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Abstract We study the problem of non-preemptively sched-
uling n jobs, each job j with a release time t j, a deadline d j,
and a processing time p j, on m parallel identical machines.
Cieliebak et al (2004) considered the two constraints |d j−
t j| ≤ λ p j and |d j− t j| ≤ p j +σ and showed the problem to
be NP-hard for any λ > 1 and for any σ ≥ 2. We comple-
ment their results by parameterized complexity studies: we
show that, for any λ > 1, the problem remains weakly NP-
hard even for m = 2 and strongly W[1]-hard parameterized
by m. We present a pseudo-polynomial-time algorithm for
constant m and λ and a fixed-parameter tractability result for
the parameter m combined with σ .

Keywords release times and deadlines · machine mini-
mization · sequencing within intervals · shiftable intervals ·
fixed-parameter tractability · NP-hard problem

1 Introduction

Non-preemptively scheduling jobs with release times and
deadlines on a minimum number of machines is a well-stud-
ied problem both in offline and online variants (Chen et al

René van Bevern is supported by grant 16-31-60007 mol a dk of the
Russian Foundation for Basic Research (RFBR).
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2016; Chuzhoy et al 2004; Cieliebak et al 2004; Malucelli
and Nicoloso 2007; Saha 2013). In its decision version, the
problem is formally defined as follows:

INTERVAL-CONSTRAINED SCHEDULING

Input: A set J := {1, . . . ,n} of jobs, a number m ∈ N of
machines, each job j with a release time t j ∈ N, a dead-
line d j ∈ N, and a processing time p j ∈ N.

Question: Is there a schedule that schedules all jobs onto
m parallel identical machines such that

1. each job j is executed non-preemptively for p j time units,
2. each machine executes at most one job at a time, and
3. each job j starts no earlier than t j and is finished by d j.

For a job j ∈ J, we call the half-open interval [t j,d j) its time
window. A job may only be executed during its time window.
The length of the time window is d j− t j.

We study INTERVAL-CONSTRAINED SCHEDULING with
two additional constraints introduced by Cieliebak et al (2004).
These constraints relate the time window lengths of jobs to
their processing times:

Looseness If all jobs j ∈ J satisfy |d j− t j| ≤ λ p j for some
number λ ∈ R, then the instance has looseness λ . By λ -
LOOSE INTERVAL-CONSTRAINED SCHEDULING we denote
the problem restricted to instances of looseness λ .

Slack If all jobs j ∈ J satisfy |d j − t j| ≤ p j +σ for some
number σ ∈ R, then the instance has slack σ . By σ -SLACK

INTERVAL-CONSTRAINED SCHEDULING we denote the
problem restricted to instances of slack σ .

Both constraints on INTERVAL-CONSTRAINED SCHEDUL-
ING are very natural: clients may accept some small deviation
of at most σ from the desired start times of their jobs. More-
over, it is conceivable that clients allow for a larger deviation
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for jobs that take long to process anyway, leading to the case
of bounded looseness λ .

Cieliebak et al (2004) showed that, even for constant λ >

1 and constant σ ≥ 2, the problems λ -LOOSE INTERVAL-
CONSTRAINED SCHEDULING and σ -SLACK INTERVAL-
CONSTRAINED SCHEDULING are strongly NP-hard.

Instead of giving up on finding optimal solutions and
resorting to approximation algorithms (Chuzhoy et al 2004;
Cieliebak et al 2004), we conduct a more fine-grained com-
plexity analysis of these problems employing the frame-
work of parameterized complexity theory (Cygan et al 2015;
Downey and Fellows 2013; Flum and Grohe 2006; Nieder-
meier 2006), which so far received comparatively little atten-
tion in the field of scheduling with seemingly only a handful
of publications (van Bevern et al 2015a,b; Bodlaender and
Fellows 1995; Cieliebak et al 2004; Fellows and McCartin
2003; Halldórsson and Karlsson 2006; Hermelin et al 2015;
Mnich and Wiese 2015). In particular, we investigate the
effect of the parameter m of available machines on the pa-
rameterized complexity of interval-constrained scheduling
without preemption.

Related work INTERVAL-CONSTRAINED SCHEDULING is
a classical scheduling problem and strongly NP-hard already
on one machine (Garey and Johnson 1979, problem SS1).
Besides the task of scheduling all jobs on a minimum number
of machines, the literature contains a wide body of work
concerning the maximization of the number of scheduled
jobs on a bounded number of machines (Kolen et al 2007).

For the objective of minimizing the number of machines,
Chuzhoy et al (2004) developed a factor-O(

√
logn/ log logn)-

approximation algorithm. Malucelli and Nicoloso (2007) for-
malized machine minimization and other objectives in terms
of optimization problems in shiftable interval graphs. Online
algorithms for minimizing the number of machines have been
studied as well and we refer to recent work by Chen et al
(2016) for an overview.

Our work refines the following results of Cieliebak et al
(2004), who considered INTERVAL-CONSTRAINED SCHED-
ULING with bounds on the looseness and the slack. They
showed that INTERVAL-CONSTRAINED SCHEDULING is
strongly NP-hard for any looseness λ > 1 and any slack σ ≥
2. Besides giving approximation algorithms for various spe-
cial cases, they give a polynomial-time algorithm for σ = 1
and a fixed-parameter tractability result for the combined
parameter σ and h, where h is the maximum number of time
windows overlapping in any point in time.

Our contributions We analyze the parameterized complexity
of INTERVAL-CONSTRAINED SCHEDULING with respect
to three parameters: the number m of machines, the loose-
ness λ , and the slack σ . More specifically, we refine known

results of Cieliebak et al (2004) using tools of parameterized
complexity analysis. An overview is given in Table 1.1.

