
J Sched
DOI 10.1007/s10951-017-0525-1

Staff assignment with lexicographically ordered acceptance levels

Tom Rihm1 · Philipp Baumann1

© Springer Science+Business Media New York 2017

Abstract Staff assignment is a compelling exercise that
affects most companies and organizations in the service
industries. Here, we introduce a new real-world staff assign-
ment problem that was reported to us by a Swiss provider
of commercial employee scheduling software. The problem
consists of assigning employees to work shifts subject to a
large variety of critical and noncritical requests, including
employees’ personal preferences. Each request has a target
value, anddeviations from the target value are associatedwith
integer acceptance levels. These acceptance levels reflect the
relative severity of possible deviations, e.g., for the request
of an employee to have at least two weekends off, having
one weekend off is preferable to having no weekend off and
thus receives a higher acceptance level. The objective is to
minimize the total number of deviations in lexicographical
order of the acceptance levels. Staff assignment approaches
from the literature are not applicable to this problem.We pro-
vide a binary linear programming formulation and propose
a matheuristic for large-scale instances. The matheuristic
employs effective strategies to determine the subproblems
and focuses onfinding good feasible solutions to the subprob-
lems rather than proving their optimality. Our computational
analysis based on real-world data shows that thematheuristic
scales well and outperforms commercial employee schedul-
ing software.

B Philipp Baumann
philipp.baumann@pqm.unibe.ch

Tom Rihm
tom.rihm@pqm.unibe.ch

1 Department of Business Administration, University of Bern,
Schützenmattstrasse 14, 3012 Bern, Switzerland

Keywords Employee scheduling · Staff assignment ·
Real-world problem · Goal programming · Binary linear
programming · Matheuristic

1 Introduction

Employee scheduling problems arise in hospitals, banks,
hotels, police stations, companies in the service industry,
and other organizations. In their general form, employee
scheduling problems involve (a) the determination of shift
types, (b) the temporal scheduling of shifts, and (c) the
assignment of employees to shifts. For a comprehensive
overview of employee scheduling problems,we refer to Ernst
et al. (2004), Van den Bergh et al. (2013), and De Bruecker
et al. (2015). We focus here on the assignment of employ-
ees to shifts after the shift types, and their start times have
been determined. Inmost real-world applications, the assign-
ment of employees to shifts is a challenging task because
a large variety of critical and noncritical requests must be
considered. Critical requests pertain to work laws and poli-
cies imposed by the management and must be accepted to
obtain a feasible assignment. Noncritical requests are usually
related to employee preferences and can be refused in fea-
sible assignments. However, accepting noncritical requests
increases employee satisfaction, which in turn positively
affects productivity and eventually results in high customer
satisfaction. In practice, most employee scheduling software
packages model the trade-offs between noncritical requests
based on user-definedweights. This places a heavy burden on
the user because he or she is required to repeatedly adjust the
weights of the noncritical requests until a satisfactory solu-
tion is obtained (cf., e.g., Parr and Thompson 2007). Only
if relevant historical data are available in the form of past

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-017-0525-1&domain=pdf
http://orcid.org/0000-0001-6010-5945
http://orcid.org/0000-0002-3286-4474

J Sched

schedules, the configuration of these weights can be partially
automated (cf., e.g., Mihaylov et al. 2016).

The planning problem considered in this paper stems from
a Swiss provider of employee scheduling software who has
developed a new user interface to specify trade-offs among
noncritical requests that is not based on user-definedweights.
The user defines a target value for each request and assigns
integer acceptance levels (AL) from the set {0,1,…,100} to
deviations from this target value. The acceptance levels are
ordered lexicographically, i.e., a deviation associated with
a lower acceptance level is considered more important than
any number of deviations associated with higher acceptance
levels. This framework has received positive customer feed-
back because the user has an intuitive understanding of how
the specified inputs affect the final solution. The framework
gives rise to a new type of staff assignment problem that we
refer to as the staff assignment problem with lexicographi-
cally ordered acceptance levels (SAP-LAL). The objective in
the SAP-LAL is to minimize the total number of deviations
in lexicographical order of the acceptance levels.

The literature on exact approaches for employee schedul-
ing problems with multiple and conflicting requests con-
centrates on goal programming approaches (e.g., Beaulieu
et al. 2000; Azaiez and Al Sharif 2005; Topaloglu 2006;
Al-Yakoob and Sherali 2007; Eiselt and Marianov 2008;
Falasca et al. 2011;Louly2013). In goal programming,which
was introduced by Charnes et al. (1955), each request is
assigned a target value, and deviations from the target values
are minimized. Goal programming approaches are based on
mathematical programs and thus provide great flexibility to
accommodate a large variety of requests. The most widely
used variants of goal programming are weighted and lexi-
cographic goal programming (cf., e.g., Tamiz et al. 1995).
Weighted goal programming approaches are not applicable
to the SAP-LAL because the range of weights required to
ensure that less-accepted deviations are always minimized
beforemore-accepted deviations grows rapidlywith the num-
ber of different acceptance levels and may become large
enough to cause numerical problems for solvers. Existing
lexicographic goal programming approaches minimize devi-
ations sequentially and have therefore only been designed
for applications with a predefined ranking of requests. Such
a predefined ranking is not given in the SAP-LAL. Further-
more, despite improvements in optimization software and
computer hardware, the performance of exact goal program-
ming approaches is still insufficient for large-scale problem
instances.

For large-scale instances, various heuristics havebeenpro-
posed. Among those methods, matheuristics have recently
shown promising results (cf. Smet and Vanden Berghe 2012;
Della Croce and Salassa 2014; Smet et al. 2014b).Matheuris-
tics decompose the original problem into subproblemswhich
are then solved using a mathematical program (cf., e.g.,

Raidl and Puchinger 2008; Boschetti et al. 2009; Maniezzo
et al. 2009; Ball 2011). Hence, they combine the flexibility
of mathematical programs to easily accommodate complex
constraints with the ability of heuristics to find good solu-
tions quickly. The performance of matheuristics strongly
depends on the construction of the subproblems. Existing
matheuristics for employee scheduling problems either use
purely random strategies for constructing the subproblems
(cf. Smet andVandenBerghe 2012), or construct the subprob-
lems such that the corresponding mathematical programs are
as large as the programs for the original problems in terms of
constrains and variables (cf. Della Croce and Salassa 2014;
Smet et al. 2014b). The existing matheuristics are therefore
not appropriate for large-scale SAP-LAL instances because
for those instances it is crucial that the subproblems focus on
the decisions which directly impact the quality of the solu-
tion and that the corresponding mathematical programs are
small.

In this paper, we propose a new strategy for decom-
posing the requests into sub-requests which allows us to
formulate the SAP-LAL as a lexicographic goal program.
Despite the decomposition, the resulting lexicographic goal
program constitutes an exact solution approach. To reduce
the size of the program, we propose novel aggregation tech-
niques. For large-scale instances, we develop, based on the
lexicographic goal program, a matheuristic that iteratively
improves an initial feasible solution by reassigning specific
subsets of employees. The main methodological feature of
the matheuristic is an employee selection rule for construct-
ing the subproblems effectively. The rule selects, for each
subproblem, a subset of employees such that at least one
employee in the subset has a refused request and that this
refusal can be eliminated by a swap of shifts with at least
one other employee in the subset. This rule differentiates
the proposed matheuristic from existing matheuristics as it
ensures that the subproblems focus on the decisions which
directly impact the quality of the solution. Moreover, since
the number of employees is the main driver of the problem
size, the selection rule allows to write small and compact
mathematical programs for the subproblems that involve only
the selected employees. In contrast to existing matheuristics
(cf., e.g., Della Croce and Salassa 2014), which obtain the
subproblems by fixing the values of some of the decision
variables of the complete model, our strategy significantly
reduces the number of redundant constraints and variables
of the respective models and thus improves running times.

In a computational analysis, we apply the exact approach
and thematheuristic to a real-world instance and a test set that
contains 45 instances derived from real-world data. The exact
approach finds optimal solutions for small- and medium-
sized instances, and the matheuristic delivers high-quality
solutions for large-scale instances with limited computa-
tional effort. The matheuristic even outperforms a com-

123

J Sched

mercial employee scheduling software that is tailored to
the SAP-LAL. It turns out that it is beneficial to run the
matheuristic in an eager manner, i.e., to impose a short time
limit for the solution of the subproblems. This setup of the
matheuristic exploits that optimal solutions of the subprob-
lems are often found within a few seconds, while most of
the time is spent on proving the optimality of this solution.
This finding is of general interest for the development of
matheuristics, independent of the context.

The remainder of the paper is structured as follows. In
Sect. 2, we formally introduce the SAP-LAL and provide
an illustrative example. In Sect. 3, we review the literature
on employee scheduling. In Sects. 4 and 5, we describe the
exact solution approach and the matheuristic, respectively.
In Sect. 6, we report the design and the results of our com-
putational analysis. Section 7 concludes the paper with a
summary and directions for future research.

2 Staff assignment problem with lexicographically
ordered acceptance levels

The staff assignment problemwith lexicographically ordered
acceptance levels (SAP-LAL) was reported to us by a Swiss
provider of employee scheduling software. The problem
stems from an online tool that currently supports many com-
panies and organizations in assigning employees to work
shifts. We describe the SAP-LAL formally in Sect. 2.1 and
provide an illustrative example in Sect. 2.2.

2.1 Problem description

Consider a set of employees, a set of work shifts with pre-
defined start times and durations, and a set of critical and
noncritical requests. Each employee possesses a specific set

of skills. There is no difference in skill level and the skills of
an employee determine which shifts he or she can perform.
When an employee has a skill set that allows her or him to
perform more than one shift, he or she actually possesses all
separate skills to perform each single shift. Hence, according
to the classification of De Bruecker et al. (2015), the skills
are of the categorical type.

Table 1 provides a list of the 13 types of critical and non-
critical requests considered in this paper. According to the
software provider, these 13 types of requests are sufficient
to cover the modeling needs of most companies. For a com-
prehensive list of other requests that frequently occur in the
literature, we refer to Van den Bergh et al. (2013). Criti-
cal requests pertain to work laws, contract specifications,
and the availability and skills of employees and must there-
fore be accepted to obtain a feasible assignment. The critical
requests are as follows. First, an employee can be assigned to
at most one shift per day. Second, each shift requires exactly
one employee. This means that if several employees work
at the same time, multiple shifts will run in parallel. Third,
each shift requires a specific set of skills, and only employ-
ees with these skills can be assigned to the corresponding
shift. Noncritical requests concern employees’ personal pref-
erences and can be refused in a feasible assignment. Among
the noncritical requests presented in Table 1, requests of type
6 might be less known. The main purpose of requests of type
6 is to prevent so-called on-off-on work patterns. In an on-
off-on work pattern, the employee works on day d, has day
d + 1 off, and works again on day d + 2. Employees usu-
ally prefer on-off-off-on work patterns. For example, if an
employee works on 5 of 7days, he or she generally prefers
to have two consecutive days off (e.g., Thursday and Fri-
day) rather than two isolated (nonconsecutive) days off (e.g.,
Tuesday and Friday). Requests of type 6 allow to express this
preference.

Table 1 Types of requests
Type Description Critical?

