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Abstract We study mechanism design for a single-server
setting where jobs require compensation for waiting, while
waiting cost is private information to the jobs. With given
priors on the private information of jobs, we aim to find
a Bayes–Nash incentive compatible mechanism that mini-
mizes the total expected payments to the jobs. Following
earlier work in the auction literature, we show that this prob-
lem is solved, in polynomial time, by a version of Smith’s
rule. When both waiting cost and processing times are pri-
vate, we show that optimal mechanisms generally do not sat-
isfy an independence condition known as IIA, and conclude
that a closed form for optimal mechanisms is generally not
conceivable.
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1 Introduction

The design of optimal mechanisms was first studied by Myer-
son (1981) for single item auctions, and constitutes an intrigu-
ing problem in auction theory. We here study the design of
optimal mechanisms for one of the classic machine schedul-
ing problems, namely single machine scheduling to minimize
the total weighted completion time. The setting comprises job
agents j ∈ J = {1, . . . , n} that compete for being processed
by a service provider who can handle one job at a time. No
job can be interrupted once started, and each job is char-
acterized by processing time p j and weight w j . The latter
represents job j’s disutility for waiting one unit of time. It
is well known that the total disutility of the jobs is mini-
mized by a schedule known as Smith’s rule: sequence jobs
in order of non-increasing ratios of weight over processing
time w j/p j (Smith 1956). As usual in service or maintenance
contracts for example, we assume that the service provider
needs to compensate jobs for waiting, while the job data
are private and only known to the jobs themselves. What is
assumed to be known is publicly known priors, that is, prob-
ability distributions for the private job data. The effect of the
private information setting is that jobs may have incentives
to be dishonest. For instance, they may want to pretend to
have higher waiting cost in order to receive higher compen-
sation payments. The problem that jobs are dishonest can
be overcome by appropriately adjusting the compensation
payment, e.g., by paying more than the actual disutility for
waiting, but that could have the effect of excessive com-
pensation payments. The optimal mechanism design prob-
lem is then to find a mechanism in which jobs are incen-
tivized to behave truthfully using an appropriate schedul-
ing rule and payment scheme, but at the same time mini-
mizing the total (expected) payments that are made to the
jobs.
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1.1 Contribution

We consider two cases. In the single-dimensional case,
processing times of jobs p j are public information, and only
the jobs’ weights w j are private. In the two-dimensional case,
both weight w j and processing time p j are private. The pri-
vate information of a job is called a jobs type, denoted t j , so
that for the single-dimensional case t j = w j and in the two-
dimensional case t j = (w j , p j ). In either of the two cases,
we assume the type spaces of jobs to be discrete. This is a
departure from the traditional literature on auctions (Myer-
son 1981), but it is not uncommon to work with discrete
type spaces. Some recent progress in deriving optimal mech-
anisms for multi-dimensional settings assume the type space
to be discrete, e.g., Armstrong (2000), Malakhov and Vohra
(2009), Pai and Vohra (2008), Cai et al. (2012), Hoeksma
and Uetz (2013). The assumption of discrete type spaces
allows us to formulate optimal mechanism design problems
as integer linear programs, while “nothing of qualitative sig-
nificance is lost in moving from a continuous to a discrete
type space” (Vohra 2012).

For the single-dimensional case, we largely follow earlier
work in auction theory. More specifically, we use a graph-
theoretic interpretation of the so-called incentive compati-
bility constraints - as used e.g., by Rochet (1987), Malakhov
and Vohra (2009), Müller et al. (2007), Lavi and Swamy
(2009), Heydenreich et al. (2009), and others. Doing so, we
can derive a closed formula for the optimal mechanism. The
result is in line with known results for single-dimensional
mechanism design, e.g., Hartline and Karlin (2007), namely
that serving the jobs in the order of non-increasing ratios of
“virtual” job weights over processing times is optimal. This
mechanism minimizes expected total payments in the stan-
dard Bayes–Nash setting, which is formally defined later. We
also show that the same mechanism can even be implemented
such that truthfulness is even a dominant strategy for all jobs.
By simple instances, we further show that the optimal mech-
anism is not necessarily efficient, that is, in general it does
not coincide with Smith’s rule, but it does so if jobs are sym-
metric. Our instances also show that the relative difference
in total payments of an optimal mechanism and an efficient
mechanism can be arbitrarily high. In this part of the paper,
we show how to put techniques from the mechanism design
literature to work for the specific scheduling problem at hand,
and thereby obtain some qualitative insights into the nature
of optimal mechanisms.

For the two-dimensional case, our main result is that the
optimal mechanism does not satisfy an independence con-
dition which is known as “independence of irrelevant alter-
natives (IIA)”. This we show by analyzing a corresponding
instance, which has been found with integer linear program-
ming techniques. From that instance, we conclude that the
optimal mechanism cannot be expressed in terms of virtual

weights along the lines of the single-dimensional case. In
fact, any kind of priority-based scheduling algorithm, e.g.,
scheduling using Smith’s rule with virtual weights, where
the virtual weights of a job depend only on the character-
istics of that job itself, cannot be an optimal mechanism in
general. We conclude that optimal mechanism design for the
two-dimensional case is in fact more involved than optimal
mechanism design for certain, two dimensional auction set-
tings, as studied for instance by Malakhov and Vohra (2009)
or Pai and Vohra (2008). We also show that the optimal mech-
anism for the two-dimensional case is not efficient, not even
for symmetric jobs.

1.2 Related work

Optimal mechanism design goes back to a seminal paper
by Myerson (1981). He studies optimal mechanism design
for single item auctions and continuous, single dimensional
type spaces. The optimal auction in his setup is to award the
object to a bidder who has the highest virtual valuation, pro-
vided this virtual valuation is non-negative. In the symmetric
case, this turns out to be the celebrated Vickrey auction, but
augmented with a so-called reserve price. More generally,
for single parameter agents, the optimal auction is the one
that maximizes the total virtual surplus (Hartline and Karlin
2007).

Our work can be seen as analyzing how far the scheduling
problem parallels the auction case. In that sense we follow
Myerson’s approach, but with discrete type spaces and using
a graph-theoretic approach to compute the optimal mecha-
nism. Hence, it is no surprise that we observe close similar-
ities to the auction case, up to some differences which are
mainly due to the specific problem setting and discrete type
spaces.

Concerning multi-dimensional mechanism design,
Malakhov and Vohra (2009) derive optimal mechanisms for
an auction setting with discrete two-dimensional type spaces.
They consider a multi-unit model where every bidder has
a capacity constraint, and the marginal value per unit and
capacity are the private type of the bidder. The derived opti-
mal mechanism also employs the efficient allocation rule
with respect to “virtual” types. Contrasting their work, we
show that for two-dimensional type spaces, the same graph-
theoretic approach must fail to determine an optimal mecha-
nism for the scheduling problem. This follows from the fact
that an optimal mechanism is in general not IIA.

The fact that optimal mechanism design with multi-di-
mensional types is harder than with single-dimensional types
is not new. For example, Armstrong (2000) studies a multi-
object auction model where valuations are additive and drawn
from a binary distribution (i.e., high or low). He gives optimal
auctions under specific conditions. It becomes evident from
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his work that optimal mechanism design with multi-dimen-
sional, discrete types is indeed difficult.

For makespan scheduling on unrelated machines, also
Lavi and Swamy (2009) show how to exploit binary distrib-
utions (i.e., high or low) for a multi-dimensional mechanism
design problem, and using Rochet’s graph-theoretic charac-
terization of implementability, there called cycle monotonic-
ity, obtain mechanisms with constant factor approximation
guarantees. Recent work has also shown that optimal multi-
dimensional mechanism design can in some cases be done
computationally efficient, yet at the cost of allowing random-
ization, e.g., Cai et al. (2012); Hoeksma and Uetz (2013). In
particular, inspired by the conference publication of this work
(Heydenreich et al. 2008), Hoeksma and Uetz (2013) show
how to compute an optimal randomized mechanism for the
two-dimensional problem considered in Sect. 4 of this paper,
using linear programming techniques.