In Section 3, we show that, for any λ > 1, λ -LOOSE

INTERVAL-CONSTRAINED SCHEDULING remains weakly
NP-hard even on m = 2 machines and that it is strongly W[1]-
hard when parameterized by the number m of machines. In
Section 4, we give a pseudo-polynomial-time algorithm for λ -
LOOSE INTERVAL-CONSTRAINED SCHEDULING for each
fixed λ and m. Finally, in Section 5, we give a fixed-para-
meter algorithm for σ -SLACK INTERVAL-CONSTRAINED

SCHEDULING when parameterized by m and σ . This is in
contrast to our result from Section 3 that the parameter com-
bination m and λ presumably does not give fixed-parameter
tractability results for λ -LOOSE INTERVAL-CONSTRAINED

SCHEDULING.

2 Preliminaries

Basic notation We assume that 0 ∈ N. For two vectors u =

(u1, . . . ,uk) and v = (v1, . . . ,vk), we write u ≤ v if ui ≤ vi
for all i ∈ {1, . . . ,k}. Moreover, we write u� v if u≤ v and
u 6= v, that is, u and v differ in at least one component. Finally,
1k is the k-dimensional vector consisting of k 1-entries.

Computational complexity We assume familiarity with the
basic concepts of NP-hardness and polynomial-time many-
one reductions (Garey and Johnson 1979). We say that a
problem is (strongly) C-hard for some complexity class C if it
is C-hard even if all integers in the input instance are bounded
from above by a polynomial in the input size. Otherwise, we
call it weakly C-hard.

In the following, we introduce the basic concepts of pa-
rameterized complexity theory, which are in more detail
discussed in corresponding text books (Cygan et al 2015;
Downey and Fellows 2013; Flum and Grohe 2006; Nieder-
meier 2006).

Fixed-parameter algorithms The idea in fixed-parameter al-
gorithmics is to accept exponential running times, which are
seemingly inevitable in solving NP-hard problems, but to
restrict them to one aspect of the problem, the parameter.

Thus, formally, an instance of a parameterized prob-
lem Π is a pair (x,k) consisting of the input x and the
parameter k. A parameterized problem Π is fixed-parame-
ter tractable (FPT) with respect to a parameter k if there
is an algorithm solving any instance of Π with size n in
f (k) · poly(n) time for some computable function f . Such
an algorithm is called a fixed-parameter algorithm. It is po-
tentially efficient for small values of k, in contrast to an
algorithm that is merely running in polynomial time for each
fixed k (thus allowing the degree of the polynomial to de-
pend on k). FPT is the complexity class of fixed-parameter
tractable parameterized problems.
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Table 1.1 Overview of results on INTERVAL-CONSTRAINED SCHEDULING for various parameter combinations. The parameterized complexity
with respect to the combined parameter λ +σ remains open.

Combined Parameter

with looseness λ slack σ number m of machines

λ NP-hard for any λ > 1
(Cieliebak et al 2004) ?

W[1]-hard for parameter m for any λ > 1 (Theorem 3.1),
weakly NP-hard for m = 2 and any λ > 1 (Theorem 3.1),
pseudo-polynomial time for fixed m and λ (Theorem 4.1)

σ NP-hard for any σ ≥ 2
(Cieliebak et al 2004)

fixed-parameter tractable for parameter σ +m (Theorem 5.1)

m NP-hard for m = 1 (Garey and Johnson 1979)

We refer to the sum of parameters k1+k2 as the combined
parameter k1 and k2.

Parameterized intractability To show that a problem is pre-
sumably not fixed-parameter tractable, there is a parameter-
ized analog of NP-hardness theory. The parameterized analog
of NP is the complexity class W[1]⊇ FPT, where it is con-
jectured that FPT 6= W[1]. A parameterized problem Π with
parameter k is called W[1]-hard if Π being fixed-parameter
tractable implies W[1] = FPT. W[1]-hardness can be shown
using a parameterized reduction from a known W[1]-hard
problem: a parameterized reduction from a parameterized
problem Π1 to a parameterized problem Π2 is an algorithm
mapping an instance I with parameter k to an instance I′ with
parameter k′ in time f (k) ·poly(|I|) such that k′ ≤ g(k) and
I′ is a yes-instance for Π1 if and only if I is a yes-instance
for Π2, where f and g are arbitrary computable functions.

3 A strengthened hardness result

In this section, we strengthen a hardness result of Cieliebak
et al (2004), who showed that λ -LOOSE INTERVAL-CON-
STRAINED SCHEDULING is NP-hard for any λ > 1. This
section proves the following theorem:

Theorem 3.1 Let λ : N→ R be such that λ (n) ≥ 1+ n−c

for some integer c≥ 1 and all n≥ 2.
Then λ (n)-LOOSE INTERVAL-CONSTRAINED SCHED-

ULING of n jobs on m machines is

(i) weakly NP-hard for m = 2, and
(ii) strongly W[1]-hard for parameter m.

Note that Theorem 3.1, in particular, holds for any constant
function λ (n)> 1.

We remark that Theorem 3.1 cannot be proved using the
NP-hardness reduction given by Cieliebak et al (2004), which
reduces 3-SAT instances with k clauses to INTERVAL-CON-
STRAINED SCHEDULING instances with m = 3k machines.
Since 3-SAT is trivially fixed-parameter tractable for the

parameter number k of clauses, the reduction of Cieliebak
et al (2004) cannot yield Theorem 3.1.

Instead, to prove Theorem 3.1, we give a parameterized
polynomial-time many-one reduction from BIN PACKING

with m bins and n items to λ (mn)-LOOSE INTERVAL-CON-
STRAINED SCHEDULING with m machines and mn jobs.

BIN PACKING

Input: A bin volume V ∈ N, a list a1, . . . ,an ∈ N of items,
and a number m≤ n of bins.