1. At most one shift per employee and day Yes

2. Exactly one employee is assigned to each shift Yes

3. Only employees with the required skills can be assigned to a shift Yes

4. Preferences for days off should be considered No

5. Avoid more than 5 consecutive work days No

6. No isolated days off No

7. 11h rest between consecutive shifts No

8. Either zero or two shifts on weekends No

9. Lower bound on number of weekends off No

10. Workload should not exceed target No

11. Workload should not be below target No

12. No. of early shifts should not exceed target No

13. No. of late shifts should not exceed target No

123

J Sched

AL

100

80

50

0 # Weekends off
0 1 2

(a) AL

100

60

0 # Weekends off
0 1 2

(b)

Fig. 1 Mapping functions for requests of type 9

Usually, multiple requests of the same type are specified
in an instance of the problem. For example, the lower bound
on the number of weekends off can be specified individu-
ally for different employees. Hence, each noncritical request
has an individual target value. In addition, for each noncrit-
ical request, a piecewise-constant function maps deviations
from the target value to integer acceptance levels from the
set {0,1,…,100}. These mapping functions are defined by
the scheduler in consultation with the employees. An accep-
tance level of zero indicates that the corresponding deviation
is unacceptable and leads to an infeasible assignment. An
acceptance level of 100 indicates that the target value or an
even better value was achieved. Figure 1 shows two pos-
sible mapping functions for a request of type 9. Figure 1a
corresponds to a request that an employee has at least two
weekends off during the planning horizon. Hence, if the
employee has two or more weekends off, an acceptance level
of 100 is achieved. Having only one weekend off is associ-
ated with an acceptance level of 80, and having no weekend
off is associated with an acceptance level of 50. Figure 1b
corresponds to a request that an employee has at least one
weekend off during the planning horizon. Having one or
more than one weekend off is associated with an acceptance
level of 100. Having no weekend off is associated with an
acceptance level of 60. The acceptance levels express the
relative severity of the corresponding deviations. The lower
the acceptance level, the more severe is the corresponding
deviation. Hence, having no weekend off is more severe for
an employee with a mapping function as the one shown in
Fig. 1a than for an employee with a mapping function as the
one shown in Fig. 1b. Due to the lexicographic nature of the
acceptance levels, the difference in severity is infinite and
can thus not be quantified.

The SAP-LAL consists of finding an assignment of
employees to work shifts such that all critical requests are
accepted and that the number of deviations from the tar-
get values of noncritical requests is minimized. Thereby, a
reduction in the number of less-accepted deviations is always
preferred to any number of reductions in more-accepted
deviations. For example, a schedule with four deviations
associated with acceptance level 60 is always preferred to
a schedule with only one deviation with acceptance level 50.
The specific structure of the objective function requires the
development of novel types of exact and heuristic solution
approaches, which makes the SAP-LAL an interesting prob-
lem from the academic point of view. The problem is also
interesting from the practical point of view, as the acceptance
levels allow users to consider multiple conflicting requests
in an intuitive and direct manner. Due to the lexicographic
orderingof the acceptance levels, the users have a clear under-
standing of how a change in the specification of acceptance
levels affects the schedule.

2.2 Illustrative example

The planning horizon of the illustrative example spans
2weeks. There are five different types of shifts: A, B, C , E
(early shift), and L (late shift). Figure 2 shows for each shift
type the start and end times, the set of employees that pos-
sess the required skills (compatible employees), and the days
on which the corresponding shifts must be performed. Five
employees (Ann, Bob, Dan, Eva, and Gil) can be assigned
to the shifts subject to the types of critical and noncritical
requests provided in Table 1. There are two requests of type
4: employee Bob wants to have Thursday and Friday of week
2 off. Refusing either of those two requests is associated with
acceptance level 30. Table 2 lists all requests of the illustra-
tive example. In total, there are 355 critical and noncritical
requests, which we label with a number from 1 to 355. Some
requests are given for each employee and day of the plan-
ning horizon. For example, there are 70 requests of type 1
because there are 5 employees and 14days. Column 2 of
Table 2 lists for each type the labels of the corresponding
requests. Notice that the requests of type 2 and 3 affect shifts
and not employees. Table 2 also contains the acceptance lev-

Fig. 2 Illustrative example:
shifts that need to be performed Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat Sun

Shift

Start End

Compatible

employees

8am 4pm Ann,Dan, Eva A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14

11am 7pm Ann, Bob,Dan B1 B3 B5 B6 B7 B9 B11 B13 B14

4am 12pm Dan, Eva,Gil E1 E2 E3 E4 E5 E8 E9 E10 E11 E12

3pm 11pm Bob,Dan,Gil L2 L4 L8 L10 L12

9am 5pm Ann, Bob C3 C9 C11

123

J Sched

Table 2 Requests for illustrative example

Type Request Affected employees AL

1 1–70 Ann, Bob, Dan, Eva, Gil 0

2 71–111 – 0

3 112–152 – 0

4 153–154 Bob (wants days 11, 12 off) 30

5 155–199 Ann, Bob, Dan, Eva, Gil 60

6 200–259 Ann, Bob, Dan, Eva, Gil 60

7 260–324 Ann, Bob, Dan, Eva, Gil 1

8 325–334 Ann, Bob, Dan, Eva, Gil 30

9 335–336 Ann, Dan Figure 1a

337–339 Bob, Eva, Gil Figure 1b

10 340–342 Ann, Bob, Dan Figure 3a

343–344 Eva, Gil Figure 3b

11 345–347 Ann, Bob, Dan Figure 3a

348–349 Eva, Gil Figure 3b

12 350–352 Dan, Eva, Gil Figure 4a

13 353–355 Bob, Dan, Gil Figure 4b

AL

100

70

30

0 Workload
[h]

64 72 80 88 96

(a) AL

100

60

20

0 Workload
[h]

24 32 40 48 56

(b)

Fig. 3 Mapping functions of request types 10 and 11

AL

100

60

20

0
Early
shifts0 1 2 3 4 5 6

(a) AL

100

60

20

0
Late
shifts0 1 2 3 4

(b)

Fig. 4 Mapping functions of request types 12 and 13

els that are associated with refusing a request. Figures 1, 3,
and 4 visualize the mapping functions of request types 9–13.

3 Literature review

In this section, we review existing solution techniques
for employee scheduling problems. These techniques can
be broadly divided into the three groups: mathematical
programming-based techniques, metaheuristics, and
matheuristics. Sections 3.1–3.3 contain a description of pop-
ular techniques from each group and discuss the difficulties
that arise when applying these techniques to the SAP-LAL.

3.1 Mathematical programming-based techniques

Mathematical programming-based techniques appear to be
the most popular ones for employee scheduling problems
(cf. Van den Bergh et al. 2013). These approaches model the
employee scheduling problem as a linear, integer, or mixed-
integer program that is solved either with a general-purpose
solver or a specific algorithm such as column generation,
branch-and-price, or Lagrangian relaxation. Themain advan-
tage of mathematical programming-based techniques is the
flexibility to accommodate a large variety of requests in the
underlying mathematical programming formulation.

For problems with multiple conflicting requests, the
literature on mathematical programming-based techniques
concentrates on goal programming formulations (cf., e.g.,
Jones andTamiz 2002, 2010; Romero 2014; Jones andTamiz
2016). In goal programming, each request is associated with
a target value, and deviations from target values are captured
by deviational variables. A so-called achievement function
penalizes the deviations according to the preferences of the
decision maker. The main variants of goal programming are
lexicographic, Chebyshev, and weighted goal programming.

Lexicographic goal programming requires a ranking of
the requests that reflects their importance. The unwanted
deviations from the target values are minimized sequentially
according to the given ranking. This variant has been used
by decision makers who do not need to model trade-offs
between requests because they have a clear ranking of the
requests in mind (cf., e.g., Berrada et al. 1996). Chebyshev
goal programming minimizes the maximum unwanted devi-
ation across all requests. It has been used by decision makers
who are interested in accepting requests in a balancedmanner
(cf., e.g., Ignizio 2004).

Weighted goal programming allows for direct trade-offs
among requests.Aweight is defined for each deviational vari-
able that quantifies its relative importance. The achievement
function is theweighted sumof the deviational variables. The
traditional form of weighted goal programming assumes that
the weights are constant and do not change at further dis-
tances from the target value (cf., e.g., Beaulieu et al. 2000).
As this assumption is too restrictive to fit the preferences
of many decision makers, various extensions have been pro-
posed.

Charnes andCollomb (1972) introduced interval goal pro-
gramming, which allows decision makers to specify a target
interval instead of a target value. Deviations from either
end of the interval are penalized in the achievement func-
tion. Subsequently, Charnes et al. (1976) introduced penalty
functions that penalize large deviations by imposing a higher
weight than that assigned to small deviations. This idea was
extended by Kvanli (1980) and Jones and Tamiz (1995), who
proposedmore complex penalty functions including decreas-
ing functions, functions with discontinuities, and nonlinear

123

J Sched

functions. Romero (2004) consolidated U -shaped penalty
functions in an achievement function with a general struc-
ture. This achievement function also encompasses the basic
variants of lexicographic and Chebyshev goal programming.
The use of complex penalty functions requires the introduc-
tion of binary variables and additional constraints, which
increases the computational cost. To address this drawback of
interval goal programmingmodels, Chang (2006) and Chang
and Lin (2009) proposed techniques to reduce the number of
variables and constraints required to model specific penalty
functions.

A shared drawback of mathematical programming-based
techniques is that the underlyingmodels contain a substantial
number of constraints andvariableswhen they are formulated
for large-sized instances. Despite the recent improvements in
optimization software and computer hardware (cf., e.g., Lodi
2010; Koch et al. 2011; Bixby 2012), it is often the case for
large instances that these techniques do not return any fea-
sible solution in a reasonable amount of computation time.
Furthermore, specific difficulties arise for individual groups
of techniques. The existing lexicographic goal programming
approaches fail to consider trade-offs between requests as
they optimize the requests sequentially. For example, assume
that for a problem instance with only one employee and
two types of requests only three feasible schedules (A, B,
and C) exist. The first request is to have a workload of at
most 30h, and the second request is to have four week-
ends off. In schedule A, the employee has four weekends
off, but exceeds the target workload by 20h. In schedule B,
the employee has only one weekend off, but the target work-
load request is met. In schedule C, the employee has three
weekends off and the workload exceeds the target by only
1h. Existing lexicographic goal programming approaches
would always select schedule A or B, but never schedule C,
although this appears to be the most favorable schedule. The
existing weighted goal programming approaches and their
extensions allow for amore accuratemodeling of the decision
maker’s preferences and have been applied to many real-
world applications (cf. the reviews of Tamiz et al. 1995; Jones
and Tamiz 2002). However, to apply weighted goal program-
ming to the SAP-LAL, the penalty functions need to assign
weights in such a way that the weight of a less-accepted
deviation is always greater than the sum of all weights of
more-accepted deviations. For example, for a small problem
instance with 40 different acceptance levels and ten devia-
tional variables per acceptance level, the largest weight has to
bemore than 1040 times larger than the smallest weight. Such
large numbers may slow down commercial solvers or even
cause numerical problems. The same difficulties arise for
Chebyshev goal programming approaches where the max-
imum weighted deviation across all requests is minimized.
Therefore, in Sect. 4, we present an exact approach based
on lexicographic goal programming that unlike existing lex-

icographic goal programming approaches is able to consider
trade-offs among requests.

3.2 Metaheuristics

An important group of approaches for employee scheduling
problems are metaheuristics. This type of solution approach
has been successfully used for real-world problems where
exact approaches are not able to devise satisfactory solu-
tions within an acceptable time limit. The general idea is to
iteratively improve a single solution or a population of solu-
tions with a local improvement procedure until a stopping
criterion is met. In addition to a local improvement proce-
dure, metaheuristics also employ various search strategies to
escape from local optima. Metaheuristics tend to find good
solutions in a reasonable amount of computation time when
(a) it is easy to construct a feasible solution quickly, (b) the
solution space is smooth, i.e., promising search directions
can be determined easily, and (c) when a direct representa-
tion of a solution exists. The most popular metaheuristics
for employee scheduling problems are simulated annealing
(cf., e.g., Bertels and Fahle 2006; Cordeau et al. 2010; Smet
et al. 2014a), tabu search (cf., e.g., Dowsland 1998; Bard
and Wan 2006; Bester et al. 2007), and genetic algorithms
(cf., e.g., Aickelin and Dowsland 2000, 2004; Maenhout and
Vanhoucke 2008; Valls et al. 2009; Bai et al. 2010).