More generally, scheduling models have been looked
at from different game theoretic perspectives, both in the
Economic and Operations Research literature. There are
some papers which are closely related to ours with respect
to the model considered, but each with a different flavor
when it comes to the game theoretic models. For exam-
ple, Mitra (2001) analyzes efficient and budget balanced
mechanism design in a single-dimensional queueing model,
and Kittsteiner and Moldovanu (2005) consider a model in
which jobs arrive stochastically, and processing time is pri-
vate information. Moulin (2007) derives mechanisms that
prevent merging and splitting of jobs. Suijs (1996) discusses
the same sequencing model as ours, and derives results on
the existence of payment schemes that are required to be
budget balanced. The same problem is discussed from the
perspective of cost sharing by Curiel et al. (1989), and later
for m machines by Hamers et al. (1999). Also Hain and Mitra
(2004) analyze a sequencing problem with private informa-
tion on processing times, give conditions for cost functions
that allow implementability, and characterize optimal mech-
anisms as generalized VCG mechanisms. This list could be
continued, yet none of the papers addresses the problem set-
ting discussed here.

2 Notation and preliminaries

Recall that J = {1, . . . , n} is the set of jobs with weights w j

and processing times p j . The private information of a job j is
denoted its type t j , so that t j = w j in the single-dimensional
case and t j = (w j , p j ) in the two-dimensional case. Jobs
as well as the mechanism designer share a common belief
about other jobs’ types in terms of probability distributions.
We assume Tj = {t1

j , . . . , t
m j
j } are the possible discrete types

of job j . For the single-dimensional case, we assume types
are numbered so that t1

j = w1
j < · · · < t

m j
j = w

m j
j . Let

φ j (t j ) denote the probability for job j having type t j ∈ Tj .
Probability distributions (φ j ) j∈J and type spaces (Tj ) j∈J are
public information. We assume that types are independent
across jobs. Let us denote by T = T1 × · · · × Tn the set of
all type profiles. Let φ be the joint probability distribution
of t = (t1, . . . , tn) ∈ T . Then by independence, φ(t) =
Π j∈J φ j (t j ). Let t− j , T− j and φ− j be defined as usual to
denote type profile, type space and type distribution for all
jobs except j , so that (t j , t− j ) is the type profile where job j
has type t j and the types of other jobs are t− j .

In mechanism design, a direct revelation mechanism con-
sists of an allocation rule f and a payment scheme π1.
In our setting, jobs report their (possibly false) types t =
(t1, . . . , tn), and depending on those reported types t , the allo-
cation rule is nothing but a schedule f (t). Next to that there is
a vector of payments π(t) that assigns a payment to every job
in order to compensate them for their waiting. The restric-
tion to direct revelation mechanisms, that is mechanisms in
which the only action of the jobs is to report their types, is
not arbitrary: By Myerson’s revelation principle (Myerson
1981), the restriction to direct revelation mechanisms is no
loss of generality.

If in a given schedule job j has waiting time S j and actual
weight w j , it encounters a valuation for the schedule which
equals the actual cost for waiting, −w j S j . On top of that,
job j receives payment π j , and therefore it’s total utility
equals π j −w j S j . This is a standard model known as quasi-
linear utilities. Given a mechanism ( f, π), in the Bayes–Nash
model the assumption is that each job’s goal is to maximize its
expected utility, where the expectation is to be taken over all
possible types of other jobs. To that end, we need to express
the expected valuation of a job when reporting to be of type
t j , which is determined by the expected waiting time when
reporting to be of type t j . Formally, the expected waiting
time of job j if it reports type t j , and allocation rule f is in
place, equals

E Sj ( f, t j ) :=
∑

t− j ∈T− j

S j ( f (t j , t− j ))φ− j (t− j ).

Here, S j ( f (t)) denotes the start time of job j in schedule
f (t). Also, let Eπ j (t j ) := ∑

t− j ∈T− j
π j (t j , t− j )φ− j (t− j )

be the expected payment to j if it reports type t j . We are now
prepared to give the standard definitions.

Definition 1 A mechanism ( f, π) is Bayes–Nash incentive
compatible (BIC) if truth telling is a weakly dominant strat-
egy in expectation, so for every job j and every two types

1 In fact, the payment scheme π is dependent on the choice of f , so
we should write π f to indicate this dependence. But in order to avoid
excessive notation, wherever possible we use π instead, keeping in mind
that π is clearly not independent of f .
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t i
j ,t

k
j ∈ Tj ,

Eπ j (t
i
j ) − wi

j E S j ( f, t i
j ) ≥ Eπ j (t

k
j ) − wi

j E S j ( f, tk
j ). (1)

Note that the expectation is taken under the assumption
that all agents apart from j report truthfully. Indeed, this
inequality exactly expresses the (Bayes-)Nash equilibrium
concept: Under the assumption that no other job deviates
from being truthful, job j’s expected utility is maximal when
being truthful, too. If for a given allocation rule f there
exists a payment scheme π such that ( f, π) is BIC, then f
is called Bayes–Nash implementable. The payment scheme
π is referred to as an incentive compatible payment scheme.

Next to Bayes–Nash incentive compatibility, a standard
constraint that we impose as well is individual rationality,
expressing the fact that expected utilities should be non-
negative. In auctions it can be interpreted as voluntary partic-
ipation constraint, as with negative expected utility, a rational
agent would not want to participate at all. A subtle difference
in our setting is that we assume a priori that all jobs must be
scheduled. That means that individual rationality should be
motivated from economic applications, like for example in
services contracts where delays need to be reimbursed. Math-
ematically, individual rationality makes sure that the optimal
mechanism design problem is bounded.

Definition 2 A mechanism ( f, π) is (interim) individually
rational (IR) if for every agent j and every type t j ∈ Tj ,

Eπ j (t j ) − w j E S j ( f, t j ) ≥ 0. (2)

Note that individual rationality only makes a claim about
truthful jobs. For what follows, it will be convenient to ensure
individual rationality by introducing a dummy type td

j for

each job j , with probability φ(td
j ) = 0, and making sure

that the dummy type gives zero utility to the job, by defining
E Sj ( f, td

j ) := 0 and Eπ j (td
j ) := 0 for all jobs j ∈ J .

Now, we impose constraints (1) also for k = d, which then
implies (2). Therefore, the dummy types together with the
mentioned assumptions guarantee that individual rationality
is satisfied along with the incentive compatibility constraints.
Sometimes, it will be convenient to use index m j + 1 instead
of d for the dummy type.

Our goal is to set up a mechanism that fulfills (1) and
(2), and among all such mechanisms minimizes the expected
total payment that has to be made to the jobs.

3 The single-dimensional setting

In this section, the processing times p j of jobs are fixed
and public. For convenience of notation, we suppress t j and
write w j for the type of job j , W j to denote its type space,

and W = W1 × · · · × Wn . We first introduce some basic
graph theoretic concepts that come handy in determining the
optimal mechanism in the discrete setting considered here.
The basic idea for this approach goes back to a paper by
Rochet (1987).

Define the type graph Tj ( f ) for job j as a complete
directed graph with node set W j and an arc from any node
wi

j to any other node wk
j of length

�ik = wi
j [E Sj ( f, wk

j ) − E Sj ( f, wi
j )].

Note that �ik represents the gain in expected valuation for
agent j by truthfully reporting type wi

j instead of lying type

wk
j ; it can be both positive or negative. Each node wi

j also
has one arc towards the dummy node, but the dummy node
has no outgoing arcs.

The incentive constraints for a BIC mechanism ( f, π) and
job j can then be written as

Eπ j (w
k
j ) ≤ Eπ j (w

i
j ) + wi

j [E Sj ( f, wk
j ) − E Sj ( f, wi

j )]
= Eπ j (w

i
j ) + �ik .

That is, the expected payments Eπ j (·) constitute a node
potential in digraph Tj ( f ), and therefore Bayes–Nash imple-
mentability of an allocation rule f is equivalent to Tj ( f )

having no negative length directed cycle; this observation
implicitly appears in the paper by Rochet (1987), see also
Müller et al. (2007). Furthermore, consider the length of a
directed cycle consisting of only two arcs in Tj ( f ), it equals

�ik + �ki = wi
j [E Sj ( f, wk

j ) − E Sj ( f, wi
j )]

+wk
j [E Sj ( f, wi

j ) − E Sj ( f, wk
j )]

= (wi
j − wk

j )[E Sj ( f, wk
j ) − E Sj ( f, wi

j )].
Next observe that the last term in (3) is non-negative for all
jobs j and any two types wi

j and wk
j if and only if f fulfills

the following monotonicity condition.

Definition 3 An allocation rule f satisfies monotonicity
with respect to weights, or short monotonicity, if for every
job j , wi

j < wk
j implies that E Sj ( f, wi

j ) ≥ E Sj ( f, wk
j ).

Given this definition, the following characterization of
Bayes–Nash implementability of an allocation rule f is a
standard result in mechanism design with singl-dimensional
types.

Theorem 1 An allocation rule f is Bayes–Nash implement-
able if and only if it satisfies monotonicity with respect to
weights.