Question: Is there a partition S1]·· ·]Sm = {1, . . . ,n} such
that ∑i∈Sk

ai ≤V for all 1≤ k ≤ m?

Since BIN PACKING is weakly NP-hard for m = 2 bins and
W[1]-hard parameterized by m even if all input numbers are
polynomial in n (Jansen et al 2013), Theorem 3.1 will follow.

Our reduction, intuitively, works as follows: for each
of the n items ai in a BIN PACKING instance with m bins
of volume V , we create a set Ji := { j1

i , . . . , jm
i } of m jobs

that have to be scheduled on m mutually distinct machines.
Each machine represents one of the m bins in the BIN PACK-
ING instance. Scheduling job j1

i on a machine k corresponds
to putting item ai into bin k and will take B+ ai time of
machine k, where B is some large integer chosen by the
reduction. If j1

i is not scheduled on machine k, then a job
in Ji \ { j1

i } has to be scheduled on machine k, which will
take only B time of machine k. Finally, we choose the latest
deadline of any job as nB+V . Thus, since all jobs have to
be finished by time nB+V and since there are n items, for
each machine k, the items ai for which j1

i is scheduled on
machine k must sum up to at most V in a feasible schedule.
This corresponds to satisfying the capacity constraint of V of
each bin.

Formally, the reduction works as follows and is illustrated
in Figure 3.1.

Construction 3.2 Given a BIN PACKING instance I with
n≥ 2 items a1, . . . ,an and m≤ n bins, and λ : N→ R such
that λ (n) ≥ 1+ n−c for some integer c ≥ 1 and all n ≥ 2,
we construct an INTERVAL-CONSTRAINED SCHEDULING
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Fig. 3.1 Reduction from BIN PACKING with four items a1 = 1,a2 = a3 = 2,a4 = 3, bin volume V = 3, and m = 3 bins to 3/2-LOOSE INTERVAL-
CONSTRAINED SCHEDULING. That is, Construction 3.2 applies with c = 1, A = 8, and B = 3 ·4 ·8 = 96. The top diagram shows (not to scale) the
jobs created by Construction 3.2. Herein, the processing time of each job is drawn as a rectangle of corresponding length in an interval being the
job’s time window. The bottom diagram shows a feasible schedule for three machines M1,M2, and M3 that corresponds to putting items a1 and a3
into the first bin, item a2 into the second bin, and a4 into the third bin.

instance with m machines and mn jobs as follows. First, let

A :=
n

∑
i=1

ai and B := (mn)c ·A≥ 2A.

If V > A, then I is a yes-instance of BIN PACKING and we
return a trivial yes-instance of INTERVAL-CONSTRAINED

SCHEDULING.
Otherwise, we have V ≤ A and construct an instance of

INTERVAL-CONSTRAINED SCHEDULING as follows: for
each i ∈ {1, . . . ,n}, we introduce a set Ji := { j1

i , . . . , jm
i } of

jobs. For each job j ∈ Ji, we choose the release time

t j := (i−1)B,

the processing time

p j :=

{
B+ai if j = j1

i ,
B if j 6= j1

i ,
(3.1)

and the deadline

d j :=

{
iB+A if i < n,

iB+V if i = n.

This concludes the construction. ut

Remark 3.3 Construction 3.2 outputs an INTERVAL-CON-
STRAINED SCHEDULING instance with agreeable deadlines,
that is, the deadlines of the jobs have the same relative order
as their release times. Thus, in the offline scenario, all hard-
ness results of Theorem 3.1 will also hold for instances with
agreeable deadlines.

In contrast, agreeable deadlines make the problem sig-
nificantly easier in the online scenario: Chen et al (2016)
showed an online-algorithm with constant competitive ratio
for INTERVAL-CONSTRAINED SCHEDULING with agree-
able deadlines, whereas there is a lower bound of n on the
competitive ratio for general instances (Saha 2013).

In the remainder of this section, we show that Construc-
tion 3.2 is correct and satisfies all structural properties that
allow us to derive Theorem 3.1.

First, we show that Construction 3.2 indeed creates an IN-
TERVAL-CONSTRAINED SCHEDULING instance with small
looseness.

Lemma 3.4 Given a BIN PACKING instance with n≥ 2 items
and m bins, Construction 3.2 outputs an INTERVAL-CON-
STRAINED SCHEDULING instance with

(i) at most m machines and mn jobs and
(ii) looseness λ (mn).

Proof It is obvious that the output instance has at most
mn jobs and m machines and, thus, (i) holds.
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Towards (ii), observe that mn ≥ n ≥ 2, and hence, for
each i ∈ {1, . . . ,n} and each job j ∈ Ji, (3.1) yields

|d j− t j|
p j

≤ (iB+A)− (i−1)B
B

=
B+A

B
= 1+

A
B

= 1+
A

(mn)c ·A
= 1+(mn)−c ≤ λ (mn). ut

We now show that Construction 3.2 runs in polynomial time
and that, if the input BIN PACKING instance has polynomially
bounded integers, then so has the output INTERVAL-CON-
STRAINED SCHEDULING instance.

Lemma 3.5 Let I be a BIN PACKING instance with n ≥
2 items a1, . . . ,an and let amax := max1≤i≤n ai. Construc-
tion 3.2 applied to I

(i) runs in time polynomial in |I| and
(ii) outputs an INTERVAL-CONSTRAINED SCHEDULING

instance whose release times and deadlines are bounded
by a polynomial in n+amax.

Proof We first show (ii), thereafter we show (i).
(ii) It is sufficient to show that the numbers A and B

in Construction 3.2 are bounded polynomially in n+ amax
since all release times and deadlines are computed as sums
and products of three numbers not larger than A, B, or n.
Clearly, A = ∑

n
i=1 ai ≤ n ·max1≤i≤n ai, which is polynomially

bounded in n+ amax. Since mn ≤ n2, also B = (mn)c ·A is
polynomially bounded in n+amax.