Although themain structure ofmetaheuristics is generic, a
problem-specific implementation and fine tuning of param-
eters are necessary to obtain satisfactory performance (cf.,
e.g., Kopanos et al. 2010). This complicates the adaption of
the solution approach to small changes in the problem set-
ting as, for example, additional requests. In contrast to exact
approaches, a further disadvantage of metaheuristics is that
they cannot systematically evaluate the quality of the gener-
ated solutions. Regarding the application of metaheuristics
to the SAP-LAL, the main difficulty is that due to the lexi-
cographic nature of acceptance levels, the solution space of
typical problem instances is nonsmooth, which makes it dif-
ficult to find promising search directions. Furthermore, the
large number of conflicting requests reduces the effective-
ness of metaheuristics in general (cf., e.g., Jones et al. 2002)
as evaluating the quality of a solution requires more compu-
tation time.

3.3 Matheuristics

Recently, matheuristics have delivered promising results for
various scheduling problems. Raidl and Puchinger (2008),
Boschetti et al. (2009), Maniezzo et al. (2009), and Ball
(2011) provide general reviews of matheuristics. Matheuris-
tics combine the flexibility of mathematical programs to
easily accommodate complex constraints and the ability of
heuristics to find good solutions quickly. The basic idea is to

123

J Sched

employ the mathematical program for solving specific sub-
problems of the original problem for which metaheuristics
have difficulties in dealing with. The size of the subproblems
can be adjusted to ensure fast and predictable optimization
behavior (cf. Kopanos et al. 2010). A stable optimization
behavior is particularly important in a dynamic setting, i.e.,
when requests are frequently modified or new requests have
to be considered.

In the context of employee scheduling, only fewmatheuris-
tics have been introduced. These matheuristics belong either
to the group of constructive matheuristics or to the group of
improvement matheuristics. The former iteratively generates
a feasible solution, whereas the latter takes as input an initial
solution which is improved iteratively.

Smet et al. (2014b) propose a constructivematheuristic for
the shift minimization personnel task scheduling problem.
The solution is constructed by iteratively assigning subsets
of employees to tasks using an integer program until all tasks
have been assigned. The subsets of employees are selected
randomly without using any information of the current solu-
tion.

Smet and Vanden Berghe (2012) propose an improve-
ment matheuristic for the problem considered in Smet et al.
(2014b). In each improvement iteration, randomly selected
subsets of employees are reassigned to tasks. For the same
problem, Smet et al. (2014b) use the concept of local branch-
ing (cf. Fischetti and Lodi 2003) to define the subproblems
such that only a limited number of binary variables can
change their values.

Della Croce and Salassa (2014) provide an exact formu-
lation and an improvement matheuristic for a nurse rostering
problem that stems from an Italian hospital. To obtain an ini-
tial solution, the exact formulation is solved for a prescribed
time limit. This solution is then iteratively improved by the
matheuristic. In each iteration, only a small number of deci-
sion variables are allowed to change their values. This is
achieved by either using the concept of local branching or
imposing lower and upper bounds directly on the variables.

The performance of matheuristics depends strongly on
the definition of the subproblems. Ideally, the subproblems
are defined such that (a) the complexity of the subproblem
makes amathematical program themost appropriate solution
methodology, (b) the subproblem focuses only on the criti-
cal decisions that have a direct impact on the quality of the
solution, and (c) the corresponding mathematical program
can be formulated in a compact way without redundant con-
straints and variables. The strategies of the above-described
matheuristics to define the subproblems can in principle
be applied to the SAP-LAL. However, these strategies do
not appear to be suitable for the following reasons. The
improvement matheuristic of Della Croce and Salassa (2014)
constructs the subproblems by imposing additional con-
straints on the decision variables, either by using the concept

of local branching or by imposing lower and upper bounds
on variables to fix their values. A major drawback of local
branching is that the size of the subproblem in terms of num-
ber of decision variables and constraints is equally big as
the original full problem. As the full formulation for typ-
ical instances of the SAP-LAL is already large, imposing
additional constraints leads to subproblem formulations that
are difficult to handle. Fixing variables by imposing upper
and lower bounds has a similar disadvantage as the size of
the subproblem formulations in terms of number of deci-
sion variables and constraints can only exceed the size of
the full formulation. Although the preprocessing procedures
of state-of-the-art solvers are able to remove most of the
fixed variables and the corresponding constraints, reading
such large models in each iteration considerably decreases
the performance of the overall approach. Also the matheuris-
tic of Smet et al. (2014b) relies on local branching and is thus
not appropriate for the SAP-LAL. The matheuristic of Smet
andVandenBerghe (2012) defines subproblems by randomly
selecting a set of employees. Selecting employees randomly
often creates subproblems, which do not consider the critical
decisions that have a direct impact on the solution quality. In
Sect. 6, we demonstrate that selecting employees specifically
is indeed superior to selecting employees randomly.

4 Exact solution approach

In Rihm and Baumann (2015b), we introduced a prelimi-
nary version of the exact solution approach. In this paper,
we extend the preliminary version by including all requests
related to early and late shifts. Furthermore, we developed
a simplified notation and presentation of the lexicographic
goal program, and we provide a more detailed explanation
of the constraints.

The exact solution approach consists of two phases. In
the first phase, each request is decomposed into a set of sub-
requests (see Sect. 4.1). In the second phase, a lexicographic
goal program is formulated to iteratively optimize the sub-
requests (see Sect. 4.2). In Sect. 4.3, we illustrate the exact
solution approach by means of the illustrative example that
we introduced in Sect. 2.2.

4.1 Phase 1: Request decomposition

The goal of the decomposition is to transform the original
problem into a problem that can be solved efficiently with
lexicographic goal programming. Lexicographic goal pro-
grams require a clear order of the goals to be optimized. Such
an order cannot be found for the requests directly because a
single request might be associated with different acceptance
levels. We therefore decompose the requests into so-called
sub-requests that are associated with only one acceptance

123

J Sched

Fig. 5 Decomposition of a
request into four sub-requests

AL
100

70

30

0 [h]
64 72 80 88 96

AL
100

70

30

0 [h]
64 72 80 88 96

AL
100

70

30

0 [h]
64 72 80 88 96

AL
100

70

30

0 [h]
64 72 80 88 96

AL
100

70

30

0 [h]
64 72 80 88 96

level. It follows that each sub-request can be either accepted
or refused. The sub-requests can then be sorted in ascend-
ing order of their acceptance levels. The decomposition is
achieved as follows. The number of sub-requests is equal to
the number of kinks in the mapping function of the original
request. Each sub-request is assigned the target value and the
acceptance level from the corresponding kink in themapping
function.

Figure 5 illustrates the decomposition of the workload
request of Fig. 3a. This request can be refused to different
degrees and is therefore decomposed into four sub-requests.
The first sub-request (bottom left plot in Fig. 5) is refused
when the workload is less than 72h. Such a refusal is associ-
ated with an acceptance level of 30. The second sub-request
(second plot from the left) is refused when the workload is
less than 80h. Such a refusal is associated with an acceptance
level of 70. The meaning of the third and fourth sub-request
can be described analogously. A workload of less than 64h
or of more than 96h is infeasible. After the decomposition,
each of the four sub-requests is associated with exactly one
acceptance level, so a clear order of the sub-requests results.

4.2 Phase 2: Lexicographic goal program

In the second phase, we formulate and solve a lexicographic
goal program (LGP). For each sub-request, we introduce a
binary deviational variable that is equal to one when the sub-
request is refused. The LGP is solved as a series of binary
linear programs (BLPs). The first BLPminimizes the number
of refused sub-requests associated with the lowest accep-
tance level, the second BLPminimizes the number of refused
sub-requests associated with the second-lowest acceptance
level, etc. Prior to solving the next BLP, an additional con-
straint is added to ensure that the number of refusals from

the previous optimization will not be exceeded in subsequent
optimizations. Note that the additional constraints do not fix
assignments because the corresponding deviational variables
can still change in subsequent optimizations as long as the
total number of refusals does not exceed the prescribed upper
bound.

A distinctive feature of our approach is that all devia-
tional variables are binary, which provides great flexibility
for extensions; e.g., a balanced distribution of refused sub-
requests among employees could be easily incorporated. In
Rihm and Baumann (2015a), we introduced an approach for
improving an existing schedule in terms of fairness that takes
advantage of this feature.

We introduce the notation in Sect. 4.2.1, formulate the
lexicographic goal program in Sect. 4.2.2, and present aggre-
gation techniques for reducing the number of constraints in
Sect. 4.2.3.

4.2.1 Notation

We use the following notation.

Indices

a Acceptance level
d Day
i Employee
q Request type
r Sub-request
s Shift
w Weekend

Sets

A Acceptance levels
D Days

123

J Sched

Dw Days of weekend w

I Employees
Is Employees compatible with shift s
Ra Sub-requests with acceptance level a
Rq Sub-requests of type q
Rq
i Sub-requests of type q of employee i

S Shifts
Sid Compatible shifts of employee i starting on day d
SEid Compatible early shifts of employee i starting on

day d
SLid Compatible late shifts of employee i starting on

day d
Sbid Pairs of shifts between which the rest period

(break) is less than b hours
W Weekends

Parameters

dr Day relevant for sub-request r
gr Coefficient of deviational variable zr for the basic

formulation (BF)
hr Coefficient of deviational variable zr for the aggre-

gated formulation (AF)
ir Employee relevant for sub-request r
ls Length of shift s
tr Target value of sub-request r
va Allowed number of refused sub-requests at accep-

tance level a
wr Weekend relevant for sub-request r

Variables

xis = 1, if employee i is assigned to shift s; = 0, else
yiw = 1, if employee i has weekend w off; = 0, else
zr = 1, if sub-request r is refused; = 0, else

4.2.2 Model formulation

The model presented below covers the three types of critical
requests and the ten types of noncritical requests presented in
Table 1. In the following, we refer to sub-requests that stem
from a noncritical request of type q as sub-requests of type
q. The model is solved multiple times, once for each unique
acceptance level a∗ ∈ A, in ascending order of acceptance
levels.

The objective function minimizes the total number of
refused sub-requests associated with acceptance level a∗.

Min
∑

r∈Ra∗
zr

Constraints (1) bound the number of refused sub-requests for
all acceptance levels a < a∗ to ensure that the results from
previous optimizations are preserved.

∑

r∈Ra

zr ≤ va (a ∈ A : a < a∗) (1)

Constraints (2) address the requests of type 1. They ensure
that each employee i ∈ I is assigned to at most one shift
each day d ∈ D.

∑

s∈Sid
xis ≤ 1 (i ∈ I, d ∈ D) (2)

Constraints (3) address the requests of type 2. They ensure
that exactly one employee is assigned to each shift. Notice
that sets Is and Sid are defined such that the critical requests
of type 3 cannot be refused.

∑

i∈Is
xis = 1 (s ∈ S) (3)

Constraint (4) is formulated for each sub-request of type 4.
Sub-requests of type 4 represent preferences for days off and
are specified for specific employees and days of the planning
horizon. The target value tr is zero, and the coefficient gr is
one for all sub-requests r ∈ R4. A sub-request r ∈ R4 is
refused when the left-hand side is equal to one, that is, when
employee ir is assigned to a shift on day dr . In this case,
variable zr is forced to take value one.

