machine might decrease by up
to (almost) max{pi,j : j ∈ J, xi,j > 0}. Since the latter term might be as large as T , during the rounding
a machine might lose almost its entire load. Hence, in contrast to R||Cmax this method does not yield
a constant factor approximation. However, we can adjust the LST-rounding procedure such that we end
up with half-integral solutions, i.e., with a solution such that xi,j ∈ {0, 12 , 1} for all machines i and all
jobs j. Then, the decrease of the load of each machine will be at most T/2. Hence, the value of the
solution is by at most a factor of 2 away from the optimal integral solution.

If one is interested in half-integral solutions where only few jobs are distributed on two machines, a
technique similar to the one used in the 2-approximation for MaxMin-balancing yields a half-integral
solution in which at most m/2 jobs are half assigned on two machines. This procedure loses only a
factor of 2 in the objective function. We summarize these algorithms in the following theorems.

Theorem 13. There is a polynomial time algorithm that computes half-integral solutionsHALF (I) for
instances I of the MaxMin-allocation problem such that HALF (I) ≥ 1

2OPT (I).

Theorem 14. There is a polynomial time algorithm that computes half-integral solutions HALF (2)(I)

for instances I of the MaxMin-allocation problem such that HALF (2)(I) ≥ 1
4OPT (I) and at most

m/2 jobs are distributed on two machines.

5.3. Tractable Cases. Similarly as for R||Cmax if the number of big jobs is bounded by a constant c or
if we knew what machines execute a big job in an optimal solution we can guarantee better approxima-
tion factors. Here, we define a job j to be big on machine i if pi,j ≥ 1

2OPT . With similar techniques as
in Section 4 we can prove the following theorems.

Theorem 15. Consider an instance of the MaxMin-allocation where we know for all but O(log n)
machines whether in an optimal solution they have a big job. In this case there exists a 2-approximation
algorithm.

Theorem 16. There is a 2-approximation algorithm for instances of the MaxMin-allocation problem
with at most a constant number of jobs which are big on some machine.

REFERENCES

[1] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph matchings. In Proceedings of the 11th International
Workshop and 12th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX-RANDOM 2008), volume 5171 of Lecture Notes in Computer Science, pages 10–20.
Springer, 2008.

[2] A. Asadpour, U. Feige, and A. Saberi. Santa claus meets hypergraph matchings. Technical report, Standford University,
2009. Available for download at http://www.stanford.edu/~asadpour/publication.htm.

[3] A. Asadpour and A. Saberi. An approximation algorithm for max-min fair allocation of indivisible goods. In Proceedings
of the 39th annual ACM symposium on Theory of computing (STOC 2007), pages 114–121, 2007.

[4] N. Bansal and M. Sviridenko. The santa claus problem. In Proceedings of the 38th annual ACM symposium on Theory of
computing (STOC 2006), pages 31–40, 2006.

[5] M. Bateni, M. Charikar, and V. Guruswami. Maxmin allocation via degree lower-bounded arborescences. In Proceedings
of the 41st annual ACM symposium on Theory of computing (STOC 2009), pages 543–552, 2009.

[6] D. Chakrabarty, J. Chuzhoy, and S. Khanna. On allocating goods to maximize fairness. In Proceedings of the 50th Annual
Symposium on Foundations of Computer Science (FOCS 2009), pages 107–116, 2009.

[7] J. R. Correa, M. Skutella, and J. Verschae. The power of preemption on unrelated machines and applications to sched-
uling orders. In Proceedings of the 12th International Workshop and 13th International Workshop on Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX-RANDOM 2009), volume 5687
of Lecture Notes in Computer Science, pages 84–97. Springer, 2009.

[8] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: a special case of scheduling unrelated parallel machines. In
Proceedings of the 19th annual ACM-SIAM symposium on Discrete algorithms (SODA 2008), pages 483–490, 2008.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 11

[9] U. Feige. On allocations that maximize fairness. In Proceedings of the 19th Fannual ACM-SIAM symposium on Discrete
algorithms (SODA 2008), pages 287–293, 2008.

[10] M. Gairing, B. Monien, and A. Woclaw. A faster combinatorial approximation algorithm for scheduling unrelated parallel
machines. Theoretical Computer Science, 380:87–99, 2007.

[11] D. Golovin. Max-min fair allocation of indivisible goods. Technical report, Carnegie Mellon University, June 2005.
[12] B. Haeupler, B. Saha, and A. Srinivasan. New Constructive Aspects of the Lovasz Local Lemma. ArXiv e-prints, January

2010.
[13] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated parallel processors by linear programming. Journal

of the ACM, 25:612–619, 1978.
[14] K. Lee, J. Y.-T. Leung, and M. L. Pinedo. A note on graph balancing problems with restrictions. Information Processing

Letters, 110:24–29, 2009.
[15] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unrelated parallel machines.

Mathematical Programming, 46:259–271, 1990.
[16] J. Y.-T. Leung and C.-L. Li. Scheduling with processing set restrictions: A survey. International Journal of Production

Economics, 116:251–262, 2008.
[17] J.-H. Lin and J. S. Vitter. epsilon-Approximations with minimum packing constraint violation. In Proceedings of the 24th

Annual ACM Symposium on Theory of Computing (STOC 1992), pages 771–782, 1992.
[18] Y. Lin and W. Li. Parallel machine scheduling of machine-dependent jobs with unit-length. European Journal of Opera-

tional Research, 156:261–266, 2004.
[19] P. Schuurman and G. J. Woeginger. Polynomial time approximation algorithms for machine scheduling: Ten open prob-

lems. Journal of Scheduling, 2:203–213, 1999.
[20] E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for scheduling unrelated machines.

Operations Research Letters, 33:127–133, 2005.
[21] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment problem. Mathematical Pro-

gramming, 62:461–474, 1993.
[22] O. Svensson. Santa Claus Schedules Jobs on Unrelated Machines. ArXiv e-prints, November 2010.
[23] J. Verschae and A. Wiese. On the configuration-LP for scheduling on unrelated machines. Technical Report 025-2010,

Technische Universität Berlin, November 2010.

ON THE CONFIGURATION-LP FOR SCHEDULING ON UNRELATED MACHINES 12

APPENDIX A. OMITTED PROOF

A.1. Proof of Proposition 3. Let (xi,j)i∈M,j∈J be a solution satisfying (2.1) and (2.7) for a given T .
We show that the configuration-LP is feasible for the same value of T . Indeed, (xi,j)j∈J is a convex
combination of vectors in {xC : C ∈ Ci(T)}, and thus

(xi,j)j∈J =
∑

C∈Ci(T)

yi,C · xC ,

for some values yi,C ≥ 0 such that
∑

C∈Ci(T) yi,C = 1. Moreover, for each j ∈ J ,

1 =
∑
i∈M

xi,j =
∑
i∈M

∑
C∈Ci(T)

yi,C · xCj =
∑
i∈M

∑
C∈Ci(T):C3j

yi,C .

This shows that (yi,C) is a solution to the configuration-LP. The converse implication follows from
reversing the argument just given.

