Skip to main content
Log in

Improved approaches to the exact solution of the machine covering problem

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

For the basic problem of scheduling a set of n independent jobs on a set of m identical parallel machines with the objective of maximizing the minimum machine completion time—also referred to as machine covering—we propose a new exact branch-and-bound algorithm. Its most distinctive components are a different symmetry-breaking solution representation, enhanced lower and upper bounds, and effective novel dominance criteria derived from structural patterns of optimal schedules. Results of a comprehensive computational study conducted on benchmark instances attest to the effectiveness of our approach, particularly for small ratios of n to m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahuja, R. K., & Orlin, J. B. (2001). Inverse optimization. Operations Research, 49, 771–783.

    Article  Google Scholar 

  • Alvim, A. C. F., Ribeiro, C. C., Glover, F., & Aloise, D. J. (2004). A hybrid improvement heuristic for the one-dimensional bin packing problem. Journal of Heuristics, 10, 205–229.

    Article  Google Scholar 

  • Azar, Y., & Epstein, L. (1998). On-line machine covering. Journal of Scheduling, 1, 67–77.

    Article  Google Scholar 

  • Brucker, P., & Shakhlevich, N. V. (2009). Inverse scheduling with maximum lateness objective. Journal of Scheduling, 12, 475–488.

    Article  Google Scholar 

  • Brucker, P., & Shakhlevich, N. V. (2011). Inverse scheduling: Two-machine flow-shop problem. Journal of Scheduling, 14, 239–256.

    Article  Google Scholar 

  • Cai, S.-Y. (2007). Semi-online machine covering. Asia-Pacific Journal of Operational Research, 24, 373–382.

    Article  Google Scholar 

  • Csirik, J., Kellerer, H., & Woeginger, G. (1992). The exact LPT-bound for maximizing the minimum completion time. Operations Research Letters, 11, 281–287.

    Article  Google Scholar 

  • Dell’Amico, M., & Martello, S. (1995). Optimal scheduling of tasks on identical parallel processors. ORSA Journal on Computing, 7, 191–200.

    Article  Google Scholar 

  • Deuermeyer, B. L., Friesen, D. K., & Langston, M. A. (1982). Scheduling to maximize the minimum processor finish time in a multiprocessor system. SIAM Journal on Algebraic and Discrete Methods, 3, 190–196.

    Article  Google Scholar 

  • Ebenlendr, T., Noga, J., Sgall, J., & Woeginger, G. (2006). A note on semi-online machine covering. In T. Erlebach & G. Persiano (Eds.), Approximation and online algorithms. Lecture Notes in Computer Science (Vol. 3879, pp. 110–118). Berlin: Springer.

    Chapter  Google Scholar 

  • Epstein, L., Levin, A., & van Stee, R. (2011). Max-min online allocations with a reordering buffer. SIAM Journal on Discrete Mathematics, 25, 1230–1250.

    Article  Google Scholar 

  • França, P. M., Gendreau, M., Laporte, G., & Müller, F. M. (1994). A composite heuristic for the identical parallel machine scheduling problem with minimum makespan objective. Computers & Operations Research, 21, 205–210.

    Article  Google Scholar 

  • Frangioni, A., Necciari, E., & Scutellà, M. G. (2004). A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems. Journal of Combinatorial Optimization, 8, 195–220.

    Article  Google Scholar 

  • Friesen, D. K., & Deuermeyer, B. L. (1981). Analysis of greedy solutions for a replacement part sequencing problem. Mathematics of Operations Research, 6, 74–87.

    Article  Google Scholar 

  • Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17, 416–429.

    Article  Google Scholar 

  • Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.

  • Haouari, M., & Jemmali, M. (2008). Maximizing the minimum completion time on parallel machines. 4OR: A Quarterly Journal of Operations Research, 6, 375–392.

    Article  Google Scholar 

  • He, Y., & Tan, Z. Y. (2002). Ordinal on-line scheduling for maximizing the minimum machine completion time. Journal of Combinatorial Optimization, 6, 199–206.

    Article  Google Scholar 

  • Heuberger, C. (2004). Inverse combinatorial optimization: A survey on problems, methods, and results. Journal of Combinatorial Optimization, 8, 329–361.

    Article  Google Scholar 

  • Koulamas, C. (2005). Inverse scheduling with controllable job parameters. International Journal of Services and Operations Management, 1, 35–43.

    Article  Google Scholar 

  • Labbé, M., Laporte, G., & Martello, S. (1995). An exact algorithm for the dual bin packing problem. Operations Research Letters, 17, 9–18.

    Article  Google Scholar 

  • Luo, R.-Z., & Sun, S.-J. (2005). Semi on-line scheduling problem for maximizing the minimum machine completion time on \(m\) identical machines. Journal of Shanghai University, 9, 99–102.

    Article  Google Scholar 

  • Peeters, M., & Degraeve, Z. (2006). Branch-and-price algorithms for the dual bin packing and maximum cardinality bin packing problem. European Journal of Operational Research, 170, 416–439.

    Article  Google Scholar 

  • Tan, Z., & Wu, Y. (2007). Optimal semi-online algorithms for machine covering. Theoretical Computer Science, 372, 69–80.

    Article  Google Scholar 

  • Walter, R. (2013). Comparing the minimum completion times of two longest-first scheduling-heuristics. Central European Journal of Operations Research, 21, 125–139.

    Article  Google Scholar 

  • Walter, R., & Lawrinenko, A. (2014). Effective solution space limitation for the identical parallel machine scheduling problem. Working Paper. http://s.fhg.de/WrkngPprRW.

  • Woeginger, G. J. (1997). A polynomial-time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters, 20, 149–154.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the two anonymous referees for their valuable comments that helped to improve the presentation of the paper and for suggesting shorter proofs of Theorem 4.1 and Lemma 3.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Walter.

Appendix: Detailed results on benchmark instances

Appendix: Detailed results on benchmark instances

Tables 7 and 8 contain detailed results for each of the 390 uniform and 390 non-uniform benchmark instances, respectively. Each row corresponds to a triple (nm, Interval) and each column to one of the 10 instances per triple. For each instance, we record the best found objective function value (labeled as “Best”) as well as the best found upper bound value (labeled as “UB”). Bold entries indicate optimal values.

Table 7 Detailed results on all 390 uniform instances
Table 8 Detailed results on all 390 non-uniform instances

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, R., Wirth, M. & Lawrinenko, A. Improved approaches to the exact solution of the machine covering problem. J Sched 20, 147–164 (2017). https://doi.org/10.1007/s10951-016-0477-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-016-0477-x

Keywords

Navigation