∑

s∈Sir dr
xir s ≤ tr + gr zr (r ∈ R4) (4)

Constraint (5) covers each sub-request of type 5. Sub-
requests of type 5 are specified for all employees i ∈ I and
all days d ∈ D, where d > tr . They are intended to prevent
employees from being assigned to shifts on more than tr = 5
consecutive days. Sub-request r is refused when employee
ir is assigned to a shift on day dr in addition to shifts on days
dr − 1, dr − 2, . . . , dr − tr . The sub-requests for the first
d < tr days of the planning horizon could easily be incor-
porated by including the last days of the previous planning
period in the planning horizon and fixing the corresponding
decision variables.

dr∑

d ′=dr−tr

∑

s∈Sir d′
xir s ≤ tr + gr zr (r ∈ R5) (5)

Constraint (6) is formulated for each sub-request of type 6.
Sub-requests of type 6 are specified for all employees i ∈ I
and all days d ∈ D, where 1 < d < |D|. They assume that

123

J Sched

employees prefer two consecutive days off. A sub-request r
is refused when employee ir has a day off on day dr and is
assigned to a shift on day dr − 1 and a shift on day dr + 1.
The target value tr and the coefficient gr are equal to one for
all sub-requests r ∈ R6.

∑

s∈Sir dr−1

xir s −
∑

s∈Sir dr
xir s +

∑

s∈Sir dr+1

xir s

≤ tr + gr zr (r ∈ R6)

(6)

Constraints (7) cover all sub-requests of type 7. They are
intended to provide employees a b-hour rest period between
consecutive shifts. There is one sub-request r for each
employee i and day d ≥ 2. Set Sbid contains all pairs of
shifts (s1 ∈ Sid−1, s2 ∈ Sid) between which the period off
is less than b hours long. The request is refused if both of
these shifts are assigned to the same employee, that means if
the left-hand-side is equal to two. The target value tr and the
coefficient gr are equal to one for all sub-requests r ∈ R7.

xir s1 + xir s2 ≤ tr + gr zr (r ∈ R7, (s1, s2) ∈ Sbir dr) (7)

Constraints (8) address all sub-requests of type 8, which are
intended to assign employees either no weekend shifts or
one shift on each day of the weekend. The binary variable
yiw indicates whether employee i ∈ I has weekend w =
(d1, d2) ∈ W off. Variables yiw are reused to model the
sub-requests of type 9. The target value is tr = 2, and the
coefficient is gr = −1 for all sub-requests r ∈ R8.

2yirwr +
∑

d∈Dwr

∑

s∈Sir d
xir s = tr + gr zr (r ∈ R8) (8)

Constraints (9) cover sub-requests of type 9 and impose a
minimum number of weekends off per employee.

∑

w∈W
yirw ≥ tr + gr zr (r ∈ R9) (9)

Constraints (10) cover sub-requests of type 10, which are
intended to ensure that the target workloads of employees
are not exceeded.

∑

d∈D

∑

s∈Sir d
ls xir s ≤ tr + gr zr (r ∈ R10) (10)

The left-hand side computes the total workload of employee
ir by summing over all days d ∈ D and shifts s ∈ Sir d
planned on that day. If this workload exceeds the target value
tr , variable zr is forced to take value one, which corresponds
to a refusal of sub-request r . In this case, the right-hand side is
equal to tr+gr , which is a hard upper bound for theworkload.
Analogously, constraints (11) cover request type 11, which

is intended to prevent that the actual workload of employees
falls below the respective target workloads.

∑

d∈D

∑

s∈Sir t
ls xis ≥ tr + gr zr (r ∈ R11) (11)

Constraints (12) cover sub-requests of type 12, which are
intended to ensure that an employee’s target number of early
shifts is not exceeded.

∑

d∈D

∑

s∈SEir d
xir s ≤ tr + gr zr (r ∈ R12) (12)

Constraints (13) address sub-requests of type 13, which are
intended to ensure that an employee’s target number of late
shifts is not exceeded.

∑

d∈D

∑

s∈SLir d
xir s ≤ tr + gr zr (r ∈ R13) (13)

Finally, all variables are binary.

xis ∈ {0, 1} (i ∈ Is, s ∈ S) (14)

yiw ∈ {0, 1} (i ∈ I, w ∈ W) (15)

zr ∈ {0, 1} (r ∈ R) (16)

4.2.3 Model size reduction

The size of the formulation in terms of constraints can be
reduced using the following techniques. A first reduction can
be achieved by aggregating sub-requests of the same type and
of the same employee. More precisely, each request with two
or more kinks in the mapping function can be described by
only one constraint per employee. Thereby, the deviational
variables zr denote to which degree the request is refused.
We need to define set Rq

i containing all sub-requests of type
q relevant for employee i . We introduce parameter hr , which
captures the distance between one kink and its adjacent kink
with a lower acceptance level, i.e.,

hr =
{
gr − maxr ′∈Rq

i :gr>gr ′ (gr
′), if gr ≥ 0;

gr − minr ′∈Rq
i :gr<gr ′ (gr

′), otherwise.

Constraints (17) aggregate constraints (9).

∑

w∈W
yirw ≥ max

r∈R9
i

(tr) +
∑

r∈R9
i

hr zr (i ∈ I) (17)

Analogously, we aggregate constraints (10), (11), (12) and
(13):

∑

d∈D

∑

s∈Sir d
ls xir s ≤ min

r∈R10
i

(tr) +
∑

r∈R10
i

hr zr (i ∈ I) (18)

123

J Sched

∑

d∈D

∑

s∈Sir d
ls xir s ≥ max

r∈R11
i

(tr) +
∑

r∈R11
i

hr zr (i ∈ I) (19)

∑

d∈D

∑

s∈SEir d
xir s ≤ min

r∈R12
i

(tr) +
∑

r∈R12
i

hr zr (i ∈ I) (20)

∑

d∈D

∑

s∈SLir d
xir s ≤ min

r∈R13
i

(tr) +
∑

r∈R13
i

hr zr (i ∈ I) (21)

The model size can further be reduced by aggregating sub-
requests of different types. This is possiblewhen two requests
are structurally similar (i.e., identical left-hand side), affect
the same employee, and share the same target value. Here,
this only applies to request types 10 and 11.

∑

d∈D

∑

s∈Sid
ls xis = min

r∈R10
i

(tr) +
∑

r∈R10
i ∪R11

i

hr zr (i ∈ I) (22)

For this last aggregation, minr∈R10
i
(tr) = maxr∈R11

i
(tr)must

apply.
In the experimental study in Sect. 7, we compare the per-

formance of the basic model formulation (BF) of Sect. 4.2.2
with the performance of the aggregated model formulation
(AF) of Sect. 4.2.3:

(BF)

⎧
⎪⎨

⎪⎩

Min
∑

r∈Ra∗
zr

s.t. (1) − (16)

(AF)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Min
∑

r∈Ra∗
zr

s.t. (1) − (8)

(14) − (17)

(20) − (22)

4.3 Illustrative example

In this section, we apply the exact approach to the illustrative
example introduced in Sect. 2.2. Table 3 reports the result of
the decomposition phase. The requests have been decom-
posed into 373 sub-requests. The fourth column of Table 3
contains the domain of each sub-request, the employee, and,
if existing, the exact day to which the corresponding sub-
request applies. The acceptance levels and target values
associated with the sub-requests are listed in the fifth and
sixth columns of Table 3. The last column specifies the max-
imumpositive or negative undesired deviation from the target
value that is still considered feasible.

Sub-request 153 applies to employee Bob on day 11. If
Bob has to work on this day, a sub-request associated with
acceptance level 30 is refused.

The information given for sub-requests 335–338 is as fol-
lows. Ann and Dan ideally have two or more weekends off,
which is expressed by the target value of sub-requests 335
(Ann) and 336 (Dan), respectively. From gr = −2, it follows
that the hard lower bound on the number of weekends off is 0.
Having only one weekend off complies with sub-request 337

(338) but leads to a refusal of sub-request 335 (336). Such a
refusal is associated with an acceptance level of 80. Having
no weekend off additionally leads to a refusal of sub-request
337 (338), which is associated with an acceptance level of
50.

Figure 6 depicts an optimal schedule for the illustrative
example. All refused sub-requests are listed in Table 4 in
ascending order of their corresponding acceptance levels.

Both model formulations (BF and AF) lead to the same
schedule, and the corresponding CPU times are negligible
(�1s).

5 Matheuristic

Despite improvements in optimization software and com-
puter hardware, exact approaches are only applicable to
small- and medium-sized problem instances. For large-sized
instances, heuristic solutionprocedures are required.Accord-
ing to Cordeau et al. (2002), good heuristics are not only
accurate and fast but also simple and flexible. We designed
a matheuristic for the SAP-LAL because (a) matheuristics
have proven to deliver high-quality solutions for related prob-
lems (cf., e.g., Smet and Vanden Berghe 2012; Della Croce
and Salassa 2014; Smet et al. 2014b), (b) the speed can be
controlled by the size of the subproblems, (c) when using
an algebraic modeling language the implementation effort is
rather low, and d) the underlying BLP model offers flexibil-
ity to account for additional request types. In Sect. 5.1, we
describe the matheuristic in detail. In Sect. 5.2, we apply the
matheuristic to the illustrative example that we introduced in
Sect. 2.2.

5.1 Matheuristic: description

The basic idea of the matheuristic is to iteratively improve
an initial solution by reassigning groups of employees (see
Fig. 7). In the following, parameter k denotes the size of
such groups of employees. Parameter k controls the size of
the subproblems and thereby the degree of optimization in
the matheuristic. A small value of k leads to small subprob-
lems which can be solved in short CPU time. However, the
corresponding improvements tend to be incremental. Larger
improvements can be obtained for larger values of k, but
at the cost of increased computational effort. In our experi-
ments, we select parameter k independently of the problem
size, which leads to subproblems of similar size for all prob-
lem instances. This has the advantage that for all instances
the size of the subproblems is comparable, and thus, the opti-
mization behavior of thematheuristic is barely affected by the
problem size. For the construction of the initial solution and
the improvement iterations, we use model (AF). The initial
solution is constructed by solving model (AF) without non-

123

J Sched

Table 3 Sub-requests for the illustrative example

Type q Request Sub-request r Domain Acceptance level a Target value tr Parameter gr

1 1–70 1–70 ir ∈ I, dr ∈ D 0 − −
2 71–111 71–111 s ∈ S 0 − −
3 112–152 112–152 s ∈ S 0 − −
4 153 153 ir =Bob, dr = 11 30 0 1

154 154 ir =Bob, dr = 12 30 0 1

5 155–163 155–163 ir =Ann, dr = 6, . . . , |D| 60 5 1

164–172 164–172 ir =Bob, dr = 6, . . . , |D| 60 5 1

173–199 173–199 ir =Dan,Eva,Gil, dr = 6, . . . , |D| 60 5 1

6 200–259 200–259 ir ∈ I, dr ∈ D : 2 ≤ dr ≤ |D| − 1 60 1 1

7 260–324 260–324 ir ∈ I, dr ∈ D : dr ≥ 2 1 1 1

8 325–334 325–334 ir ∈ I, wr ∈ W 30 2 −1

9 335–336 335–336 ir ∈ {Ann,Dan} 80 2 −2

337–338 ir ∈ {Ann,Dan} 50 1 −1

337–339 339–341 ir ∈ {Bob,Eva,Gil} 60 1 −1

10 340–342 342–344 ir ∈ {Ann,Bob,Dan} 70 80 16

345–347 ir ∈ {Ann,Bob,Dan} 30 88 8

343–344 348–349 ir ∈ {Eva,Gil} 60 40 16

350–351 ir ∈ {Eva,Gil} 20 48 8

11 345–347 352–354 ir ∈ {Ann,Bob,Dan} 70 80 −16

355–357 ir ∈ {Ann,Bob,Dan} 30 72 −8

348–349 358–359 ir ∈ {Eva,Gil} 60 40 −16

360–361 ir ∈ {Eva,Gil} 20 32 −8

12 350–352 362–364 ir ∈ {Dan,Eva,Gil} 60 4 2

365–367 ir ∈ {Dan,Eva,Gil} 20 5 1

13 353–355 368–370 ir ∈ {Bob,Dan,Gil} 60 2 2

371–373 ir ∈ {Bob,Dan,Gil} 20 3 1

Fig. 6 Optimal schedule
Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat SunEmpl.

