Skip to main content
Log in

Exact exponential algorithms for 3-machine flowshop scheduling problems

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

In this paper, we focus on the design of an exact exponential time algorithm with a proved worst-case running time for 3-machine flowshop scheduling problems considering worst-case scenarios. For the minimization of the makespan criterion, a Dynamic Programming algorithm running in \({\mathcal {O}}^*(3^n)\) is proposed, which improves the current best-known time complexity \(2^{{\mathcal {O}}(n)}\times \Vert I\Vert ^{{\mathcal {O}}(1)}\) in the literature. The idea is based on a dominance condition and the consideration of the Pareto Front in the criteria space. The algorithm can be easily generalized to other problems that have similar structures. The generalization on two problems, namely the \(F3\Vert f_\mathrm{max}\) and \(F3\Vert \sum f_i\) problems, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Instead of defining Critical Path in the context of digraph, here we adapt the definition to make it more intuitive.

References

  • Akiba, T., & Iwata, Y. (2015). Branch-and-reduce exponential/fpt algorithms in practice: A case study of vertex cover. Theoretical Computer Science. doi:10.1016/j.tcs.2015.09.023. http://www.sciencedirect.com/science/article/pii/S030439751500852X.

  • Ashour, S. (1970). A branch-and-bound algorithm for the flow shop problem scheduling problem. AIIE Transactions, 2, 172–176.

    Article  Google Scholar 

  • Brown, A., & Lomnicki, Z. (1966). Some applications of the “branch-and-bound” algorithm to the machine scheduling problem. Journal of the Operational Research Society, 17(2), 173–186.

    Article  Google Scholar 

  • Brucker, P. (2007). Scheduling algorithms (5th ed.). Berlin: Springer.

    Google Scholar 

  • Carlier, J., & Rebaï, I. (1996). Two branch and bound algorithms for the permutation flow shop problem. European Journal of Operational Research, 90(2), 238–251.

    Article  Google Scholar 

  • Cheng, J., Kise, H., & Matsumoto, H. (1997). A branch-and-bound algorithm with fuzzy inference for a permutation flowshop scheduling problem. European Journal of Operational Research, 96(3), 578–590.

    Article  Google Scholar 

  • Cygan, M., Pilipczuk, M., Pilipczuk, M., & Wojtaszczyk, J. O. (2014). Scheduling partially ordered jobs faster than \(2^n\). Algorithmica, 68(3), 692–714.

    Article  Google Scholar 

  • Fomin, F. V., & Kratsch, D. (2010). Exact exponential algorithms. Springer Berlin Heidelberg.

  • Framinan, J. M., Gupta, J. N., & Leisten, R. (2004). A review and classification of heuristics for permutation flow-shop scheduling with makespan objective. Journal of the Operational Research Society, 55(12), 1243–1255.

    Article  Google Scholar 

  • Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129.

    Article  Google Scholar 

  • Gromicho, J. A., van Hoorn, J. J., da Gama, F. S., & Timmer, G. T. (2012). Solving the job-shop scheduling problem optimally by dynamic programming. Computers & Operations Research, 39(12), 2968–2977.

  • Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling problems. Operations Research, 13(3), 400–412.

    Article  Google Scholar 

  • Jansen, K., Land, F., & Land, K. (2013). Bounding the running time of algorithms for scheduling and packing problems. In F. Dehne, R. Solis-Oba, & J. R. Sack (Eds.), Algorithms and data structures (Vol. 8037, pp. 439–450)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

  • Johnson, S. M. (1954). Optimal two-and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1(1), 61–68.

    Article  Google Scholar 

  • Kelley Jr, J. E., & Walker, M. R. (1959). Critical-path planning and scheduling. In Papers Presented at the December 1–3, 1959, Eastern Joint IRE-AIEE-ACM Computer Conference (pp. 160–173), ACM.

  • Kung, H. T., Luccio, F., & Preparata, F. P. (1975). On finding the maxima of a set of vectors. Journal of the ACM (JACM), 22(4), 469–476.

    Article  Google Scholar 

  • Ladhari, T., & Haouari, M. (2005). A computational study of the permutation flow shop problem based on a tight lower bound. Computers & Operations Research, 32(7), 1831–1847.

    Article  Google Scholar 

  • Lageweg, B., Lenstra, J., & Rinnooy Kan, A. (1978). A general bounding scheme for the permutation flow-shop problem. Operations Research, 26(1), 53–67.

    Article  Google Scholar 

  • Lenté, C., Liedloff, M., Soukhal, A., & T’Kindt, V. (2013). On an extension of the Sort & Search method with application to scheduling theory. Theoretical Computer Science, 511, 13–22.

    Article  Google Scholar 

  • Lenté, C., Liedloff, M., Soukhal, A., & T’Kindt, V. (2014). Exponential algorithms for scheduling problems. https://hal.archives-ouvertes.fr/hal-00944382.

  • Lomnicki, Z. (1965). A “branch-and-bound” algorithm for the exact solution of the three-machine scheduling problem. Journal of the Operational Research Society, 16(1), 89–100.

    Article  Google Scholar 

  • McMahon, G., & Burton, P. (1967). Flow-shop scheduling with the branch-and-bound method. Operations Research, 15(3), 473–481.

    Article  Google Scholar 

  • Potts, C. (1980). An adaptive branching rule for the permutation flow-shop problem. European Journal of Operational Research, 5(1), 19–25.

    Article  Google Scholar 

  • Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: A review. International Journal of Production Research, 43(14), 2895–2929.

    Article  Google Scholar 

  • Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics. European Journal of Operational Research, 165(2), 479–494. Project Management and Scheduling.

    Article  Google Scholar 

  • Smutnicki, C. (1998). Some results of the worst-case analysis for flow shop scheduling. European Journal of Operational Research, 109(1), 66–87.

    Article  Google Scholar 

  • Sviridenko, M. (2004). A note on permutation flow shop problem. Annals of Operations Research, 129(1), 247–252.

    Article  Google Scholar 

  • Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. In M. Jünger, G. Reinelt, & G. Rinaldi (Eds.), Combinatorial optimization—Eureka, you shrink! (Vol. 2570, pp. 185–207)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

  • Xiao, M., & Nagamochi, H. (2013). Exact algorithms for maximum independent set. In L. Cai, S. W. Cheng, & T. W. Lam (Eds.), Algorithms and computation (Vol. 8283, pp. 328–338)., Lecture notes in computer science Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Shang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, L., Lenté, C., Liedloff, M. et al. Exact exponential algorithms for 3-machine flowshop scheduling problems. J Sched 21, 227–233 (2018). https://doi.org/10.1007/s10951-017-0524-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-017-0524-2

Keywords

Navigation