As to the proof, recall that implementability of f is equiv-
alent to the fact that there are no negative length directed
cycles in Tj ( f ). Hence implementability implies that there
are no negative length directed cycles with only two arcs, and
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monotonicity follows from (3). For the other direction, via (3)
it follows from monotonicity that there are no negative length
directed cycles with only two arcs in Tj ( f ). Left to show is
that there are no negative length directed cycles in Tj ( f ).
This follows from the fact that any cycle can be decomposed
into two-cycles, and this only decreases the total length; the
proof of this so-called decomposition monotonicity is given
in the appendix.

3.1 An illustrative example

For those less familiar with the given notions in mechanism
design, we briefly go through a small example to illustrate the
preceding definitions. There are two jobs. Job 1 has process-
ing time p1 = 1 and two possible weights w1

1 = 1 and
w2

1 = 2, both with probability φ(w1
1) = φ(w2

1) = 1/2. Job
2 has processing time p2 = 3, and only one possible type,
w2 = 4. Assume the allocation rule f is Smith’s rule (Smith
1956), that is, sequencing the jobs in non-increasing order of
ratios w j/p j . Since with Smith’r rule the start time of any job
can only decrease with increasing weight, it is implementable
by Theorem 1.

That said, if Job 1 has weight 2, Job 1 is scheduled first with
waiting times S1 = 0 and S2 = 1, and if Job 1 has weight 1,
it is scheduled second with waiting times S1 = 3 and S2 = 0.
Therefore, given that Job 1 is truthful, the expected waiting
time for Job 2 equals E S2 = 0.5. For Job 2, since it has
only one possible type, there are no incentive compatibility
constraints, and individual rationality for Job 2 requires that

Eπ2 − 4 · E S2︸︷︷︸
=0.5

≥ 0.

Hence any payment scheme with Eπ2 ≥ 2 is (interim) indi-
vidual rational for Job 2; for instance one could define the
payment scheme π2 = 0 in case w1 = 1 and π2 = 4 in case
w1 = 2, which leaves Job 2 with nonnegative utility in all
possible outcomes. But note that also the payment scheme
π2 = 2 in case w1 = 1 and π2 = 2 in case w1 = 2 fulfills
(interim) individual rationality, since we only require it to
hold in expectation.

For Job 1 we get as expected waiting times E S1(w1 =
1) = 3 and E S1(w1 = 2) = 0. The Bayes–Nash incentive
compatibility constraints for Job 1 are then

Eπ1(w1 = 1) − 1 · E S1(w1 = 1)︸ ︷︷ ︸
=3

≥ Eπ1(w1 = 2) − 1 · E S1(w1 = 2)︸ ︷︷ ︸
=0

, and

Eπ1(w1 = 2) − 2 · E S1(w1 = 2)︸ ︷︷ ︸
=0

≥ Eπ1(w1 = 1) − 2 · E S1(w1 = 1)︸ ︷︷ ︸
=3

.

Fig. 1 Type graph T1( f ) for Job 1 with two possible weights; f being
Smith’s rule

The individual rationality constraints are

Eπ1(w1 = 1) − 1 · E S1(w1 = 1)︸ ︷︷ ︸
=3

≥ 0 and

Eπ1(w1 = 2) − 2 · E S1(w1 = 2)︸ ︷︷ ︸
=0

≥ 0.

Then Eπ1(w1 = 1) = 3 and Eπ1(w1 = 2) = 0 is a possible
payment scheme that is both Bayes–Nash incentive compat-
ible and individual rational for Job 1. (Note, here we have
the special case that Eπ1( · ) = π1( · ) for Job 1, because Job
2 has just one possible type, hence the expectation over the
types of other jobs is trivial for Job 1.)

Finally, the type graph T1( f ) for Job 1 for the given allo-
cation rule f is depicted in Fig. 1. Note that, indeed, it has no
negative length directed cycle. Payment schemes that imple-
ment f are exactly node potentials in T1( f ), that is, expected
payments for the possible types of Job 1 that fulfill the tri-
angle inequality along all arcs of T1( f ). As explained in the
next section, the minimal incentive compatible payments for
a given allocation rule f can easily be computed via shortest
paths in the type graphs Tj ( f ).

3.2 Optimal mechanisms

Knowing that incentive compatible payment schemes must
yield node potentials in the type graphs Tj ( f ), we seek to
find the node potentials that minimize the total expected
payments. In fact, a lower bound for the expected pay-
ment Eπ j (w

i
j ) for type wi

j is found by taking the negative

of the shortest path length from node wi
j to dummy node

wd
j in the type graph Tj ( f ). To see why, let P = (wi

j =
a0, a1, . . . , am = wd

j ) denote some directed path from wi
j

to wd
j in the type graph Tj ( f ) for job j . Denote by �(P)

its length. Let ( f, π) be a Bayes–Nash incentive compatible
mechanism. Adding up the incentive constraints

Eπ j (ai ) ≤ Eπ j (ai−1) + ai−1[E Sj ( f, ai ) − E Sj ( f, ai−1)]
= Eπ j (ai−1) + �ai−1ai

for i = 1, . . . , m yields Eπ j (w
d
j ) ≤ Eπ j (w

i
j ) + �(P). By

definition, we have Eπ j (w
d
j ) = 0, so this is equivalent to

Eπ j (w
i
j ) ≥ −�(P). (3)
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Now recall that for any implementable allocation rule f ,
Tj ( f ) has no negative length directed cycle. Hence, by (3),
for given f we can compute minimal incentive compatible
payments π j (w

i
j ) by computing shortest paths in Tj ( f ). The

following lemma specifies the resulting minimal payments
π(= π f ) for any implementable allocation rule f .

Lemma 1 For a Bayes–Nash implementable allocation rule
f , the payment scheme defined by π j (w

d
j ) = 0, and for

i = 1, . . . , m j ,

π j (w
i
j ) =

m j∑

k=i

wk
j [E Sj ( f, wk

j ) − E Sj ( f, wk+1
j )] (4)

is incentive compatible, (interim) individually rational and
minimizes the expected total payment made to the jobs. Here,
recall that m j + 1 = d. The corresponding expected total
payment is given by

Pmin( f ) =
∑

j∈J

m j∑

i=1

φ j (w
i
j )

×
m j∑

k=i

wk
j

[
E Sj ( f, wk

j ) − E Sj ( f, wk+1
j )

]

=
∑

j∈J

∑

w j ∈W j

φ j (w j )w j E S j ( f, w j ),

where the virtual weights w j are defined by w1
j = w1

j and

wi
j = wi

j + (wi
j − wi−1

j )

∑i−1
k=1 φ(wk

j )

φ j (w
i
j )

for i = 2, . . . , m j .

Observe that for each job j and type wi
j we define one pay-

ment π j (w
i
j ). In particular this is independent of the reports

of other jobs w− j . It is one and the same payment that job
j receives when reporting wi

j , independent of w− j , so that

π j (w
i
j , w− j ) = π j (w

i
j ) = Eπ j (w

i
j ), for all w− j . Incentive

compatibility and individual rationality hold in expectation,
but not necessarily for all w− j . In Sect. 3.5 we will argue
that the same expected payments can be achieved by defin-
ing a payment scheme that is even incentive compatible and
indinvidually rational for any type report of other jobs w− j .

The formal proof of the above lemma and the correspond-
ing formulae is contained in the appendix. That proof can
be seen as an instantiation of the standard payment scheme
for single-dimensional mechanism design problems, here for
a scheduling setting and with discrete types2. We remark

2 For the setting considered here, due to the discrete type space, the
revenue equivalence theorem does not hold, which means there are
different payment schemes that implement a given allocation rule f .
Yet if we were to approximate a continuous type distribution T by a

that that shortest paths in the type graphs Tj ( f ) are in fact
independent of the (implementable) allocation rule f , which
allows us to obtain the above closed formulae for minimal
(expected) payments. This property generally gets lost once
we move to multi-dimensional types in Sect. 4, where we
indeed show that this approach fails.

An intuitive interpretation for the virtual weights in (4) is
not that straightforward. We have that w j ≥ w j , and roughly
speaking, the virtual weight w j is large if the probability
φ(w j ) is small. For example, consider a job with weights
w j = 1, 2, 3, or 4 with probabilities 1/4 each, then vir-
tual weights are w j = 1, 3, 5, and 7. When the probabil-
ities are 1/2, 1/4, 3/16 and 1/16, virtual weights become
w j = 1, 4, 7, and 19. In both cases the mapping w j �→ w j

is monotone, but this is not true in general: When the prob-
abilities are 1/8, 1/8, 1/8, and 5/8, virtual weights become
w j = 1, 3, 5, and 4.6.