Ann A1 A2 C3 A4 A5 C9 A10 C11 A12 A13 A14

Bob B1 L2 B3 B5 B6 B7 L8 B9 B13 B14

Dan E1 E2 A3 E4 E5 A8 A9 L10 B11 L12

Eva E3 A6 A7 E8 A11

Gil L4 E9 E10 E11 E12

critical requests. The resulting solution is feasible because
it complies with all critical requests. Then, an improvement
routine is executed for each acceptance level in ascending
order of acceptance levels. The improvement routine is exe-
cuted multiple times for the same acceptance level until one
of the following three stopping criteria is satisfied: (a) The
current solution does not contain refused sub-requests that
are associated with the current acceptance level (REF cri-

terion), (b) no improvement was achieved for a predefined
number of subproblems (IMP criterion), and (c) a predefined
CPU time limit has been reached for one acceptance level
(CPU criterion). We refer to this time limit as acceptance
level time limit. The time limit imposed on the individual
subproblems is hereinafter referred to as subproblem time
limit.

123

J Sched

Table 4 Refused sub-requests

AL a Request type t Sub-request r Affected employee ir

60 5 163 Ann (dr = 14)

60 6 214 Bob (dr = 4)

60 9 339 Bob

70 10 342 Ann

80 9 335 Ann

For a given acceptance level a∗, the improvement routine
performs the following three steps:

1. A subset of k employees is selected according to a selec-
tion rule.

2. Model (AF) is formulated for the selected employees and
acceptance level a∗. The resultingmodel is very compact,
as it contains only variables and constraints related to the
selected employees.

3. The reduced model is solved.

The k employees could be selected randomly without con-
sidering any property of the current solution. However,
randomly selected groups of employees might not have any

Fig. 7 Flowchart of
matheuristic START

Generate ini-
tial solution

Select first AL

Apply se-
lection rule

Build subproblem

Solve subproblem

Improvement routine

Update solution

IMP
criterion
met?

REF
criterion
met?

CPU
criterion
met?

Stopping criteria

Last
AL?

Next AL

END

No

Yes

No

Yes Yes

No

Yes

No

123

J Sched

Fig. 8 Temporary schedule in
the course of the matheuristic Week 1

Mon Tue Wed Thu Fri Sat Sun

Week 2

Mon Tue Wed Thu Fri Sat SunEmpl.

Ann A1 A2 C3 A4 A5 C9 A10 C11 A12 A13 A14

Bob B1 L2 B3 B5 B6 B7 L8 B9 B13 B14

Dan E1 E2 A3 E4 E5 A8 A9 L10 B11

Eva E3 A6 A7 E8 A11 E12

Gil L4 E9 E10 E11 L12

refused sub-requests associated with acceptance level a∗.We
therefore employ the following selection rule:

1. Among all employees who have at least one refused
sub-request associated with acceptance level a∗, one
employee is selected randomly. The employee is denoted
by i∗.

2. Among all refused sub-requests with acceptance level a∗
of employee i∗, one sub-request is randomly selected.
This selected sub-request is denoted by r∗.

3. Among all employees who could prevent the refusal
of sub-request r∗ by swapping one of their shifts with
employee i∗, one employee is selected. Thereby, we dis-
tinguish two cases:

– Case 1: Sub-request r∗ is of types 4–8: The refusal
occurs because a shift s is assigned to employee i∗
on a particular day d. We select one employee having
that day off and the required skills to perform shift s.
We should note that this employee could prevent the
refusal, but it is not ensured that it is not at the expense
of a new refusal.

– Case 2: Sub-request r∗ is of types 9–13: The refusal
occurs because too many/few shifts are assigned to
employee i∗ over the entire planning period.We select
one employee with the same skills.

4. We randomly select k − 2 other employees.

The idea of constructing subproblems is to reduce the
search space so that a general-purpose solver can solve them
quickly and a large number of iterations can be performed in
a short amount of time. Another advantage is that the solver
can use the solution from the previous iteration as a warm
start. We propose to impose a short subproblem time limit
to prevent the solver from wasting time in proving optimal-
ity. In Sect. 6, we test two different variants of the selection
rule. In one variant, two employees who could prevent the
refusal of sub-request r∗ are selected instead of just one.

In another variant, two employees each with a refused sub-
request associated with acceptance level a∗ are selected, and
for each of those employees, another employee is selected
who can eliminate the corresponding refusal by a swap of
shifts.

5.2 Illustrative example

We applied the proposed matheuristic to the illustrative
example introduced in Sect. 2.2. Figure 8 shows a temporary
schedule in the course of thematheuristic for an iterationwith
acceptance level a∗ = 60. In this schedule, four sub-requests
are refused at the corresponding acceptance level.

– Sub-request 163: Ann has 6 consecutive working days
– Sub-request 214: Bob has an isolated day off
– Sub-request 337: Bob has no weekend off
– Sub-request 348: Eva’s workload exceeds the target of
40h

In the next iteration, we apply the selection rule to define
the subproblem.

1. Employee i∗ = Eva is selected.
2. i∗ = Eva has only one refused sub-request: r∗ = 348
3. Sub-request r∗ = 348 is of type 10, that means case 2 is

applicable. Employee Dan is selected because he has the
same skills as i∗ = Eva.

4. Employee Gil is randomly selected.

In Fig. 8, the three selected employees are enclosed by a
frame. The subproblem consists of these employees and is
solved to optimality by the solver.On the Friday of the second
week, Dan cannot be assigned to shift E12 because of request
type 7 (11h between two consecutive shifts). However, Dan
can be assigned to shift L12, and Gil is assigned to shift
E12, and the refusal is eliminated. The resulting schedule
corresponds to the optimal schedule shown in Fig. 6.

123

J Sched

6 Computational analysis

In this section, we evaluate the performance of the proposed
approaches. In Sect. 6.1, we present the test instances. In
Sect. 6.2, we describe the design of the analysis. In Sect. 6.3,
we report and analyze the numerical results.

6.1 Test instances

Problem instances for the SAP-LAL are different from exist-
ing benchmark instances from the literature. For example,
instances from the literature do not contain mapping func-
tions that assign acceptance levels to deviations from the
target values. We therefore generate SAP-LAL instances on
the basis of real-world data that we obtained from the ser-
vice provider. This has the advantage that a comparison with
the service provider’s software is possible. Our test instances
include a test set of 45 systematically constructed instances
and a real-world instance.We first describe the test set. All 45
instances of the test set have a planning horizon of 4weeks.
The types of requests to be considered in each instance are
those presented in Table 1. The instances were constructed
such that they differ with respect to the following three com-
plexity parameters:

– The number of available employees NE : We generated
instanceswith 10, 30, 50, 70, and 90 employees. Instances
with 10 employees are considered small-sized, instances
with 30 and 50 employees are considered medium-sized,
and instances with 70 and 90 employees are considered
large-sized. For each employee, we randomly selected a
target workload of 80, 120, or 160h.

– The workload ratio WR: Given the target workloads of
employees, the workload ratio determines the number
of 8-h shifts to be performed. The number of shifts is
obtained by multiplying the sum of target workloads of
all employees by WR and dividing the result by 8 (the
length of a shift). We generated instances with a work-
load ratio of 0.9, 1, and 1.1. For each shift, we randomly
determined the start time and the set of employees who
have the required skills to perform it. The start times of
shifts are equally distributed across the planning horizon.

– Number of different acceptance levels NL. We generated
instances with 10, 20, and 30 different acceptance lev-
els. The number of acceptance levels corresponds to the
number of optimizations to be performed in lexicograph-
ical order. First, a set containing NL different acceptance
levels is generated. Thereby, the acceptance levels are
equally distributed between 1 and 99. For each employee,
the number of kinks in the mapping functions of request
type 9 is 3 and of request types 10–13 is 10. All other
mapping functions have a single kink only.

Fig. 9 Average number of possible refusals per acceptance level over
all instances

In total, we generated 45 instances, one instance for each
possible combination of the three complexity parameters.
Figure 9 visualizes the average number of possible refusals
per acceptance level over all instances. The number of possi-
ble refusals varies from848 to 1,707 between different ranges
of acceptance levels.

The real-world instance stems from a client of our indus-
try partner. It comprises 15 employees, a planning horizon
of 28days, the 13 request types presented in Table 1, and 23
variants of the request types presented in Table 1. These vari-
ants are structurally identical to the baseline request types.
For example, the variants “at most 4 consecutive early shifts”
and “at most 3 consecutive late shifts” are structurally iden-
tical to the requests of type 5 (“at most 5 consecutive work
days”).

6.2 Test design

We tested the following approaches:

– BF: Basic formulation.
– AF: Aggregated formulation.
– MHk : Baseline matheuristic as described in Sect. 5 with

a subproblem time limit of 3 s. The subscript k indi-
cates the size of the subproblems. We ran MHk for
k = 4, 5, 6, 7, 8, 9.

– MHRk :MatheuristicMHk with a random employee selec-
tion rule. Under this rule, the employees are selected
randomly with equal probability. We ran MHRk for k =
4, 5, 6, 7, 8, 9.

– MHFk : Matheuristic MHk with a fix-and-optimize strat-
egy. Under this strategy, the subproblems are constructed
by fixing decision variables in the complete model with-
out removing them. We ran MHFk for k = 8.

– MH60k : Matheuristic MHk with a subproblem time limit
of 60 s instead of 3 s. We ran MH60k for k = 8.

– MH1−2
k :MatheuristicMHk with a variant of the employee

selection rule. Under this rule, one employee who has

123

J Sched

sub-request r∗ refused is selected, and two more employ-
ees who could prevent the refusal of sub-request r∗ are
selected instead of just one. k − 3 employees are selected
randomly. We ran MH1−2

k for k = 8.
– MH2−2

k :MatheuristicMHk with a variant of the employee
selection rule. Under this rule, two employees with a
refused sub-request associated with acceptance level a∗
are selected and for each of those employees another
employee is selected who can eliminate the refusal by
a swap of shifts. k − 4 employees are selected randomly.
We ran MH2−2

k for k = 8.
– SP: Software package of our industry partner who
reported the SAP-LAL.

All approaches except SP are implemented in AMPL
and use the Gurobi Optimizer 6.5.1 as solver. For the exact
approaches, we prescribed an acceptance level time limit of
300s for the optimization of each individual acceptance level.
For all variants of the matheuristics, we used the three stop-
ping criteria presented in Sect. 5. Thereby, the upper bound
on the number of subproblems solved without improvement
(IMP criterion) was set to 100 and the acceptance level
time limit (CPU criterion) was set to 180s. The computa-
tions were performed on a standard workstation with two
6-core Intel(R) Xeon(R) X5650 2.66GHz CPUs and 24GB
RAM.

The quality of a solution to the SAP-LAL cannot be
expressed by a single objective function value due to the
lexicographic order of acceptance levels. Instead, we need
to compare the number of refused sub-requests for each
acceptance level separately. As the exact approaches provide
for each acceptance level a lower bound on the number of
refusals, we can use the following three performance criteria
to evaluate the exact approaches:

– OPT : Number of instances solved to optimality. The opti-
mality of a solution is proven if and only if for each
acceptance level, the lower bound on the number of
refusals coincides with the number of refusals in the solu-
tion obtained.

