Skip to main content
Log in

A polynomial-time algorithm for the preemptive mixed-shop problem with two unit operations per job

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

In a so-called mixed-shop scheduling problem, the operations of some jobs have to be processed in a fixed order (as in the job-shop problem); the other ones can be processed in an arbitrary order (as in the open-shop problem). In this paper we present a new exact polynomial-time algorithm for the mixed-shop problems with preemptions and at most two unit operations per job.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baptiste, P., & Timkovsky, V. G. (2001). On preemption redundancy in scheduling unit processing time jobs on two parallel machines. Operations Research Letters, 28, 205–212.

    Article  Google Scholar 

  • Brucker, P., Heitmann, S., & Hurink, J. (2003). How useful are preemptive schedules? Operations Research Letters, 31(2), 129–136.

    Article  Google Scholar 

  • Cole, R., Ost, K., & Schirra, K. (2001). Edge-coloring bipartite multigraphs in \(O(E \log D)\) time. Combinatorica, 21, 5–12.

    Article  Google Scholar 

  • Conway, R. W. W., Maxwell, L., & Miller, L. W. (1967). Theory of scheduling. Reading: Addison-Wesley.

    Google Scholar 

  • Gabow, H., & Kariv, O. (1982). Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal of Computing, 11, 117–129.

    Article  Google Scholar 

  • Gonzalez, T., & Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of the Association for Computing Machinery, 23(4), 665–679.

    Article  Google Scholar 

  • Kononov, A., Sevastyanov, S., & Sviridenko, M. (2012). Complete complexity classification of short shop scheduling. Journal of Scheduling, 15, 427–446.

    Article  Google Scholar 

  • König, D. (1916). Graphok és alkalmazásuk a determinánsok és a halmazok elméletére, [Hungarian] Mathematikai és Természettudományi Értesitö 34, (1916), 104–119. [German translation: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre. Mathematische Annalen, 77, 453–465.

  • Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Computational complexity of discrete optimization problems. Annals of Discrete Mathematics, 4, 121–140.

  • Leung, J. Y. T. (Ed.). (2004). Handbook of scheduling: Algorithms, models, and performance analysis. Boca Raton: Chapman & Hall/CRC Computer and Information Science Series.

    Google Scholar 

  • Masuda, T., Ishii, H., & Nishida, T. (1985). The mixed shop scheduling problem. Discrete Applied Mathematics, 11(2), 175–186.

    Article  Google Scholar 

  • Melnikov, L., & Vizing, V. (1999). The edge chromatic number of a directed/mixed multigraph. Journal Graph Theory, 31(4), 267–273.

    Article  Google Scholar 

  • Pyatkin, A. (1999). Incidentor colorings and their applications. Ph. D. Thesis, in Russian.

  • Shakhlevich, N. V., & Sotskov, Y. N. (1994). Scheduling two jobs with fixed and non-fixed routines. Computing, 52, 17–30.

    Article  Google Scholar 

  • Shakhlevich, N. V., Sotskov, Yu N, & Werner, F. (1999). Shop-scheduling problems with fixed and non-fixed orders of the jobs. Annals of Operations Research, 92, 281–304.

    Article  Google Scholar 

  • Shakhlevich, N. V., Sotskov, Yu N, & Werner, F. (2000). Complexity of mixed shop scheduling problems: A survey. European Journal of Operational Research, 120, 387–397.

    Article  Google Scholar 

  • Strusevich, V. A. (1989). On nonhomogeneous two-stage deterministic processing systems. Kibernetica, 3, 88–94. (in Russian).

    Google Scholar 

  • Strusevich, V. A. (1991). Two machine super-shop scheduling problem. Journal of the Operational Research Society, 42(6), 479–492.

    Article  Google Scholar 

  • Timkovsky, V. G. (2004). Reducibility among scheduling classes, Chapter 8. In J. Y.-T. Leung (Ed.), Handbook of scheduling: Algorithms, models, and performance analysis. Boca Raton: Chapman & Hall/CRC Computer and Information Science Series.

    Google Scholar 

  • Vizing, V. (2002). A bipartite interpretation of a direct multigraph in problems of the coloring of incidentors Ser. 1. Diskretn. Anal. Issled. Oper., 9(1), 27–41.

    Google Scholar 

  • Williamson, D., Hall, L., Hoogeveen, J., Hurkens, C., Lenstra, J. K., Sevastianov, S., & Shmoys, D. (1997). Short shop schedules. Operations Research, 45(2), 288–294.

Download references

Acknowledgments

We thank anonymous reviewers for their thorough and constructive comments. This work was supported in part by the RFH-NSC grant 13-22-10002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kononov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugarzhapov, A., Kononov, A. A polynomial-time algorithm for the preemptive mixed-shop problem with two unit operations per job. J Sched 19, 61–72 (2016). https://doi.org/10.1007/s10951-015-0454-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-015-0454-9

Keywords

Navigation