(i) The sum A = ∑
n
1=1 ai is clearly computable in time

polynomial in the input length. It follows that also B=(mn)c ·
A is computable in polynomial time. ut

It remains to prove that Construction 3.2 maps yes-instances
of BIN PACKING to yes-instances of INTERVAL-CONSTRAINED

SCHEDULING, and no-instances to no-instances.

Lemma 3.6 Given a BIN PACKING instance I with m bins
and the items a1, . . . ,an, Construction 3.2 outputs an IN-
TERVAL-CONSTRAINED SCHEDULING instance I′ that is a
yes-instance if and only if I is.

Proof (⇒) Assume that I is a yes-instance for BIN PACKING.
Then, there is a partition S1]·· ·]Sm = {1, . . . ,n} such that
∑i∈Sk

ai ≤V for each k ∈ {1, . . . ,m}. We construct a feasible
schedule for I′ as follows. For each i ∈ {1, . . . ,n} and k such
that i ∈ Sk, we schedule j1

i on machine k in the interval[
(i−1)B+∑

j∈Sk, j<i
a j , iB+∑

j∈Sk, j<i
a j +ai

)

and each of the m−1 jobs Ji \{ j1
i } on a distinct machine ` ∈

{1, . . . ,m}\{k} in the interval[
(i−1)B+∑

j∈S`, j<i
a j , iB+∑

j∈S`, j<i
a j

)
.

It is easy to verify that this is indeed a feasible schedule.
(⇐) Assume that I′ is a yes-instance for INTERVAL-CON-

STRAINED SCHEDULING. Then, there is a feasible schedule
for I′. We define a partition S1 ] ·· · ] Sm = {1, . . . ,n} for I
as follows. For each k ∈ {1, . . . ,m}, let

Sk := {i ∈ {1, . . . ,n} | j1
i is scheduled on machine k}. (3.2)

Since, for each i ∈ {1, . . . ,n}, the job j1
i is scheduled on

exactly one machine, this is indeed a partition. We show
that ∑i∈Sk

ai ≤V for each k ∈ {1, . . . ,m}. Assume, towards a
contradiction, that there is a k such that

∑
i∈Sk

ai >V. (3.3)

By (3.1), for each i ∈ {1, . . . ,n}, the jobs in Ji have the same
release time, each has processing time at least B, and the
length of the time window of each job is at most B+A ≤
B+B/2 < 2B. Thus, in any feasible schedule, the execution
times of the m jobs in Ji mutually intersect. Hence, the jobs
in Ji are scheduled on m mutually distinct machines. By the
pigeonhole principle, for each i ∈ {1, . . . ,n}, exactly one
job j∗i ∈ Ji is scheduled on machine k. We finish the proof by
showing that,

∀i ∈ {1, . . . ,n}, job j∗i is not finished before
time iB+∑

j∈Sk, j≤i
a j.

(3.4)

This claim together with (3.3) then yields that job j∗n is not
finished before

nB+∑
j∈Sk, j≤n

a j = nB+∑
j∈Sk

a j > nB+V,

which contradicts the schedule being feasible, since jobs in Jn
have deadline nB+V by (3.1). It remains to prove (3.4). We
proceed by induction.

The earliest possible execution time of j∗1 is, by (3.1),
time 0. The processing time of j∗1 is B if j∗1 6= j1

1 , and B+a1
otherwise. By (3.2), 1 ∈ Sk if and only if j1

1 is scheduled
on machine k, that is, if and only if j∗1 = j1

1. Thus, job j∗1 is
not finished before B+∑ j∈Sk, j≤i a j and (3.4) holds for i = 1.
Now, assume that (3.4) holds for i−1. We prove it for i. Since
j∗i−1 is not finished before (i− 1)B+∑ j∈Sk, j≤i−1 a j, this is
the earliest possible execution time of j∗i . The processing
time of j∗i is B if j∗i 6= j1

i and B+ ai otherwise. By (3.2),
i ∈ Sk if and only if j∗i = j1

i . Thus, job j∗i is not finished
before iB+∑ j∈Sk, j≤i a j and (3.4) holds. ut

We are now ready to finish the proof of Theorem 3.1.

Proof (of Theorem 3.1) By Lemmas 3.4 to 3.6, Construc-
tion 3.2 is a polynomial-time many-one reduction from BIN

PACKING with n≥ 2 items and m bins to λ (mn)-LOOSE IN-
TERVAL-CONSTRAINED SCHEDULING, where λ : N→ R
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such that λ (n)≥ 1+n−c for some integer c≥ 1 and all n≥ 2.
We now show the points (i) and (ii) of Theorem 3.1.

(i) follows since BIN PACKING is weakly NP-hard for m=

2 (Jansen et al 2013) and since, by Lemma 3.4(i), Construc-
tion 3.2 outputs instances of λ (mn)-LOOSE INTERVAL-CON-
STRAINED SCHEDULING with m machines.

(ii) follows since BIN PACKING is W[1]-hard parameter-
ized by m even if the sizes of the n items are bounded by a
polynomial in n (Jansen et al 2013). In this case, Construc-
tion 3.2 generates λ (mn)-LOOSE INTERVAL-CONSTRAINED

SCHEDULING instances for which all numbers are bounded
polynomially in the number of jobs by Lemma 3.5(ii). More-
over, Construction 3.2 maps the m bins of the BIN PACKING

instance to the m machines of the output INTERVAL-CON-
STRAINED SCHEDULING instance. ut

Concluding this section, it is interesting to note that Theo-
rem 3.1 also shows W[1]-hardness of λ -LOOSE INTERVAL-
CONSTRAINED SCHEDULING with respect to the height
parameter considered by Cieliebak et al (2004):

Definition 3.7 (Height) For an INTERVAL-CONSTRAINED

SCHEDULING instance and any time t ∈ N, let

St := { j ∈ J | t ∈ [t j,d j)}

denote the set of jobs whose time window contains time t.
The height of an instance is

h := max
t∈N
|St |.