– PSO: Mean average percentage of BLPs solved to opti-
mality.

– ALF: Average of acceptance level of the first BLP that is
not solved to optimality.

The above performance criteria cannot be used for evalu-
ating the different variants of the matheuristic since they do
not provide a lower bound on the number of refusals. It is
possible, however, to rank different solutions by comparing
the number of refusals for each acceptance level. We there-
fore use the following performance criteria to compare the
matheuristic variants in terms of solution quality:

– OPT∗: Number of instances for which the schedule
obtained is optimal. For this criterion, it is not necessary
that the optimality has been proven. Note that we can
only evaluate this criterion for the instances for which the
optimal solution is known.

– NBE: Number of instances for which an approach found
the best solution.

– ARE: Average number of refused sub-requests per
employee.

– AMR: Averagemaximum number of refused sub-requests
per employee.

– AVR: Average variance of the number of refused sub-
requests per employee. This metric captures the fairness
of a schedule. Schedules that are perceived as fair tend to
have low AVR.

Note that criterion ARE does not take into account the
lexicographic order between different acceptance levels.
Nevertheless, it is used in practice to compare different solu-
tions. In addition, all approaches are compared in terms
of average CPU time requirement per instance in seconds
(CPU).

6.3 Numerical results

In Sect. 6.3.1, we compare the results of the two exact
approaches. In Sect. 6.3.2, we compare these results with
the results of the baseline matheuristic. In Sects. 6.3.3–6.3.5,
we analyze the results of different variants of thematheuristic
and investigate the effectiveness of individual components of
thematheuristic. In Sect. 6.3.6, we report the results obtained
for the real-world instance.

6.3.1 Exact approaches

Table 5 reports the performance criteria for the two exact
approaches BF and AF. The performance criteria are com-
puted separately for small-, medium-, and large-sized
instances and also for the entire test set. Both approaches
are able to solve small- and medium-sized instances to opti-
mality. For large-sized instances, the exact approaches were
not able to prove optimality. However, the solution quality
is still surprisingly high as around 80% of the binary lin-
ear programs (BLPs) for large-sized instances are solved to
optimality (see PSO values in Table 5) and that these BLPs
correspond to the lowest acceptance levels. The 20% of the
BLPs that are not solved to optimality correspond to high
acceptance levels (above 78, see ALF values in Table 5).
Together these results reflect high solution quality. The opti-
mal solutions for BLPs associatedwith low acceptance levels
are usually found within few seconds as shown in Fig. 10.
The CPU times are considerably higher for BLPs associ-
ated with higher acceptance levels than for BLPs associated

123

J Sched

Table 5 Numerical results for exact approaches

NE

Small Medium Large All

10 30 50 70 90

OPT BF 8 2 0 0 0 10

AF 7 2 1 0 0 10

CPU BF 269 1075 1367 1671 2025 1281

AF 244 1095 1345 1495 2073 1250

PSO BF 98.5 86.7 80.9 78.1 78.9 84.6

AF 99.1 85.7 82.6 83.0 81.1 86.3

ALF BF 98.6 86.8 81.0 77.7 78.0 84.4

AF 97.2 84.7 81.3 78.8 78.0 84.0

Fig. 10 CPU time per acceptance level

with lower acceptance levels. The reason is, that in each BLP
associated with acceptance level a∗, all sub-requests associ-
ated with an acceptance level a ≤ a∗ need to be considered.
Consequently, the number of sub-requests and thus the com-
plexity increases with increasing value of the acceptance
level.

It can be seen in Fig. 10 that the CPU time requirement of
the BLP with the lowest acceptance level is slightly higher
than for the subsequently solved BLPs. This is because in
the first BLP a feasible solution needs to be constructed from
scratch which is not necessary in all other BLPs since the
solution of the previous BLP can be used as a warm start.
Formulation (AF) requires on average slightly more CPU
time for the first BLP but slightly less CPU time for the other
BLPs than formulation (BF).

Overall, both approaches (AF and BF) perform very simi-
larly as can be seen from the last column of Table 5. The small
performance difference can be explained by the fact that the
aggregation techniques can only be applied to a small subset
of constraints, namely those that refer to mapping functions
with multiple kinks. For large-sized instances which contain
more of those constraints, approach AF appears to be slightly
better than approach BF.

Next we study the impact of the complexity parameters
WR and NL on the performance of the two exact approaches.
Tables 6 and 7 state the performance criteria for groups of

Table 6 Impact of complexity parameter WR

WR

0.9 1 1.1 All

OPT BF 4 4 2 10

AF 6 3 1 10

CPU BF 1023 1206 1615 1281

AF 889 1212 1650 1250

PSO BF 89.0 85.6 79.3 84.6

AF 93.3 85.9 79.7 86.3

ALF BF 88.1 85.6 79.5 84.4

AF 89.3 84.0 78.7 84.0

Table 7 Impact of complexity parameter NL

NL

10 20 30 All

OPT BF 4 4 2 10

AF 5 3 2 10

CPU BF 634 1266 1945 1281

AF 642 1313 1796 1250

PSO BF 84.7 85.7 83.6 84.6

AF 86.7 86.0 86.2 86.3

ALF BF 84.7 85.0 83.5 84.4

AF 86.0 83.0 83.0 84.0

instances that have the sameworkload ratio (WR) and groups
of instances that have the same number of acceptance levels
(NL), respectively. It turns out that both complexity param-
eters affect the performance of both approaches in the same
way. The higher the value of WR, the more shifts in relation
to employees must be assigned which makes it more difficult
to comply with sub-requests. This is reflected in Table 6 by
the lower PSO and ALF values for WR=1.1 as compared
to WR=0.9. Also, instances with WR=1.1 require consid-
erably more CPU time than instances with WR=0.9.

Higher values of parameter NL do not affect the solution
quality. The performance criteria OPT, PSO, and ALF have
similar values for instances with different NL values. This
is interesting because for instances with a high NL value,
fewer refusals per acceptance level are possible as compared
to instances with a low NL value. Apparently, even though
the number of possible refusals is low, the difficulty of the
instances remains the same. However, parameter NL affects
the CPU time requirement. Instances with higher values of
NL, i.e., with a larger number of different acceptance levels,
require more CPU time because for each acceptance level, a
separate BLP needs to be solved.

123

J Sched

6.3.2 Matheuristic: comparison with exact approaches

Table 8 lists for six performance criteria the results of the two
exact approaches BF andAF and the results of thematheuris-
ticsMHk with k = 4, 5, 6, 7, 8, 9. In this section,we focus on
the comparison between the performance of the matheuris-
tic and the performance of the two exact approaches. The
following insights can be obtained from this comparison:

– All variants of the matheuristic are able to devise opti-
mal solutions. Among the 12 instances for which optimal
solutions are known, MH8 provides an optimal solution
for 11 instances.

– The matheuristic variants considerably outperform the
exact approaches for medium- and large-sized instances.
This is reflected best by performance criterion ARE.
While the ARE values of both exact approaches increase
considerably for medium- and large-sized instances, they
remain at a low level for all variants of the matheuris-
tic. This demonstrates that all matheuristic variants find
high-quality solutions for large instances.

– With respect to performance criteria AMR and AVR, all
variants of the matheuristic clearly outperform the exact
approaches, i.e., they tend to generate schedules with
higher fairness. Figure 11 shows for the three approaches
AF, BF, and MH8 boxplots that represent the distribution
of the number of refusals among employees for a spe-
cific instance with 90 employees. The thick horizontal
line marks the median of the distribution, the bottom and
top of the box correspond to the first and third quartiles,
and the whiskers represent the minimum and maximum
number of refusals.A possible explanation for this outper-
formance of thematheuristic is the fact that the employees
with a large number of refusals are more likely to be
selected by the employee selection rule than employ-
ees with a low number of refusals. Since only selected
employees have their refusals reverted, the guided selec-
tion leads to a more balanced distribution of the number
of refusals.

– All variants of thematheuristic require lessCPU time than
both exact approaches.

– Interestingly, although in the direct comparison formu-
lations AF and BF performed equally well, formulation
AF outperforms formulation BF with respect to all per-
formance criteria shown in Table 8.

6.3.3 Matheuristic: impact of the size of the subproblems

The goal of this section is to study the impact of the size of
the subproblems on the performance of the matheuristic. The
size of the subproblems is determined by parameter k. The

Table 8 Comparison of variants of matheuristic

NE

Small Medium Large All

10 30 50 70 90

OPT∗ BF 8 2 0 0 0 10

AF 8 2 1 0 0 11

MH4 3 0 0 0 0 3

MH5 3 0 0 0 0 3

MH6 5 1 0 0 0 6

MH7 6 0 1 0 0 7

MH8 7 3 1 0 0 11

MH9 5 3 0 0 0 8

NBE BF 8 3 0 1 1 13

AF 9 2 1 2 0 14

MH4 3 1 0 0 0 4

MH5 3 0 1 0 0 4

MH6 5 2 2 0 0 9

MH7 6 2 5 3 0 16

MH8 7 5 3 1 4 20

MH9 5 4 0 2 4 15

ARE BF 2.66 2.94 3.76 4.30 9.38 4.61

AF 2.63 3.00 3.49 4.34 8.45 4.38

MH4 2.52 2.46 2.46 2.73 2.97 2.63

MH5 2.50 2.34 2.38 2.54 2.68 2.49

MH6 2.62 2.27 2.29 2.48 2.63 2.46

MH7 2.60 2.25 2.32 2.43 2.57 2.43

MH8 2.62 2.29 2.32 2.45 2.54 2.45

MH9 2.77 2.40 2.43 2.59 2.64 2.57

AMR BF 5.00 5.56 7.44 8.56 15.22 8.36

AF 4.89 5.89 7.56 9.11 13.33 8.16

MH4 4.67 4.78 5.22 6.22 6.78 5.53

MH5 4.33 4.22 5.00 5.22 6.00 4.96

MH6 4.89 4.22 4.56 5.67 6.11 5.09

MH7 5.00 4.33 4.67 5.33 5.78 5.02

MH8 5.33 4.00 4.89 5.11 6.00 5.07

MH9 4.67 4.67 4.89 5.67 6.00 5.18

AVR BF 2.41 1.75 3.50 3.53 5.17 3.27

AF 2.25 2.09 3.13 3.68 4.41 3.11

MH4 2.17 1.48 1.41 1.83 1.96 1.77

MH5 1.97 0.97 1.24 1.41 1.73 1.47

MH6 2.16 1.10 1.10 1.39 1.68 1.49

MH7 2.83 1.01 1.23 1.30 1.48 1.57

MH8 2.69 0.82 1.30 1.43 1.58 1.56

MH9 2.26 1.25 1.32 1.50 1.63 1.59

CPU BF 269 1075 1367 1671 2025 1281

AF 244 1095 1345 1495 2073 1250

MH4 66 217 686 1363 2049 876

MH5 128 305 710 1267 1932 868

123

J Sched

Table 8 continued

NE

Small Medium Large All

10 30 50 70 90

MH6 207 418 699 1199 1837 872

MH7 345 471 742 1131 1753 889

MH8 452 506 757 1160 1692 913

MH9 479 541 790 1123 1617 910

BF AF MH8

0
2

4
6

8
10

12

Approach

N
um

be
r

of
 r

ef
us

al
s

Fig. 11 Distributions of number of refusals among employees for
approach BF, AF, and MH8 for an instance with 90 employees

impact of k is analyzed based on the results given in Table 8
from which we draw the following conclusions:

– Among the different matheuristic variants, variant MH8

delivers the best overall results in termsof solutionquality.
This variant achieved the best NBE and OPT∗ value as
can be seen from the last column in the table.