Given the minimum payments for every (implementable)
allocation rule f , we next want to identify an allocation rule
f that indeed minimizes Pmin( f ) among all Bayes–Nash
implementable and individually rational allocation rules. For
the time being, let us impose the following regularity condi-
tion that ensures Bayes–Nash implementability of the allo-
cation rule in our candidate mechanism. We will get rid of it
afterwards using standard techniques.

Definition 4 Regularity is satisfied if for every job j and
i = 1, . . . , m j − 1, we have wi

j < wk
j whenever wi

j < wk
j .

Recall that, by the above example, regularity need not be
satisfied in general. But it is always satisfied, for instance if
the differences wi

j − wi−1
j are non-decreasing and the prob-

abilities are non-increasing in i , so especially for uniform
distributions over a contiguous domain of weights.

Theorem 2 Let the virtual weights w j , j ∈ J , and payments
π be defined as in Lemma 1. Let f be the allocation rule that
schedules jobs in non-increasing order of ratios w j/p j . If
regularity holds, then ( f, π) is a mechanism that minimizes
the total expected costs among all individual rational, Bayes–
Nash implementable mechanisms.

Proof We show that f is Bayes–Nash implementable and
minimizes Pmin( f ) among all Bayes–Nash implementable
allocation rules. For any allocation rule f , we can rewrite
Pmin( f ) as follows, using independence of weights.

Footnote 2 continued
convergent series of distributions on discrete type spaces Tk , the minimal
and maximal payments that implement a given f for Tk will converge to
the unique payment scheme of f for T . Uniqueness of the latter follows
by the revenue equivalence theorem, e.g., using the characterization of
Heydenreich et al. (2009), for the setting considered.
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Pmin( f ) =
∑

j∈J

∑

w j ∈W j

φ j (w j )w j E S j ( f, w j )

=
∑

j∈J

∑

w j ∈W j

φ j (w j )w j

×
∑

w− j ∈W− j

S j ( f (w j , w− j ))φ− j (w− j )

=
∑

j∈J

∑

(w j ,w− j )∈W

φ(w j , w− j )w j S j ( f (w j , w− j ))

=
∑

w∈W

φ(w)
∑

j∈J

w j S j ( f (w)).

Thus, Pmin( f ) can be minimized by point wise minimizing∑
j∈J w j S j ( f (w)) for every reported type profile w. This

is achieved by scheduling the jobs in order of non-increasing
ratios w j/p j . But in order for this proof to hold, we need to
argue that the so-defined allocation rule is indeed monotone.
To that end, observe that the expected start time E Sj (w j )

is clearly non-increasing in the virtual weight w j . The reg-
ularity condition ensures that it is non-increasing also in the
original weights w j . ��

3.3 Discussion of the result

It is well known that scheduling in order of non-increasing
weight over processing time ratios w j/p j minimizes the sum
of weighted start times

∑n
j=1 w j S j , and therefore maximizes

the total valuation of all jobs. This allocation rule, known as
Smith’s rule (Smith 1956), is therefore the efficient allocation
rule in our setting. We next compare the optimal allocation
rule with the efficient allocation rule.

Definition 5 Jobs are called symmetric if W1 = · · · = Wn ,
φ1 = · · · = φn and p1 = · · · = pn .

Theorem 3 If jobs are symmetric and regularity holds, then
the optimal mechanism is the efficient one, that is, Smith’s
rule.

Proof By symmetry, for any two jobs j and k the virtual
weights are equal, i.e. wi

j = wi
k . By regularity, virtual

weights are non-decreasing in the original weights, and as all
p j are equal, scheduling jobs in order of their non-increasing
ratios w j/p j is equivalent to scheduling them in order of
non-increasing ratios w j/p j . ��

Notice that this is no longer true in the non-regular case,
as there is positive probability that the optimal mechanism
does not schedule the jobs in order of non-increasing ratios
w j/p j . If weight distributions may differ across jobs, or if
jobs have different processing times, then the optimal mech-

anism is in general not efficient either. In fact, the minimal
total expected payment for implementing Smith’s rule can be
arbitrarily bad in comparison to the optimal allocation rule.
This is illustrated by the following two examples.

Example 1 Let there be two jobs 1 and 2 with W1 = {M +1}
and W2 = {1, M} for some constant M > 2. Let φ2(1) =
1 − 1/M , φ2(M) = 1/M and p1 = p2 = 1. Let f e be the
efficient and f ∗ be the optimal allocation rule. Then the ratio
Pmin( f e)/Pmin( f ∗) goes to infinity as M goes to infinity.

Proof The efficient allocation rule, Smith’s rule, always allo-
cates Job 1 first. So the optimal payment for Smith’s rule is to
pay 0 to Job 1 and to pay M to Job 2, irrespective of its type.
The minimum expected total payment is hence Pmin( f e) =
M . For the optimal allocation, we compute virtual weights
after Lemma 1: w1

1 = w1
1 = M + 1, w1

2 = w1
2 = 1 and

w2
2 = M + (M − 1)(1 − 1/M)/(1/M) = M2 − M + 1. The

latter is larger than M+1 if M > 2. Therefore, Job 2 is sched-
uled in front of Job 1 if it has weight M and behind it oth-
erwise. The expected start times for Job 2 are E S2( f ∗, 1) =
1 and E S2( f ∗, M) = 0, respectively. Optimal payments
according to Lemma 1 are π

f ∗
2 (1) = 1 and π

f ∗
2 (M) = 0.

For Job 1, the expected start time is E S1( f ∗, M + 1) =
1/M and the expected payment π

f ∗
1 (M + 1) = 1 + 1/M .

Hence, Pmin( f ∗) = 1 + 1/M + 1 · (1 − 1/M) = 2, and
Pmin( f e)/Pmin( f ∗) = M/2 → ∞ for M → ∞. ��

Example 2 Let there be two jobs 1 and 2 with the same
weight distribution W1 = W2 = {1, M}, φ j (1) = 1 − 1/M ,
φ j (M) = 1/M for j = 1, 2. Let p1 = 1/2 and p2 =
M/2+1 for some M > 2. Let f e be the efficient and f ∗ be the
optimal allocation rule. Then the ratio Pmin( f e)/Pmin( f ∗)
goes to infinity as M goes to infinity.

Proof The efficient allocation rule always schedules Job 1
first, since 1/(1/2) = 2 > 2M/(M + 2) = M/(M/2 + 1).
Therefore, the expected start time of Job 1 is 0 and that of
Job 2 is 1/2. Optimal payments according to Lemma 1 are
π

f e

1 (1) = π
f e

1 (M) = 0 and π
f e

2 (1) = π
f e

2 (M) = M/2.
Hence, Pmin( f e) = M/2. For the optimal mechanism, we
compute virtual weights as w1

1 = w1
2 = 1 and w2

1 = w2
2 =

M2 − M + 1. The schedule in the optimal mechanism is
determined by taking the ratio of virtual weight and process-
ing time of each job, and scheduling the job with the larger
weight first (breaking ties in favor of Job 1). The resulting
expected start times and payments are given below:

E S1( f ∗, 1) = 1/2 + 1/M π
f ∗

1 (1) = 1/2 + 1/M

E S1( f ∗, M) = 0 π
f ∗

1 (M) = 0

E S2( f ∗, 1) = 1/2 π
f ∗

2 (1) = 1 − 1/(2M)

E S2( f ∗, M) = 1/(2M) π
f ∗

2 (M) = 1/2.
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Hence,

Pmin( f ∗) =
(

1

2
+ 1

M

) (
1 − 1

M

)

+
(

1 − 1

2M

) (
1 − 1

M

)
+ 1

2
· 1

M

=
(

1 − 1

M

) (
3

2
+ 1

2M

)
+ 1

2
· 1

M
.

Thus, Pmin( f e)/Pmin( f ∗) → ∞ as M → ∞. ��
It is finally instructive to comment on the comparison of

the optimal mechanism with the VCG mechanism. The VCG
mechanism, named after Vickrey (1961), Clarke (1971) and
Groves (1973), is the following. The allocation rule is the effi-
cient one, that is scheduling in order of non-increasing ratios
w j/p j . Moreover, the incentive compatible payment scheme
is based on computing the “harm” that a job’s presence causes
to other jobs. Taking into account individual rationality, for
a reported type profile w = (w1, . . . , wn), one calculates the
minimal VCG payments as

πV CG
j (w) = p j

∑

k∈J :k< j

wk,

where we assume w.l.o.g. that w1/p1 ≤ · · · ≤ wn/pn . As
illustrated by Examples 1 and 2, the allocation rule of the
VCG mechanism can generally differ from the allocation of
the optimal mechanism. Moreover, the following example
shows that, even for symmetric jobs where the allocation
rule is the same, the payments for the VCG mechanism can
be a factor 3/2 off the payments for the optimal mechanism,
even with only two jobs3.