Proposition 3.8 Let λ : N→R be such that λ (n)≥ 1+n−c

for some integer c≥ 1 and all n≥ 2.
Then λ (n)-LOOSE INTERVAL-CONSTRAINED SCHED-

ULING of n jobs on m machines is W[1]-hard parameterized
by the height h.

Proof Proposition 3.8 follows in the same way as Theo-
rem 3.1; one additionally has to prove that Construction 3.2
outputs INTERVAL-CONSTRAINED SCHEDULING instances
of height at most 2m. To this end, observe that, by (3.1), for
each i ∈ {1, . . . ,n}, there are m jobs released at time (i−1)B
whose deadline is no later than iB + A < (i + 1)B since
A≤B/2. These are all jobs created by Construction 3.2. Thus,
St contains only the m jobs released at time bt/Bc ·B and the
m jobs released at time bt/B−1c ·B, which are 2m jobs in
total. ut

Remark 3.9 Proposition 3.8 complements findings of Cie-
liebak et al (2004), who provide a fixed-parameter tractabil-
ity result for INTERVAL-CONSTRAINED SCHEDULING pa-
rameterized by h+σ : our result shows that their algorithm
presumably cannot be improved towards a fixed-parameter
tractability result for INTERVAL-CONSTRAINED SCHEDUL-
ING parameterized by h alone.

4 An algorithm for bounded looseness

In the previous section, we have seen that λ -LOOSE IN-
TERVAL-CONSTRAINED SCHEDULING for any λ > 1 is
strongly W[1]-hard parameterized by m and weakly NP-hard
for m = 2. We complement this result by the following the-
orem, which yields a pseudo-polynomial-time algorithm for
each constant m and λ .

Theorem 4.1 λ -LOOSE INTERVAL-CONSTRAINED SCHED-
ULING is solvable in `O(λm) ·n+O(n logn) time, where ` :=
max j∈J |d j− t j|.

The crucial observation for the proof of Theorem 4.1 is the
following lemma. It gives a logarithmic upper bound on the
height h of yes-instances (as defined in Definition 3.7). To
prove Theorem 4.1, we will thereafter present an algorithm
that has a running time that is single-exponential in h.

Lemma 4.2 Let I be a yes-instance of λ -LOOSE INTER-
VAL-CONSTRAINED SCHEDULING with m machines and
` := max j∈J |d j− t j|. Then, I has height at most

2m ·
(

log`
logλ − log(λ −1)

+1
)
.

Proof Recall from Definition 3.7 that the height of an INTER-
VAL-CONSTRAINED SCHEDULING instance is maxt∈N |St |.

We will show that, in any feasible schedule for I and at
any time t, there are at most N jobs in St that are active on
the first machine at some time t ′ ≥ t, where

N ≤ log`
logλ − log(λ −1)

+1. (4.1)

By symmetry, there are at most N jobs in St that are active
on the first machine at some time t ′ ≤ t. Since there are
m machines, the total number of jobs in St at any time t, and
therefore the height, is at most 2mN.

It remains to show (4.1). To this end, fix an arbitrary
time t and an arbitrary feasible schedule for I. Then, for
any d≥ 0, let J(t+d)⊆ St be the set of jobs that are active on
the first machine at some time t ′ ≥ t but finished by time t+d.
We show by induction on d that

|J(t +d)| ≤

{
0 if d = 0,
− logd

log(1−1/λ ) +1 if d ≥ 1.
(4.2)

If d = 0, then |J(t +0)|= 0 and (4.2) holds. Now, consider
the case d ≥ 1. If no job in J(t +d) is active at time t +d−1,
then J(t +d) = J(t +d−1) and (4.2) holds by the induction
hypothesis. Now, assume that there is a job j ∈ J(t +d) that
is active at time t +d−1. Then, d j ≥ t +d and, since j ∈ St ,
t j ≤ t. Hence,

p j ≥
|d j− t j|

λ
≥ |t +d− t|

λ
=

d
λ
.
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It follows that

|J(t +d)| ≤ 1+ |J(t +d−dd/λe)|. (4.3)

Thus, if d−dd/λe= 0, then |J(t +d)| ≤ 1+ |J(t)| ≤ 1 and
(4.2) holds. If d−dd/λe> 0, then, by the induction hypoth-
esis, the right-hand side of (4.3) is

≤ 1− log(d−dd/λe)
log(1−1/λ )

+1

≤ 1− log(d(1−1/λ ))

log(1−1/λ )
+1

= 1− logd + log(1−1/λ )

log(1−1/λ )
+1

=− logd
log(1−1/λ )

+1,

and (4.2) holds. Finally, since `= max1≤ j≤n |d j− t j|, no job
in St is active at time t + `. Hence, we can now prove (4.1)
using (4.2) by means of

N ≤ |J(t + `)| ≤ − log`
log(1−1/λ )

+1

=− log`

log
(

λ−1
λ

) +1

=− log`
log(λ −1)− logλ

+1

=
log`

logλ − log(λ −1)
+1. ut

The following proposition gives some intuition on how the
bound behaves for various λ .

Proposition 4.3 For any λ ≥ 1 and any b ∈ (1,e], it holds
that

1
logb λ − logb(λ −1)

≤ λ .

Proof It is well-known that (1−1/λ )λ < 1/e for any λ ≥ 1.
Hence, λ logb(1−1/λ ) = logb(1−1/λ )λ < logb 1/e≤−1,
that is, −λ logb(1−1/λ )≥ 1. Thus,

1
−λ logb(1−1/λ )

≤ 1 and
1

− logb(1−1/λ )
≤ λ .