– For large-sized instances, variants with k ≥ 7 deliver
better results than variants with k ≤ 6. This shows that
in order to reduce the number of refusals in large-sized
instances shift swaps are required that involve multiple
employees.

– With respect to performance criteria AMR and AVR, no
significant differences can be observed between the vari-
ants of the matheuristic.

– The CPU time requirement of the matheuristic depends
on k and the size of the problem instances. For small- and
medium-sized instances, usually the stopping criterion
IMP (no improvement was achieved for 100 consecutive
subproblems) is met first. As variants with a low value
of k generally require less time per subproblem, they are

Table 9 Impact of strategy to formulate the subproblems without
redundant constraints and variables

NE

Small Medium Large All

10 30 50 70 90

OPT∗ MH8 7 3 1 0 0 11

MHF8 6 2 0 0 0 8

NBE MH8 8 6 8 9 9 40

MHF8 7 5 2 0 0 14

ARE MH8 2.62 2.29 2.32 2.45 2.54 2.45

MHF8 2.66 2.27 2.34 2.62 3.58 2.69

AVR MH8 2.69 0.82 1.30 1.43 1.58 1.56

MHF8 2.70 1.09 1.25 1.56 3.01 1.92

CPU MH8 452 506 757 1160 1692 913

MHF8 437 595 1047 1782 3260 1424

faster for small- and medium-sized instances than vari-
ants with a large value of k. For large-sized instances,
usually the stopping criterion CPU (the acceptance level
time limit has been reached) is met first. As variants with
a large value of k are often able to revert all refusals asso-
ciated with a specific acceptance level, they can continue
with the next acceptance level, while variants with a small
value of k are often not able to revert all refusals and thus
need to wait for criterion CPU to be met. Under this set-
ting, variants with a large value of k can be faster for
large-sized instances than variants with a small value of
k.

We also investigated the influence of the strategy to for-
mulate the subproblems without redundant constraints and
variables on the performance of the matheuristic. Due to
this strategy, the size of the subproblems is reduced con-
siderably. In Table 9, we compare the results of MH8 with
the results of version MHF8 which uses a fix-and-optimize
strategy, i.e., the subproblems are constructed by fixing deci-
sion variables in the completemodel without removing them.
Here we report the results only for k = 8 as we obtained
similar results for other values of k. Approach MH8 over-
all outperforms MHF8 in terms of both solution quality and
CPU time requirement. The outperformance is most distinct
for medium- and large-sized instances.

6.3.4 Matheuristic: impact of the employee selection rule

In this section, we examine the impact of the employee
selection rule. In Table 10, we compare the results of MHk

with k = 4, 5, 6, 7, 8, 9 to the results of a simplified ver-
sion MHRk which does not use the employee selection
rule and instead selects employees randomly. The last two

123

J Sched

Table 10 Impact of the employee selection rule

k NBE CPU NSP

MHk MHRk MHk MHRk MHk MHRk

4 43 5 876 1403 1172 1820

5 35 13 868 1339 967 1425

6 33 18 872 1267 795 1163

7 32 20 889 1253 700 977

8 34 20 913 1228 609 853

9 31 26 910 1187 573 776

columns of the table contain for both variants the aver-
age number of subproblems that were passed to the solver
(NSP). Approach MHk clearly outperforms MHRk for all
values of k in terms of both solution quality and CPU time
requirement. The employee selection rule is most effec-
tive for small values of k. This is probably due to the fact
that for small values of k, less employees are randomly
selected to be included in the subproblem. If k is small,
only few combinations of employees can eliminate refusals.
These combinations are rarely found by a random selec-
tion. ApproachMHk requires less time because the employee
selection rule effectively identifies subproblems that lead to
a reduction in the number of refusals. A random selection of
employees often results in subproblems that do not lead to a
reduction in the number of refusals. Consequently, approach
MHk performs fewer iterations (see the NSP values in
Table 10).

We also investigated other specific employee selection
rules. In Table 11, we compare the results to the basic variant
of the matheuristic MH8. In MH2−2

8 , two employees with
a refusal are selected, and for each employee at least one
other employee which can prevent the refusal. In MH1−2

8 ,
only one employee with a refusal is selected, but at least
two employees which can prevent the refusal of the first one.
Both MH2−2

8 and MH1−2
8 overall outperform the basic vari-

ant MH8 in terms of solution quality which emphasizes the
effectiveness of the employee selection rule.

6.3.5 Matheuristic: impact of the subproblem time limit

In this section, we analyze the impact of the subproblem time
limit on the performance of the matheuristic. In Table 12, we
compare the results of MH8 (with a default subproblem time
limit of 3 s) with the results of approach MH608 which uses
a subproblem time limit of 60 s. Interestingly, increasing the
subproblem time limit to 60s does not improve the solution
quality. In contrast, the solution quality decreases with the
increased subproblem time limit. This is because for most
subproblems the solver finds the best solution in few seconds
but does not terminate until the optimality of this solution

Table 11 Comparison of different variants of the employee selection
rule

NE

Small Medium Large All

10 30 50 70 90

OPT∗ MH8 7 3 1 0 0 11

MH2−2
8 6 2 1 0 0 9

MH1−2
8 6 3 0 0 0 9

NBE MH8 7 5 2 3 2 19

MH2−2
8 6 2 7 2 4 21

MH1−2
8 8 7 1 4 3 23

ARE MH8 2.62 2.29 2.32 2.45 2.54 2.45

MH2−2
8 2.66 2.28 2.31 2.45 2.50 2.44

MH1−2
8 2.58 2.30 2.34 2.44 2.57 2.44

AVR MH8 2.69 0.82 1.30 1.43 1.58 1.56

MH2−2
8 2.54 0.95 1.14 1.25 1.46 1.47

MH1−2
8 2.38 0.97 1.29 1.34 1.61 1.52

CPU MH8 452 506 757 1160 1692 913

MH2−2
8 458 493 723 1049 1518 848

MH1−2
8 444 521 780 1159 1698 920

NSP MH8 454 558 710 703 620 609

MH2−2
8 452 562 673 634 541 572

MH1−2
8 460 582 741 694 624 620

Table 12 Impact of subproblem time limit

NE

Small Medium Large All

10 30 50 70 90

OPT MH8 7 3 1 0 0 11

MH608 6 2 0 0 0 8

NBE MH8 7 8 9 8 7 39

MH608 8 3 1 1 2 15

ARE MH8 2.62 2.29 2.32 2.45 2.54 2.45

MH608 2.54 2.77 3.21 4.45 5.25 3.65

AVR MH8 2.69 0.82 1.30 1.43 1.58 1.56

MH608 2.71 1.55 1.97 4.30 5.16 3.14

CPU MH8 452 506 757 1160 1692 913

MH608 496 585 815 1184 1690 954

NSP MH8 454 558 710 703 620 609

MH608 368 482 596 658 600 541

is proven. By increasing the subproblem time limit, fewer
subproblems are solved for each acceptance level because of
the acceptance level time limit.

123

J Sched

6.3.6 Numerical results for real-world instance

We applied the best exact approach (AF) and the best vari-
ant of the matheuristic (MH8) to a real-world instance and
compared the results to those of the problem-specific soft-
ware package of our industry partner (SP). Table 13 lists for
all three approaches the results for each acceptance level.
The values in bold indicate for each approach up to which
acceptance level the number of refusals is identical to the
number of refusals in the best solution found by approach
MH8. For approach AF, the table reports the number of
refused sub-requests (NR), the lower bound on the number
of refused sub-requests (LB), and the CPU time requirement
(CPU) in seconds. For approach MH8, the table reports the
number of refused sub-requests (NR), the number of sub-
problems passed to the solver (NSP), and the CPU time
requirement (CPU). For the software package of our indus-
try partner, we report the number of refused sub-requests per
acceptance level. The CPU time requirement of approach
SP cannot be compared to the CPU time requirement of
the other approaches as approach SP was run by the indus-

Table 13 Numerical results for real-world instance

AL AF MH8 SP

NR LB CPU NR CPU NSP NR

1 2 2 1 2 18 106 2

5 5 5 1 5 17 106 5

20 0 0 2 0 3 13 0

21 0 0 0 0 1 5 0

25 0 0 1 0 1 4 0

26 0 0 1 0 0 1 0

32 0 0 4 0 7 6 0

34 0 0 7 0 32 24 0

37 0 0 70 0 4 3 0

38 4 4 77 4 40 111 4

40 0 0 90 0 1 4 0

41 0 0 0 0 0 1 0

43 0 0 3 0 1 2 0

44 0 0 2 0 1 2 0

45 0 0 29 0 5 2 0

46 3 3 55 3 122 123 4

47 0 0 197 0 15 7 0

49 0 0 2 0 0 1 0

50 3 3 222 3 66 138 4

51 15 10 300 14 180 114 14

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

97 0 0 5 0 1 3 0

99 1 0 300 5 131 103 4

Total 60 33 4482 71 2061 2357 68

try partner on a different computer. For acceptance levels
below 46, all approaches have the same number of refusals
per acceptance level. The solutions obtained by approach
AF and MH8 have only three refusals at acceptance level
46, whereas approach SP has four refusals. As one refusal
associated with a lower acceptance level is worse than any
number of refusals with higher acceptance level, the solu-
tions obtained by approaches AF and MH8 are better than
the solution obtained by approach SP. The best solution is
obtained by approach MH8, because it has 14 refusals asso-
ciated with acceptance level 51 compared to 15 refusals in
the solution obtained by approach AF.

The comparison was quite important for the service
provider. For the first time, they were able to benchmark
their own approach and get an understanding of the qual-
ity of their solutions. Moreover, they were able to study
characteristics of optimal solutions for small- and medium-
sized instances. The (optimal) schedules generated by the
proposed approaches were analyzed systematically by the
service provider to find opportunities for improving their
approach. New versions of the software have been released
based on the results of this analysis.

7 Conclusions

We introduced a real-world staff assignment problem that
was reported to us by a Swiss provider of employee schedul-
ing software. This provider has developed a framework that
helps decision makers to specify trade-offs between different
requests such as employees’ personal preferences by means
of hierarchically ordered acceptance levels. The framework
gives rise to a new type of staff assignment problem for
which existing solution techniques are not appropriate. We
proposed a novel lexicographic goal programming approach
for solving small instances to optimality, and we developed a
matheuristic for large-scale instances. The matheuristic iter-
atively improves an initial solution by solving subproblems
which involve only subsets of employees. The subsets are
defined according to a new and effective employee selection
rule. The performance of the exact and heuristic approaches
is evaluated based on a collection of problem instances that
we derived from real-world data.

The software provider involved in this research benefits
from our research in two ways. First, the solutions gener-
ated by our approach enable the provider to evaluate the
current performance of its software. Second, the provider
gains insights into the structure of optimal solutions which
is helpful for improving the performance of its software.

In future research, we plan to develop further variants of
the matheuristic. A promising idea is to vary the size of
the subproblems dynamically, i.e., increase the size after
a predefined number of iterations without improvements.

123

J Sched

Furthermore, according to the software provider, most of
their clients consider a fair distribution of refusals among
employees to be a desirable objective. In Rihm and Baumann
(2015a), we present model extensions that allow to improve
an existing schedule in terms of fairness without deteriorat-
ing its qualitywith regard to refused requests. Balancing both
fairness and number of refusals is still to be addressed.

References

Aickelin, U., & Dowsland, K. (2000). Exploiting problem structure in a
genetic algorithm approach to a nurse rostering problem. Journal
of Scheduling, 3(3), 139–153.