Example 3 There are two symmetric jobs with W1 = W2 =
{w1, w2}, w1 < w2, and φ j (w

1) = φ j (w
2) = 1/2 for j =

1, 2. Processing times are p1 = p2 = 1. The total expected
payment for the VCG mechanism can be a factor 3/2 higher
compared to the optimal mechanism.

Proof First observe that by symmetry of the jobs, and since
regularity holds, the allocation rule of both mechanisms is
Smith’s rule. There are four possible type profiles, each
occurring with probability 1/4, namely (w1, w1), (w1, w2),
(w2, w1), and (w2, w2). The resulting schedules are the
same for the VCG and the optimal mechanism (break-
ing ties arbitrarily). The VCG mechanism pays to the job
that is scheduled last the weight of the job that is sched-
uled before. Thus, the VCG mechanism has to spend w1

for type profile (w1, w1) and w2 for the three remaining

3 The primary driver for this example is the discrete type space. If type
spaces were continuous, in the symmetric case the revenue equivalence
theorem yields that payments in the VCG mechanism and the optimal
mechanism are identical, because the allocation rule is the same.

type profiles. The total expected payment for the VCG
mechanism is thus (3w2 + w1)/4. Let ( f, π f ) denote the
optimal mechanism from Sect. 3. In the optimal mecha-
nism, the expected payment to a job with weight w1 is
equal to Eπ

f
j (w1) = w1[E Sj ( f, w1) − E Sj ( f, w2)] +

w2 E Sj ( f, w2) = w1[3/4−1/4]+w2[1/4] = w1/2+w2/4.

The expected payment to a job with weightw2 is Eπ
f
j (w2) =

w2 E Sj ( f, w2) = w2/4. The total expected payment for the
optimal mechanism is thus 2 ·1/2 ·(w1/2+w2/4+w2/4) =
(w1 + w2)/2. The claim follows when letting w1 = 0. ��

3.4 The non-regular case

We needed the regularity condition because we require the
allocation rule of Theorem 2 to be monotone. In order to
extend the optimal mechanism to the non-regular case, we
can apply a standard procedure known as “ironing” which
was already proposed by Myerson (1981). Applied to the
scheduling problem it means that we “iron” the possibly non-
monotone mapping w j �→ w j at any interval of non-mono-
tonicity by “flattening” the mapping through adapting some
of the virtual weights w j . This is explained in the following.

Indeed, we simply do the following, if necessary recur-
sively: Consider any non-monotone subsequence of virtual
weights I qr

j := {wq
j , . . . , w

r
j }. Define shorthand notation

φi
j := φ j (w

i
j ) and let w

qr
j := (

∑r
i=q φi

jw
i
j )/

∑r
i=q φi

j be

a new virtual weight that replaces the virtual weights wi
j

with i ∈ I qr
j . The new allocation rule assigns to job j with

a report wi
j , q ≤ i ≤ r , the virtual weight w

qr
j (equiv-

alently, wl
j , q ≤ l ≤ r , with probability φl

j/
∑r

i=q φi
j ).

Note that this does not change the expected start time for all
other jobs, while the (expected) virtual weights, and hence
expected start time of job j is now monotone in wi

j – in

fact constant for all i ∈ I qr
j . This way we obtain a monotone

allocation rule. The payments from Lemma 1 are still optimal
incentive compatible payments for the new allocation rule f ,
and that the formula for Pmin( f ) in the proof of Theorem 2
remains valid, too. Thereby, Smith’s rule based on ironed vir-
tual weights yields again the optimal mechanism. We do not
go into further technical details, and state the corresponding
result somewhat informally.

Theorem 4 Let the virtual weights w j , j ∈ J , and payments
π be as defined in Lemma 1. Let f be the allocation rule
that first irons the mappings w j �→ w j as suggested by the
ironing procedure described above, and then schedules jobs
in non-increasing order of ratios w j/p j . Then ( f, π) is an
optimal mechanism.
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3.5 Implementation in dominant strategies

So far, we have discussed implementability according to
Bayes–Nash equilibrium from Definition 1, and for a given
report wi

j of job j , waiting time as well as payment are
expected values, the expectation taken over truthful reports
of the other jobs. It is an important question in mechanism
design to ask if a given allocation rule can also be imple-
mented with respect to the stronger, dominant strategy equi-
librium, with the same expected utilities for jobs. We refer
for example to Mookherjee and Reichelstein (1992); Manelli
and Vincent (2010); Gershkov et al. (2013) for results in that
direction. Here we briefly argue that this is indeed possible
for our setting.

Definition 6 A mechanism ( f, π) is dominant strategy
incentive compatible (DSIC) if for every job j and every
two types wi

j , wk
j ∈ W j , and any report w− j of other jobs,

π j (w
i
j ) − wi

j S j ( f, (wi
j , w− j ))

≥ π j (w
k
j ) − wi

j S j ( f, (wk
j , w− j )).

(5)

If for allocation rule f there exists a payment scheme π such
that ( f, π) is DSIC, then f is called dominant strategy imple-
mentable. Mechanism ( f, π) is ex-post individual rational if

π j (w
i
j ) − wi

j S j ( f, (wi
j , w− j )) ≥ 0

for any report w− j of other jobs.

Clearly, dominant strategy implementability implies
Bayes–Nash implementability. The definition of monotonic-
ity, and the fact that implementability is equivalent with
monotonicity, translate correspondingly, only replacing the
expected waiting time E Sj ( f, w j ) by the waiting time
S j ( f, (w j , w− j )), for all w− j . Mookherjee and Reichel-
stein (1992) identify a “single crossing” property for agents’
valuation functions that guarantees any Bayes–Nash imple-
mentable allocation rule f to be implementable in dominant
strategies at the same expected payment per agent. Except
for the fact that we have discrete and not continuous type
spaces, and therefore do not have uniqueness of the pay-
ment scheme as they do, the scheduling problem considered
here can be shown to fall into the category of problems they
address, and therefore their proof could be adapted. More
recently, based on Manelli and Vincent’s (2010) idea to ask
for equivalence of only expected allocations and payments,
Gershkov et al. derive a more general result on equivalence
of Bayes Nash and dominant strategy implementation that
can be used to show that there exists an equivalent dominant
strategy implementation of our optimal Bayes Nash mech-
anism; see (Gershkov et al., 2013, Thm. 2). For the sake of
completeness, we nevertheless give the simple, direct proof
of Theorem 5 in the appendix.

Theorem 5 (See also Mookherjee and Reichelstein (1992)
and Gershkov et al. (2013)) The allocation rule of the optimal
mechanism from Theorem 2 is implementable in dominant
strategies with the same expected utility per job and the same
total expected cost.

4 The two-dimensional setting

Now weight w j and processing time p j of a job are pri-
vate information of the job. Recall that job j’s type is then
t j = (w j , p j ). For convenience, let us assume the types
t j ∈ Tj are as follows. t j = (w j , p j ) ∈ W j × Pj ,
where W j = {w1

j , . . . , w
m j
j } with w1

j < · · · < w
m j
j and

Pj = {p1
j , . . . , p

q j
j } with p1

j < · · · < p
q j
j , and φ(t j ) being

the probability of type t j = (w j , p j ). It will also be con-

venient to identify (w
m j +1
j , pk

j ) with the dummy type td
j for

any k = 1, . . . , q j . We assume that a job can only report
a processing time that is not lower than the true processing
time, and that a job is processed for his reported processing
time. We believe this is a natural assumption, as reporting a
shorter processing time can be easily punished by preempt-
ing the job after the declared processing time, before it is
actually finished. This is sometimes referred to as verifiabil-
ity, e.g., Penna and Ventre (2012). By this assumption, the
incentive compatibility constraints (1) need to hold only for
types t i

j and tk
j with pi

j ≤ pk
j , as jobs cannot understate their

true processing time.

4.1 Bayes–Nash implementability

In the two-dimensional setting, the type graph Tj ( f ) of job

j has nodes Tj = W j × Pj , dummy node td
j = t

m j +1
j , and

contains an arc from any node (w
i1
j , pk1

j ) to every other node

(w
i2
j , pk2

j ) with k1 ≤ k2, with length

�(i1k1)(i2k2) = w
i1
j [E Sj ( f, wi2

j , pk2
j ) − E Sj ( f, wi1

j , pk1
j )].