Finally,

1
− logb(1−1/λ )

=
1

− logb(
λ−1

λ
)

=
1

− logb(λ −1)+ logb λ
. ut

Towards our proof of Theorem 4.1, Lemma 4.2 provides a
logarithmic upper bound on the height h of yes-instances of
INTERVAL-CONSTRAINED SCHEDULING. Our second step
towards the proof of Theorem 4.1 is the following algorithm,
which runs in time that is single-exponential in h. We first
present the algorithm and, thereafter, prove its correctness
and running time.

Algorithm 4.4 We solve INTERVAL-CONSTRAINED SCHED-
ULING using dynamic programming. First, for an INTERVAL-
CONSTRAINED SCHEDULING instance, let ` :=max j∈J |d j−
t j|, let St be as defined in Definition 3.7, and let S<t ⊆ J be
the set of jobs j with d j ≤ t, that is, that have to be finished
by time t.

We compute a table T that we will show to have the
following semantics. For a time t ∈N, a subset S⊆ St of jobs
and a vector b = (b1, . . . ,bm) ∈ {−`, . . . , `}m,

T [t,S,b] =


1 if all jobs in S∪S<t can be scheduled so

that machine i is idle from time t + bi
for each i ∈ {1, . . . ,m},

0 otherwise.

To compute T , first, set T [0, /0,b] := 1 for every vector b ∈
{−`, . . . , `}m. Now we compute the other entries of T by
increasing t, for each t by increasing b, and for each b by S
with increasing cardinality. Herein, we distinguish two cases.

(a) If t ≥ 1 and S⊆ St−1, then set T [t,S,b] := T [t−1,S′,b′],
where

S′ := S∪ (St−1∩S<t ) and b′ := (b′1, . . . ,b
′
m) with

b′i := min{bi +1, `} for each i ∈ {1, . . . ,m}.

(b) Otherwise, set T [t,S,b] := 1 if and only if at least one of
the following two cases applies:

i) there is a machine i ∈ {1, . . . ,m} such that bi >−`
and T [t,S,b′] = 1, where b′ := (b′1, . . . ,b

′
m) with

b′i′ :=

{
bi−1 if i′ = i,
bi′ if i′ 6= i,

or
ii) there is a job j ∈ S and a machine i ∈ {1, . . . ,m}

such that bi > 0, t + bi ≤ d j, t + bi− p j ≥ t j, and
T [t,S\{ j},b′] = 1, where b′ := (b′1, . . . ,b

′
m) with

b′i′ :=

{
bi− p j if i′ = i,
bi′ if i′ 6= i.

Note that, since j ∈ St , one has t j ≥ t− ` by defi-
nition of `. Hence, b′i ≥ −` is within the allowed
range {−`, . . . , `}.

Finally, we answer yes if and only if T [tmax,Stmax ,1m · `] = 1,
where tmax := max j∈J t j. ut

Lemma 4.5 Algorithm 4.4 correctly decides INTERVAL-CON-
STRAINED SCHEDULING.

Proof We prove the following two claims: For any time 0≤
t ≤ tmax, any set S ⊆ St , and any vector b = (b1, . . . ,bm) ∈
{−`, . . . , `}m,

if T [t,S,b] = 1, then all jobs in S∪S<t can be sched-
uled so that machine i is idle from time t +bi for
each i ∈ {1, . . . ,m},

(4.4)
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and

if all jobs in S ∪ S<t can be scheduled so that
machine i is idle from time t + bi for each i ∈
{1, . . . ,m}, then T [t,S,b] = 1.

(4.5)

From (4.4) and (4.5), the correctness of the algorithm easily
follows: observe that, in any feasible schedule, all machines
are idle from time tmax + ` and all jobs J ⊆ Stmax ∪ S<tmax are
scheduled. Hence, there is a feasible schedule if and only if
T [tmax,Stmax ,1m · `] = 1. It remains to prove (4.4) and (4.5).

First, we prove (4.4) by induction. For T [0, /0,b] = 1,
(4.4) holds since there are no jobs to schedule. We now
prove (4.4) for T [t,S,b] under the assumption that it is true
for all T [t ′,S′,b′] with t ′ < t or t ′ = t and b′ � b.

If T [t,S,b] is set to 1 in Algorithm 4.4(a), then, for S′

and b′ as defined in Algorithm 4.4(a), T [t − 1,S′,b′] = 1.
By the induction hypothesis, all jobs in S′ ∪ S<t−1 can be
scheduled so that machine i is idle from time t− 1+ b′i ≤
t+bi. Moreover, S∪S<t = S′∪S<t−1 since S′= S∪(St−1∩S<t ).
Hence, (4.4) follows.

If T [t,S,b] is set to 1 in Algorithm 4.4(bi), then one has
T [t,S,b′] = 1 for b′ as defined in Algorithm 4.4(bi). By the
induction hypothesis, all jobs in S∪S<t can be scheduled so
that machine i′ is idle from time t + b′i′ ≤ t + bi′ , and (4.4)
follows.

If T [t,S,b] is set to 1 in Algorithm 4.4(bii), then T [t,S\
{ j},b′] = 1 for j and b′ as defined in Algorithm 4.4(bii).
By the induction hypothesis, all jobs in (S \ { j})∪ S<t can
be scheduled so that machine i′ is idle from time t + b′i′ . It
remains to schedule job j on machine i in the interval [t +
b′i, t+bi), which is of length exactly p j by the definition of b′.
Then, machine i is idle from time t+bi and any machine i′ 6= i
is idle from time t +b′i′ = t +bi′ , and (4.4) follows.