Note that we have arcs only in direction of increasing process-
ing times, since jobs can only overstate their processing time.
Furthermore, every node has an arc to the dummy type, but
there are no outgoing arcs from the dummy type.

As also done by Malakhov and Vohra (2009), one can show
that for monotone allocation rules f , some arcs in the type
graph are not necessary since the corresponding incentive
constraints are implied by others. We first give the definition
of monotonicity in the two-dimensional setting and then for-
mulate a lemma which reduces the set of necessary incentive
constraints.

Definition 7 An allocation rule f satisfies monotonicity with
respect to weights if for every job j and fixed p j ∈ Pj ,
wi

j < wk
j implies that E Sj ( f, wi

j , p j ) ≥ E Sj ( f, wk
j , p j ).
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Lemma 2 Let f be an allocation rule satisfying monotonic-
ity with respect to weights. For any job j , the following con-
straints imply all other incentive constraints

Eπ j (w
i
j , pk

j ) − wi
j E S j ( f, wi

j , pk
j ) ≥

Eπ j (w
i+1
j , pk

j ) − wi
j E S j ( f, wi+1

j , pk
j ) ∀ i, k,

Eπ j (w
i+1
j , pk

j ) − wi+1
j E S j ( f, wi+1

j , pk
j ) ≥

Eπ j (w
i
j , pk

j ) − wi+1
j E S j ( f, wi

j , pk
j ) ∀ i, k,

Eπ j (w
i
j , pk

j ) − wi
j E S j ( f, wi

j , pk
j ) ≥

Eπ j (w
i
j , pk+1

j ) − wi
j E S j ( f, wi

j , pk+1
j ) ∀ i, k.

The proof is rather straightforward and therefore given
in the appendix. Lemma 2 can be seen as a generalization
of decomposition monotonicity as discussed in the proof of
Theorem 1. We can now define the reduced type graph of job
j , which contains only arcs that are necessary in the sense of
Lemma 2. These are arcs

– from type (wi
j , pk

j ) to (wi+1
j , pk

j ) for all i ∈ {1, . . . , m j }
and k ∈ {1, . . . , q j } ,

– from type (wi
j , pk

j ) to (wi−1
j , pk

j ) for all i ∈ {2, . . . , m j }
and k ∈ {1, . . . , q j } ,

– from type (wi
j , pk

j ) to (wi
j , pk+1

j ) for all i ∈ {1, . . . , m j }
and k ∈ {1, . . . , q j − 1}.

A sketch of the reduced type graph is given in Fig. 2.
Minimal expected payments again correspond to negative
of shortest paths in the reduced type graph. We finally give
the characterization of Bayes–Nash implementable alloca-
tion rules for the two-dimensional setting, which is a conse-
quence of our restriction of the strategy space for each job,
i.e., the assumption that no job can understate its required
processing time.

Theorem 6 Allocation rule f is Bayes–Nash implementable
in the given two dimensional setting if and only if it satisfies
monotonicity with respect to weights.

Proof Recalling that implementability of f is equivalent
with the fact that the type graph as no negative length directed
cycle, monotonicity with respect to weights follows via (3),

Fig. 2 Reduced type graph Tj ( f )

just as in the single-dimensional setting. Now consider any
allocation rule f that is monotone with respect to weights,
and consider the corresponding type graph Tj ( f ). We need to
show that it has no negative length directed cycle. By Lemma
2, it suffices to consider the reduced type graph. Again via
(3), monotonicity with respect to weights implies that there
are no negative length directed cycles consisting of only two
arcs. But observe that every cycle in the reduced type graph
Tj ( f ) consists of a finite number of two-cycles. The claim
follows. ��

4.2 On optimal mechanisms

Given the elegant approach by Malakhov and Vohra (2009)
for an auction setting with two-dimensional type spaces, it
is tempting to try and use the network approach also in the
two-dimensional setting for the scheduling problem. In this
section, we show that this won’t work. A first and crucial
problem is that, in contrast to the single-dimensional case,
the shortest paths in the type graph may now depend on the
allocation rule f . Hence, we cannot express minimum pay-
ments in a closed formula. Exactly this problem is ruled out
by Malakhov and Vohra (2009), but it turns out that the sit-
uation here is worse.

Definition 8 We say that an allocation rule f satisfies inde-
pendence of irrelevant alternatives (IIA) if the relative order
of any two jobs j1 and j2 is the same in the schedules f (s)
and f (t) for any two type profiles s, t ∈ T that differ only in
the types of jobs from J \ { j1, j2}.

Note that the IIA axiom has no bite if the number of jobs
is two. Another way to state the IIA axiom is that the relative
order of two jobs is independent of all other jobs.

Theorem 7 The allocation rule of the optimal mechanism
for the two-dimensional setting does not generally satisfy IIA.

Proof The following (minimal) instance has been found by
using an ILP formulation for the optimal mechanism design
problem, in which the IIA condition can be cast as a linear
constraint. There are 3 jobs. Both Job 1 and Job 2 have a
type space containing only one type, type (w1, p1) = (2, 1)

and (w2, p2) = (9, 8) respectively. Job 3 has type space
(w3, p3) ∈ {1, 3, 5} × {5, 7} and the corresponding proba-
bilities for its types are listed below.

φ3(1, 7) = 0.24 φ3(3, 7) = 0.24 φ3(5, 7) = 0.10
φ3(1, 5) = 0.24 φ3(3, 5) = 0.02 φ3(5, 5) = 0.16

A graphical representation of the instance is sketched in
Fig. 3. We show that for this instance the unique allocation
rule that is Bayes–Nash implementable, individually ratio-
nal and minimizes the expected total payments, does not
satisfy independence of irrelevant alternatives. The instance
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Fig. 3 Instance with three jobs for which the optimal allocation rule
is not IIA

has three Jobs and therefore we have 3! = 6 different sched-
ules. We denote by schedule 213 the schedule where Job
2 is scheduled first and Job 3 is scheduled last. Job 1 and
Job 2 both have only one possible type, whereas Job 3 can
have 6 types. Therefore the type profile is only dependent on
the type of Job 3. We therefore have six type profiles. For
this instance IIA implies that for all six type profiles, the
allocation rule must choose a schedule in which the relative
order of Job 1 and Job 2 is the same. Therefore the allocation
rule must choose schedules from either {123, 132, 312} or
{213, 231, 321} for all six type profiles.

As an example consider allocation rule f , assigning the
following schedules to reported types of Job 3.

(1, 7) → 123 (3, 7) → 123 (5, 7) → 312
(1, 5) → 123 (3, 5) → 132 (5, 5) → 132

For Job 1 and 2 we do not need to take into account incentive
constraints as they only have one type. In order to evaluate
the individual rationality constraints we need to compute the
expected start times for Job 1 and 2. We get

π
f

1 (2, 1) =w1 · E S1( f, 2, 1)

=2 · (0.24 · 0 + 0.24 · 0 + 0.02 · 0

+ 0.24 · 0 + 0.16 · 0 + 0.10 · 7)

=1.40

whereas for Job 2 we have

π
f

2 (9, 8) =w2 · E S2( f, 9, 8)

=9 · (0.24 · 1 + 0.24 · 1 + 0.02 · 6

+ 0.24 · 1 + 0.16 · 6 + 0.10 · 8)

=23.40

For Job 3 we have to take into account both the incentive
and the individual rationality constrains. The type graph for
Job 3 is depicted in Fig. 4.

We conclude that the minimal payments to Job 3 are

π
f

3 (1, 5) = π
f

3 (1, 7) = π
f

3 (3, 7) = 27

π
f

3 (3, 5) = π
f

3 (5, 5) = 5

π
f

3 (5, 7) = 0

Fig. 4 Type graph corresponding to allocation rule f

Now that we have computed the minimal payments to all
jobs, we can compute the minimal total expected payment
achieved by allocation rule f .

Pmin( f ) = π
f

1 (2, 1) + π
f

2 (9, 8) +
∑

t3∈T3

φ3(t3)π
f

3 (t3)

= 1.40 + 23.40

+ (3 · 0.24)27 + (0.02 + 0.16)5 + (0.10)0

= 45.14

In the same way we can compute the minimal expected total
payments achieved by all other 2 · 36 − 1 = 1457 allocation
rules that are IIA. For this instance it turns out that allocation
rule f is the unique Bayes–Nash implementable allocation
rule that achieves minimal expected total payments, while
satisfying the IIA condition.

Now consider allocation rule g, that chooses for each type
profile the following schedules.

(1, 7) → 123 (3, 7) → 123 (5, 7) → 312
(1, 5) → 123 (3, 5) → 231 (5, 5) → 132

This allocation rule does not satisfy the IIA condition: the rel-
ative order of Jobs 1 and 2 for case (3, 5) is different from their
relative order in all other cases, although the types of Jobs 1
and 2 are identical. Using the same approach as for allocation
rule f , we calculate π

g
1 (2, 1) = 1.92 and π

g
2 (9, 8) = 22.32,

respectively. The type graph for Job 3 is depicted in Fig. 5.
The minimal payments to Job 3 are

π
f

3 (1, 5) = π
f

3 (1, 7) = π
f

3 (3, 7) = 27

π
f

3 (3, 5) = 26

π
f

3 (5, 5) = 5

π
f

3 (5, 7) = 0

For allocation rule g, the minimal expected total payment is
therefore
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Fig. 5 Type graph corresponding to allocation rule g

Pmin(g) = π
g
1 (2, 1) + π

g
2 (9, 8) +

∑

t3∈T3

φ3(t3)π
g
3 (t3)

= 1.92 + 22.32 + (3 · 0.24)27 + (0.02)26

+ (0.16)5 + (0.10)0

= 45.00

This proves the claim. ��
Theorem 7 shows that any priority-based allocation rule

where the priority of a job is computed from the character-
istics of the job itself cannot be optimal in general. We con-
clude that the network approach which we used for the single
dimensional case, and which is used also by Malakhov and
Vohra (2009) for example, fails in the two-dimensional case
we consider here4. When there are only two jobs present, then
IIA is trivially satisfied. Recall that in the single-dimensional
case the optimal mechanism is efficient for symmetric jobs
and regular distributions and that the uniform distribution is
regular. This is contrasted by the following theorem for the
two-dimensional case.

Theorem 8 Even for two symmetric jobs, 2 × 2-type spaces
and uniform probability distributions, the optimal mecha-
nism is not efficient.

Proof Consider the following example with two jobs, W1 =
W2 = {1, 2} and P1 = P2 = {1, 2}. We assume that
φ1(i, k) = φ2(i, k) = 1

4 for i, k ∈ {1, 2}. On the one hand,
consider the efficient allocation rule f e, which schedules the
job with higher weight over processing time ratio first. On
the other hand, regard the so-called w-rule, f w, that sched-
ules the job with the higher weight first. In case of ties, both

4 Of course, for any fixed allocation rule f , we can use the network
approach to compute optimal payments. But in the two dimensional
setting, the approach fails for determining f itself: For an arbitrary,
implementable f , the total expected payment Pmin( f ) is a linear func-
tion in the values E Sj ( f, t j ). But in contrast to the single-dimensional
case, the coefficients of the values E Sj ( f, t j ) may depend on the allo-
cation rule f . Hence, we see no easy way to conclude which f is the
minimizer for Pmin( f ).

rules schedule Job 1 first. Note that both f e and f w sat-
isfy monotonicity with respect to weights, and are therefore
implementable. The expected start times for the w-rule f w

are

E S1( f w, 1, 1) = E S1( f w, 1, 2) = 3/4,

E S1( f w, 2, 1) = E S1( f w, 2, 2) = 0,

E S2( f w, 1, 1) = E S2( f w, 1, 2) = 3/2,

E S2( f w, 2, 1) = E S2( f w, 2, 2) = 3/4.

The type graphs corresponding to f w for Jobs 1 and 2
respectively are shown in Fig. 6. From this, the optimal pay-
ments can be computed as π

f w

1 (2, 1) = π
f w

1 (2, 2) = 0,

π
f w

1 (1, 1) = π
f w

1 (1, 2) = 3/4, π
f w

2 (2, 1) = π
f w

2 (2, 2) =
3/2, π

f w

2 (1, 1) = π
f w

2 (1, 2) = 9/4. Hence the (minimum)
total expected payment for the w-rule is:

Pmin( f w) = 1

4

∑

j

∑

(i,k)

π
f w

j (i, k) = 9/4.

On the other hand, for the efficient allocation rule f e, we
get the expected start times

E S1( f e, 1, 1) = E S1( f e, 2, 2) = 1/4,

E S1( f e, 1, 2) = 1,

E S1( f e, 2, 1) = 0,

E S2( f e, 1, 1) = E S2( f e, 2, 2) = 1,

E S2( f e, 1, 2) = 3/2,

E S2( f e, 2, 1) = 1/4.

The type graphs corresponding to f e for Jobs 1 and 2 respec-
tively are shown in Fig. 7. From this, the optimal pay-
ments can be computed as π

f e

1 (1, 1) = π
f e

1 (2, 2) = 1/2,

π
f e

1 (2, 1) = 0, π
f e

1 (1, 2) = 5/4, π
f e

2 (1, 1) = π
f e

2 (2, 2) =
2, π

f e

2 (1, 2) = 5/2, π
f e

2 (2, 1) = 1/2.

Fig. 6 Type graphs for the w-rule for Jobs 1 and 2

Fig. 7 Type graphs for the efficient rule for Jobs 1 and 2
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Hence the (minimum) total expected payment for the effi-
cient rule f e is

Pmin( f e) = 1

4

∑

j

∑

(i,k)

π
f e

j (i, k) = 37/16.

So Pmin( f e) > Pmin( f w). Thus, the efficient allocation is
dominated by the w-rule, and consequently does not corre-
spond to the optimal mechanism. ��

5 Discussion

In the first part of the paper, we show that the graph-theoretic
approach is a simple and intuitive tool for optimal mechanism
design with discrete types. It yields a closed form solution
for the optimal mechanism in the single-dimensional case,
which can be computed in polynomial time. This result par-
allels Myerson’s results for single item auctions, and we hope
it provides insight into mechanism design methodology for
the scheduling community. For the two-dimensional case, in
light of Theorem 7, it is conceivable that a closed form solu-
tion does not exist in general. As to computational complexity
of the two-dimensional problem, it has been shown recently
that an optimal randomized mechanism can be computed in
polynomial time (Hoeksma and Uetz 2013), but it remains
an open problem to determine the computational complexity
for computing a deterministic optimal mechanism.
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Appendix

Proof for Theorem 1 via decomposition monotonicity We
consider any monotone allocation rule f , together with type
graph Tj ( f ). We show that if there is no negative length
directed cycle with only two arcs, then there is no nega-
tive length directed cycle. We first show that the arc lengths
satisfy a property called decomposition monotonicity, i.e.,
whenever i < k < l then �ik + �kl ≤ �il and �lk + �ki ≤ �li .
Decomposition monotonicity follows from

�ik + �kl = wi
j [E Sj ( f, wk

j ) − E Sj ( f, wi
j )]

+wk
j [E Sj ( f, wl

j ) − E Sj ( f, wk
j )]

≤ wi
j [E Sj ( f, wk

j ) − E Sj ( f, wi
j )]

+wi
j [E Sj ( f, wl

j ) − E Sj ( f, wk
j )]

= wi
j [E Sj ( f, wl

j ) − E Sj ( f, wi
j )] = �il ,

where the inequality follows from monotonicity of f (recall-
ing that wi

j < wk
j < wl

j ). Note that everything remains true if
the dummy type is involved, i.e., if l = m j +1. The inequality
�lk + �ki ≤ �li follows similarly. Because of decomposition
monotonicity, we conclude for any k > i + 1 that

�i,i+1 + · · · + �k−1,k ≤ �ik

Similarly, �k,k−1 + · · · + �i+1,i ≤ �ki (where k is not the
dummy type, which by definition does not have outgoing
arcs). Hence, for any directed cycle C , we can replace arcs
(i, k) with k > i + 1 by the chain (i, i + 1), . . . , (k − 1, k),
thereby reducing the total length of C . The same is true for
all arcs (k, i) with k > i + 1, which can be replaced by the
chain (k, k − 1), . . . , (i + 1, i). By “decomposing” the cycle
in this way, we see that its length can be lower bounded by
the lengths of a finite number of two-cycles. Since two-cycles
have non-negative length by monotonicity of f and (3), the
claim is proved. ��
Proof of Lemma 1. As f is Bayes–Nash implementable,
Tj ( f ) satisfies the non-negative cycle property. Conse-
quently, we can compute shortest paths in Tj ( f ). With
dist (wi

j , w
d
j ) we denote the length of a shortest path from

wi
j to wd

j . By (3), −dist (wi
j , w

d
j ) ≤ Eπ j (w

i
j ). There-

fore, −dist (wi
j , w

d
j ) is a lower bound on the expected pay-

ment for reporting wi
j . On the other hand, since we have

dist (wi
j , w

d
j ) ≤ �ik + dist (wk

j , w
d
j ) for any two types wi

j

and wk
j , it follows that

−dist (wk
j , w

d
j ) ≤ −dist (wi

j , w
d
j ) + �ik .