It remains to prove (4.5). We use induction. Claim (4.5)
clearly holds for t = 0, S = /0, and any b ∈ {−`, . . . , `}m by
the way Algorithm 4.4 initializes T . We now show (4.5)
provided that it is true for t ′ < t or t ′ = t and b′ � b.

If S ⊆ St−1, then S∪ S<t = S′ ∪ S<t−1 for S′ as defined in
Algorithm 4.4(a). Moreover, since no job in S′∪S<t−1 can be
active from time t−1+ ` by definition of `, each machine i
is idle from time t−1+min{bi +1, `}= t−1+b′i, for b′ =
(b′1, . . . ,b

′
m) as defined in Algorithm 4.4(a). Hence, T [t −

1,S′,b′] = 1 by the induction hypothesis, Algorithm 4.4(a)
applies, sets T [t,S,b] := T [t−1,S′,b′] = 1, and (4.5) holds.

If some machine i is idle from time t + bi− 1, then, by
the induction hypothesis, T [t,S,b′] = 1 in Algorithm 4.4(bi),
the algorithm sets T [t,S,b] := 1, and (4.5) holds.

In the remaining case, every machine i is busy at time t +
bi − 1 and K := S \ St−1 6= /0. Thus, there is a machine i
executing a job from K. For each job j′ ∈ K, we have t j′ ≥ t.
Since machine i is idle from time t +bi and executes j′, one
has bi > 0. Let j be the last job scheduled on machine i. Then,
since machine i is busy at time t +bi−1, we have d j ≥ t +

bi > t and j /∈ S<t . Hence, j ∈ St . Since machine i is idle from
time t+bi, we also have t+bi− p j ≥ t j. Now, if we remove j
from the schedule, then machine i is idle from time t+bi− p j
and each machine i′ 6= i is idle from time t + b′i′ = t + bi′ .
Thus, by the induction hypothesis, T [t,S \ { j},b′] = 1 in
Algorithm 4.4(bii), the algorithm sets T [t,S,b] := 1, and
(4.5) holds. ut

Lemma 4.6 Algorithm 4.4 can be implemented to run in
O(2h · (2`+1)m · (h2m+hm2) ·n`+n logn) time, where ` :=
max j∈J |d j− t j| and h is the height of the input instance.

Proof Concerning the running time of Algorithm 4.4, we first
bound tmax. If tmax > n`, then there is a time t ∈ {0, . . . , tmax}
such that St = /0 (cf. Definition 3.7). Then, we can split the
instance into one instance with the jobs S<t and into one
instance with the jobs J \S<t . We answer “yes” if and only if
both of them are yes-instances. Henceforth, we assume that
tmax ≤ n`.

In a preprocessing step, we compute the sets St and St−1∩
S<t , which can be done in O(n logn + hn + tmax) time by
sorting the input jobs by deadlines and scanning over the
input time windows once: if no time window starts or ends at
time t, then St is simply stored as a pointer to the St ′ for the
last time t ′ where a time window starts or ends.

Now, the table T of Algorithm 4.4 has at most (tmax +

1) · 2h · (2`+ 1)m ≤ (n`+ 1) · 2h · (2`+ 1)m entries. A table
entry T [t,S,b] can be accessed in O(m+ h) time using a
carefully initialized trie data structure (van Bevern 2014)
since |S| ≤ h and since b is a vector of length m.

To compute an entry T [t,S,b], we first check, for each
job j ∈ S, whether j ∈ St−1. If this is the case for each j, then
Algorithm 4.4(a) applies. We can prepare b′ in O(m) time
and S′ in O(h) time using the set St−1∩S<t computed in the
preprocessing step. Then, we access the entry T [t−1,S′,b′]
in O(h+m) time. Hence, (a) takes O(h+m) time.

If Algorithm 4.4(a) does not apply, then we check whether
Algorithm 4.4(bi) applies. To this end, for each i∈{1, . . . ,m},
we prepare b′ in O(m) time and access T [t,S,b′] in O(h+m)

time. Hence, it takes O(m2 +hm) time to check (bi).
To check whether Algorithm 4.4(bii) applies, we try

each j ∈ S and each i ∈ {1, . . . ,m} and, for each, prepare b′
in O(m) time and check T [t,S \ { j},b′] in O(h+m) time.
Thus (bii) can be checked in O(h2m+hm2) time. ut

With the logarithmic upper bound on the height h of yes-
instances of INTERVAL-CONSTRAINED SCHEDULING given
by Lemma 4.2 and using Algorithm 4.4, which, by Lemma 4.6,
runs in time that is single-exponential in h for a fixed num-
ber m of machines, we can now prove Theorem 4.1.

Proof (of Theorem 4.1) We use the following algorithm. Let

h := 2m ·
(

log`
logλ − log(λ −1)

+1
)
.
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If, for any time t ∈ N, we have |St |> h, then we are facing
a no-instance by Lemma 4.2 and immediately answer “no”.
This can be checked in O(n logn) time: one uses the interval
graph coloring problem to check whether we can schedule
the time windows of all jobs (as intervals) onto h machines.

Otherwise, we conclude that our input instance has height
at most h. We now apply Algorithm 4.4, which, by Lemma 4.6,
runs in O(2h · (2`+ 1)m · (h2m + hm2) · n`+ n logn) time.
Since, by Proposition 4.3, h ∈O(λm log`), this running time
is `O(λm)h ·n+O(n logn). ut

A natural question is whether Theorem 4.1 can be generalized
to λ = ∞, that is, to INTERVAL-CONSTRAINED SCHED-
ULING without looseness constraint. This question can be
easily answered negatively using a known reduction from
3-PARTITION to INTERVAL-CONSTRAINED SCHEDULING

given by Garey and Johnson (1979):

Proposition 4.7 If there is an `O(m) ·poly(n)-time algorithm
for INTERVAL-CONSTRAINED SCHEDULING, where ` :=
max j∈J |d j− t j|, then P = NP.