Consequently, defining the payment as negative of the short-
est path lengths,

π j (w
i
j ) := −dist (wi

j , w
d
j ) ,

yields an incentive compatible payment scheme that mini-
mizes the expected payment to every job for any reported
type of the agent. (Recall that individual rationality is satis-
fied along with the incentive constraints, due to the introduc-
tion of dummy types.)

Next, recall that arc lengths in Tj ( f ) satisfy decomposi-
tion monotonicity. Therefore, a shortest path from wi

j to wd
j is

exactly the path that includes all wi+1
j , . . . , wm j . Observing

that −dist (wd
j , w

d
j ) = 0 and

−dist (wi
j , w

d
j ) =

m j∑

k=i

wk
j [E Sj ( f, wk

j ) − E Sj ( f, wk+1
j )]

for all wi
j ∈ W j \ {wd

j }, we have verified the first claim of
the Lemma.

We are left to verify the formulae for the minimum
expected total payment for a given allocation rule f . We
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get for Pmin( f )

=
∑

j∈J

m j∑

i=1

φ j (w
i
j )π j (w

i
j )

=
∑

j∈J

m j∑

i=1

φ j (w
i
j )

m j∑

k=i

wk
j [E Sj ( f, wk

j ) − E Sj ( f, wk+1
j )]

=
∑

j∈J

m j∑

i=1

φ j (w
i
j )

[ m j∑

k=i

wk
j E S j ( f, wk

j )

−
m j∑

k=i+1

wk−1
j E S j ( f, wk

j )

]

=
∑

j∈J

m j∑

i=1

φ j (w
i
j )

[
wi

j E S j ( f, wi
j )

+
m j∑

k=i+1

E Sj ( f, wk
j )(w

k
j − wk−1

j )

]

=
∑

j∈J

E S j ( f, w1
j )w

1
jφ j (w

1
j ) +

∑

j∈J

m j∑

i=2

E Sj ( f, wi
j )

×
[
φ j (w

i
j )w

i
j + (wi

j − wi−1
j )

i−1∑

k=1

φ j (w
k
j )

]
.

Therefore, defining the virtual weights w j by setting w1
j =

w1
j , and for i = 2, . . . , m j ,

wi
j = wi

j + (wi
j − wi−1

j )

∑i−1
k=1 φ j (w

k
j )

φ j (w
i
j )

yields the closed form

Pmin( f ) =
∑

j∈J

∑

w j ∈W j

φ j (w j )w j E S j ( f, w j ).

��
Proof of Theorem 5. For any implementable f , a candidate
for the optimal DSIC payment can be found in exactly the
same way as in the Bayes–Nash case, namely as (negative of
the length of) shortest paths in the type graphs Tj ( f ), only
that we now have |W− j | many type graphs for each job j ,
one for each possible report w− j of the other jobs. The arc
lengths in these type graphs are

�ik = wi
j

[
S j ( f, (wk

j , w− j )) − S j ( f, (wi
j , w− j ))

]
.

The resulting payments, for given w− j , are π j (w
d
j , w− j ) =

0, and

π j (w
i
j , w− j ) =

m j∑

k=i

wk
j

[
S j ( f, (wk

j , w− j ))

− S j ( f, (wk+1
j , w− j ))

]

for i = 1, . . . , m j . It is an easy exercise to verify incentive
compatibility and individual rationality of these payments.
If we now compute the total expected payment P( f ) of the
resulting mechanism ( f, π), we get

P( f ) =
∑

j

∑

w− j

φ(w− j )
∑

i

φ j (w
i
j )

×
m j∑

k=i

wk
j

[
S j ( f, (wk

j , w− j )) − S j ( f, (wk+1
j , w− j ))

]

=
∑

j

∑

i

φ j (w
i
j )

×
m j∑

k=i

wk
j

[∑

w− j

φ(w− j )S j ( f, (wk
j , w− j ))

−
∑

w− j

φ(w− j )S j ( f, (wk+1
j , w− j ))

]

=
∑

j

∑

i

φ j (w
i
j )

m j∑

k=i

wk
j

[
E Sj ( f, wk

j )

−E Sj ( f, wk+1
j )

]

= Pmin( f ).

Note that for each job the minimal payments for dominant
strategy incentive compatibility are, in expectation, identical
to the minimal payments that we computed before for Bayes–
Nash implementability. Finally, note that the allocation rule
that has been defined in Theorem 2 is indeed monotone in
w j for any report w− j . ��
Proof of Lemma 2. For any i1, i2, i3 ∈ {1, . . . , m j +1},i1 <

i2 < i3, and any k ∈ {1, . . . , q j } the constraint

Eπ j (w
i1
j , pk

j ) − w
i1
j E S j ( f, wi1

j , pk
j ) ≥

Eπ j (w
i3
j , pk

j ) − w
i1
j E S j ( f, wi3

j , pk
j )

is implied by

Eπ j (w
i1
j , pk

j ) − w
i1
j E S j ( f, wi1

j , pk
j ) ≥

Eπ j (w
i2
j , pk

j ) − w
i1
j E S j ( f, wi2

j , pk
j ) , and

Eπ j (w
i2
j , pk

j ) − w
i2
j E S j ( f, wi2

j , pk
j ) ≥

Eπ j (w
i3
j , pk

j ) − w
i2
j E S j ( f, wi3

j , pk
j ).

The claim follows by adding up the latter two constraints,
and using monotonicity of f together with the fact that
w

i1
j < w

i2
j . Everything remains true if the dummy type is

involved, i.e., if (w
i3
j , pk

j ) = (w
m j +1
j , pk

j ) = td
j . Therefore,

all constraints of the type

Eπ j (w
i1
j , pk

j ) − w
i1
j E S j ( f, wi1

j , pk
j ) ≥

Eπ j (w
i2
j , pk

j ) − w
i1
j E S j ( f, wi2

j , pk
j ) (6)
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are implied by the subset of constraints where i2 = i1 + 1.
A similar effect can be shown for the “reverse” incentive

constraints, i.e., the above constraints for i3 < i2 < i1, where
i1, i2, i3 ∈ {1, . . . , m j }. Again, out of all constraints of the
type

Eπ j (w
i1
j , pk

j ) − w
i1
j E S j ( f, wi1

j , pk
j ) ≥

Eπ j (w
i2
j , pk

j ) − w
i1
j E S j ( f, wi2

j , pk
j ), (7)

only those with i2 = i1 − 1 are necessary.
Similarly, out of all constraints of the type

Eπ j (w
i
j , pk1

j ) − wi
j E S j ( f, wi

j , pk1
j ) ≥

Eπ j (w
i
j , pk2

j ) − wi
j E S j ( f, wi

j , pk2
j ) (8)

for i ∈ {1, . . . , m j }, k1, k2 ∈ {1, . . . , q j }, k1 < k2 only those
with k2 = k1 + 1 are necessary.

Finally, for any types (w
i1
j , pk1

j ),(wi2
j , pk2

j ) with i1 < i2

and k1 < k2 the corresponding “diagonal” constraint

Eπ j (w
i1
j , pk1

j ) − w
i1
j E S j ( f, wi1

j , pk1
j ) ≥

Eπ j (w
i2
j , pk2

j ) − w
i1
j E S j ( f, wi2

j , pk2
j )

follows by adding up the corresponding constraints of type
(8) and (6),

Eπ j (w
i1
j , pk1

j ) − w
i1
j E S j ( f, wi1

j , pk1
j ) ≥

Eπ j (w
i1
j , pk2

j ) − w
i1
j E S j ( f, wi1

j , pk2
j ) and

Eπ j (w
i1
j , pk2

j ) − w
i1
j E S j ( f, wi1

j , pk2
j ) ≥

Eπ j (w
i2
j , pk2

j ) − w
i1
j E S j ( f, wi2

j , pk2
j ).

Similarly, for any (w
i1
j , pk1

j ),(wi2
j , pk2

j ) with i2 < i1 and
k1 < k2, the corresponding “diagonal” constraint follows by
adding up the appropriate constraints of type (8) and (7). ��
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