Proof Garey and Johnson (1979, Theorem 4.5) showed that
INTERVAL-CONSTRAINED SCHEDULING is NP-hard even
on m = 1 machine. In their reduction, ` ∈ poly(n). A sup-
posed `O(m) · poly(n)-time algorithm would solve such in-
stances in polynomial time. ut

5 An algorithm for bounded slack

So far, we considered INTERVAL-CONSTRAINED SCHED-
ULING with bounded looseness λ . Cieliebak et al (2004)
additionally considered INTERVAL-CONSTRAINED SCHED-
ULING for any constant slack σ .

Recall that Cieliebak et al (2004) showed that λ -LOOSE

INTERVAL-CONSTRAINED SCHEDULING is NP-hard for
any constant λ > 1 and that Theorem 3.1 shows that hav-
ing a small number m of machines does make the problem
significantly easier.

Similarly, Cieliebak et al (2004) showed that σ -SLACK

INTERVAL-CONSTRAINED SCHEDULING is NP-hard al-
ready for σ = 2. Now we contrast this result by showing
that σ -SLACK INTERVAL-CONSTRAINED SCHEDULING is
fixed-parameter tractable for parameter m+σ . More specifi-
cally, we show the following:

Theorem 5.1 σ -SLACK INTERVAL-CONSTRAINED SCHED-
ULING is solvable in time

O
(
(σ +1)(2σ+1)m ·n ·σm · logσm+n logn

)
.

Similarly as in the proof of Theorem 4.1, we first give an
upper bound on the height of yes-instances of INTERVAL-
CONSTRAINED SCHEDULING as defined in Definition 3.7.
To this end, we first show that each job j ∈ St has to occupy
some of the (bounded) machine resources around time t.

Lemma 5.2 At any time t in any feasible schedule for σ -
SLACK INTERVAL-CONSTRAINED SCHEDULING, each job
j ∈ St is active at some time in the interval [t−σ , t +σ ].

Proof If the time window of j is entirely contained in [t−
σ , t +σ ], then, obviously, j is active at some time during the
interval [t−σ , t +σ ].

Now, assume that the time window of j is not contained
in [t −σ , t +σ ]. Then, since j ∈ St , its time window con-
tains t by Definition 3.7 and, therefore, one of t−σ or t +σ .
Assume, for the sake of contradiction, that there is a sched-
ule such that j is not active during [t−σ , t +σ ]. Then j is
inactive for at least σ + 1 time units in its time window—
a contradiction. ut

Now that we know that each job in St has to occupy machine
resources around time t, we can bound the size of St in the
amount of resources available around that time.

Lemma 5.3 Any yes-instance of σ -SLACK INTERVAL-CON-
STRAINED SCHEDULING has height at most (2σ +1)m.

Proof Fix any feasible schedule for an arbitrary yes-instance
of σ -SLACK INTERVAL-CONSTRAINED SCHEDULING and
any time t. By Lemma 5.2, each job in St is active at some
time in the interval [t−σ , t+σ ]. This interval has length 2σ +

1. Thus, on m machines, there is at most (2σ +1)m available
processing time in this time interval. Consequently, there can
be at most (2σ +1)m jobs with time intervals in St . ut

We finally arrive at the algorithm to prove Theorem 5.1.

Proof (of Theorem 5.1) Let h := (2σ + 1)m. In the same
way as for Theorem 4.1, in O(n logn) time we discover that
we face a no-instance due to Lemma 5.3 or, otherwise, that
our input instance has height at most h. In the latter case,
we apply the O(n · (σ + 1)h · h logh)-time algorithm due to
Cieliebak et al (2004). ut

6 Conclusion

Despite the fact that there are comparatively few studies on
the parameterized complexity of scheduling problems, the
field of scheduling indeed offers many natural parameteri-
zations and fruitful challenges for future research. Notably,
Marx (2011) saw one reason for the lack of results on “pa-
rameterized scheduling” in the fact that most scheduling
problems remain NP-hard even for a constant number of ma-
chines (a very obvious and natural parameter indeed), hence
destroying hope for fixed-parameter tractability results with
respect to this parameter. In scheduling interval-constrained
jobs with small looseness and small slack, we also have been
confronted with this fact, facing (weak) NP-hardness even
for two machines.
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The natural way out of this misery, however, is to consider
parameter combinations, for instance combining the parame-
ter number of machines with a second one. In our study, these
were combinations with looseness and with slack (see also
Table 1.1). In a more general perspective, this consideration
makes scheduling problems a prime candidate for offering
a rich set of research challenges in terms of a multivariate
complexity analysis (Fellows et al 2013; Niedermeier 2010).
Herein, for obtaining positive algorithmic results, research
has to go beyond canonical problem parameters, since basic
scheduling problems remain NP-hard even if canonical pa-
rameters are simultaneously bounded by small constants, as
demonstrated by Kononov et al (2012).1

Natural parameters to be studied in future research on IN-
TERVAL-CONSTRAINED SCHEDULING are the combination
of slack and looseness—the open field in our Table 1.1—and
the maximum and minimum processing times, which were
found to play an important role in the online version of the
problem (Saha 2013).

Finally, we point out that our fixed-parameter algorithms
for INTERVAL-CONSTRAINED SCHEDULING are easy to
implement and may be practically applicable if the looseness,
slack, and number of machines is small (about three or four
each). Moreover, our algorithms are based on upper bounds
on the height of an instance in terms of its number of ma-
chines, its looseness, and slack. Obviously, this can also be
exploited to give lower bounds on the number of required ma-
chines based on the structure of the input instance, namely, on
its height, looseness, and slack. These lower bounds may be
of independent interest in exact branch and bound or approx-
imation algorithms for the machine minimization problem.
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