Aickelin, U., & Dowsland, K. A. (2004). An indirect genetic algo-
rithm for a nurse-scheduling problem. Computers and Operations
Research, 31(5), 761–778.

Al-Yakoob, S., & Sherali, H. (2007).Mixed-integer programmingmod-
els for an employee scheduling problem with multiple shifts and
work locations. Annals of Operations Research, 155(1), 119–142.

Azaiez, M. N., & Al Sharif, S. (2005). A 0–1 goal programming model
for nurse scheduling. Computers and Operations Research, 32(3),
491–507.

Bai, R., Burke, E. K., Kendall, G., Li, J., & McCollum, B. (2010). A
hybrid evolutionary approach to the nurse rostering problem. IEEE
Transactions on Evolutionary Computation, 14(4), 580–590.

Ball, M. O. (2011). Heuristics based on mathematical programming.
Surveys in Operations Research and Management Science, 16(1),
21–38.

Bard, J. F., & Wan, L. (2006). The task assignment problem for
unrestricted movement between workstation groups. Journal of
Scheduling, 9(4), 315–341.

Beaulieu, H., Ferland, J. A., Gendron, B., & Michelon, P. (2000). A
mathematical programming approach for scheduling physicians
in the emergency room. Health Care Management Science, 3(3),
193–200.

Berrada, I., Ferland, J. A., & Michelon, P. (1996). A multi-objective
approach to nurse scheduling with both hard and soft constraints.
Socio-Economic Planning Sciences, 30(3), 183–193.

Bertels, S., & Fahle, T. (2006). A hybrid setup for a hybrid scenario:
Combining heuristics for the home health care problem. Comput-
ers and Operations Research, 33(10), 2866–2890.

Bester, M., Nieuwoudt, I., & Van Vuuren, J. H. (2007). Finding good
nurse duty schedules: A case study. Journal of Scheduling, 10(6),
387–405.

Bixby, R. E. (2012). A brief history of linear and mixed-integer pro-
gramming computation. Documenta Mathematica, Extra Volume:
Optimization Stories, 107–121.

Boschetti, M. A., Maniezzo, V., Roffilli, M., & Bolufé Röhler, A.
(2009). Matheuristics: Optimization, simulation and control. In
M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli, M. Sampels, & A.
Schaerf (Eds.),Hybridmetaheuristics: 6th international workshop
on hybrid metaheuristics (pp. 171–177). Heidelberg: Springer.

Chang, C. T. (2006). Mixed binary interval goal programming. Journal
of the Operational Research Society, 57, 469–473.

Chang, C. T., & Lin, T. C. (2009). Interval goal programming for
s-shaped penalty function. European Journal of Operational
Research, 199, 9–20.

Charnes,A.,&Collomb,B. (1972).Optimal economic stabilization pol-
icy: Linear goal-interval programming models. Socio-Economic
Planning Sciences, 6(4), 431–435.

Charnes, A., Cooper, W. W., & Ferguson, R. O. (1955). Optimal
estimation of executive compensation by linear programming.
Management Science, 1, 138–151.

Charnes, A., Cooper, W. W., Harrald, J., Karwan, K. R., & Wallace,
W. A. (1976). A goal interval programming model for resource
allocation in a marine environmental protection program. Journal
of Environmental Economics and Management, 3, 347–362.

Cordeau, J. F., Gendreau, M., Laporte, G., Potvin, J. Y., & Semet, F.
(2002). A guide to vehicle routing heuristics. Journal of the Oper-
ational Research Society, 53, 512–522.

Cordeau, J. F., Laporte, G., Pasin, F., & Ropke, S. (2010). Scheduling
technicians and tasks in a telecommunications company. Journal
of Scheduling, 13(4), 393–409.

De Bruecker, P., Van den Bergh, J., Beliën, J., & Demeulemeester, E.
(2015). Workforce planning incorporating skills: State of the art.
European Journal of Operational Research, 243(1), 1–16.

Della Croce, F., & Salassa, F. (2014). A variable neighborhood search
based matheuristic for nurse rostering problems. Annals of Oper-
ations Research, 218(1), 185–199.

Dowsland,K.A. (1998).Nurse schedulingwith tabu search and strategic
oscillation. European Journal of Operational Research, 106(2),
393–407.

Eiselt, H. A., & Marianov, V. (2008). Employee positioning and
workload allocation. Computers and Operations Research, 35(2),
513–524.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D.
(2004). An annotated bibliography of personnel scheduling and
rostering. Annals of Operations Research, 127(1–4), 21–144.

Falasca,M., Zobel, C., &Ragsdale, C. (2011). Helping a small develop-
ment organization manage volunteers more efficiently. Interfaces,
41(3), 254–262.

Fischetti, M., & Lodi, A. (2003). Local branching. Mathematical Pro-
gramming, 98(1–3), 23–47.

Ignizio, J. (2004).Optimalmaintenance headcount allocation:An appli-
cation of Chebyshev goal programming. International Journal of
Production Research, 42(1), 201–210.

Jones, D., & Tamiz, M. (1995). Expanding the flexibility of goal pro-
gramming via preference modelling techniques. Omega, 23(1),
41–48.

Jones,D.,&Tamiz,M. (2010).Goal programming variants. InPractical
goal programming (pp. 11–22). Boston,MA: Springer US. doi:10.
1007/978-1-4419-5771-9_2.

Jones, D., & Tamiz, M. (2016). A review of goal programming. In
S. Greco, M. Ehrgott, & J. R. Figueira (Eds.), Multiple criteria
decision analysis: State of the art surveys (pp. 903–926). New
York: Springer.

Jones,D.F.,&Tamiz,M. (2002).Goal programming in the period1990–
2000. In M. Ehrgott & X. Gandibleux (Eds.), Multiple criteria
optimization—State of the art annotated bibliographic surveys.
Dordrecht: Kluwer Academic Publishers.

Jones, D. F., Mirrazavi, S. K., & Tamiz, M. (2002). Multi-objective
meta-heuristics: An overview of the current state-of-the-art. Euro-
pean Journal of Operational Research, 137(1), 1–9.

Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby,
R. E., et al. (2011). MIPLIB 2010. Mathematical Programming
Computation, 3(2), 103–163.

Kopanos, G. M., Méndez, C. A., & Puigjaner, L. (2010). MIP-based
decomposition strategies for large-scale scheduling problems in
multiproduct multistage batch plants: A benchmark scheduling
problem of the pharmaceutical industry. European Journal of
Operational Research, 207(2), 644–655.

Kvanli, A. H. (1980). Financial planning using goal programming.
Omega, 8, 207–218.

Lodi, A. (2010). Mixed integer programming computation. In M.
Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pul-
leyblank, G. Reinelt, G. Rinaldi, & L. A. Wolsey (Eds.), 50 years

123

http://dx.doi.org/10.1007/978-1-4419-5771-9_2
http://dx.doi.org/10.1007/978-1-4419-5771-9_2

J Sched

of integer programming 1958–2008: From the early years to the
state-of-the-art (pp. 619–645). Heidelberg: Springer.

Louly,M. A. O. (2013). A goal programmingmodel for staff scheduling
at a telecommunications center. Journal of Mathematical Mod-
elling and Algorithms in Operations Research, 12(2), 167–178.

Maenhout, B., &Vanhoucke,M. (2008). Comparison and hybridization
of crossover operators for the nurse scheduling problem. Annals
of Operations Research, 159(1), 333–353.

Maniezzo, V., Stützle, T., & Voss, S. (2009). Matheuristics: Hybridiz-
ing metaheuristics and mathematical programming. New York:
Springer.

Mihaylov, M., Smet, P., Van Den Noortgate, W., & Vanden Berghe, G.
(2016). Facilitating the transition frommanual to automated nurse
rostering. Health Systems, 5(2), 120–131.

Parr, D., & Thompson, J. M. (2007). Solving the multi-objective nurse
scheduling problemwith aweighted cost function.Annals ofOper-
ations Research, 155(1), 279–288.

Raidl, G. R., & Puchinger, J. (2008). Combining (integer) linear
programming techniques and metaheuristics for combinatorial
optimization. InC.Blum,M. J. B.Aguilera,A.Roli,&M. Sampels
(Eds.),Hybrid metaheuristics: An emerging approach to optimiza-
tion (pp. 31–62). Heidelberg: Springer.

Rihm, T., & Baumann, P. (2015a). Improving fairness in staff assign-
ment: An approach for lexicographic goal programming. In T.
Magnanti, K. Chai, R. Jiao, S. Chen, &M.Xie (Eds.), Proceedings
of the 2015 IEEE international conference on industrial engineer-
ing and engineering management, Singapore (pp. 1247–1251).

Rihm, T., & Baumann, P. (2015b). A lexicographic goal program-
ming approach for staff assignment with acceptance levels. In
Z. Hanzálek, G. Kendall, B. McCollum, & P. Šůcha (Eds.), Pro-
ceedings of the 7th multidisciplinary international conference on
scheduling: Theory and applications, Prague (pp. 526–540).

Romero, C. (2004). A general structure of achievement function for
a goal programming model. European Journal of Operational
Research, 153, 675–686.

Romero, C. (2014). Handbook of critical issues in goal programming.
Oxford: Pergamon Press.

Smet, P., & Vanden Berghe, G. (2012). A matheuristic approach to the
shift minimisation personnel task scheduling problem. In D. Kjen-
stad, A. Riise, T. E. Nordlander, B. McCollum, & Burke (Eds.).
Proceedings of the 9th international conference on the practice
and theory of automated timetabling, Son (pp. 145–160).

Smet, P., Bilgin, B., De Causmaecker, P., &Vanden Berghe, G. (2014a).
Modelling and evaluation issues in nurse rostering.Annals ofOper-
ations Research, 218(1), 303–326.

Smet, P., Wauters, T., Mihaylov, M., & Vanden Berghe, G. (2014b).
The shift minimisation personnel task scheduling problem: A new
hybrid approach and computational insights. Omega, 46, 64–73.

Tamiz, M., Jones, D. F., & El-Darzi, E. (1995). A review of goal pro-
gramming and its applications. Annals of Operations Research,
58, 39–53.

Topaloglu, S. (2006). A multi-objective programming model for
scheduling emergency medicine residents. Computers and Indus-
trial Engineering, 51(3), 375–388.

Valls,V., Pérez,Á.,&Quintanilla, S. (2009). Skilledworkforce schedul-
ing in service centres. European Journal of Operational Research,
193(3), 791–804.

Van den Bergh, J., Belïen, J., De Bruecker, P., & Demeulemeester, E.
(2013). Personnel scheduling: A literature review. European Jour-
nal of Operational Research, 226, 367–385.

123

	Staff assignment with lexicographically ordered acceptance levels
	Abstract
	1 Introduction
	2 Staff assignment problem with lexicographically ordered acceptance levels
	2.1 Problem description
	2.2 Illustrative example

	3 Literature review
	3.1 Mathematical programming-based techniques
	3.2 Metaheuristics
	3.3 Matheuristics

	4 Exact solution approach
	4.1 Phase 1: Request decomposition
	4.2 Phase 2: Lexicographic goal program
	4.2.1 Notation
	4.2.2 Model formulation
	4.2.3 Model size reduction

	4.3 Illustrative example

	5 Matheuristic
	5.1 Matheuristic: description
	5.2 Illustrative example

	6 Computational analysis
	6.1 Test instances
	6.2 Test design
	6.3 Numerical results
	6.3.1 Exact approaches
	6.3.2 Matheuristic: comparison with exact approaches
	6.3.3 Matheuristic: impact of the size of the subproblems
	6.3.4 Matheuristic: impact of the employee selection rule
	6.3.5 Matheuristic: impact of the subproblem time limit
	6.3.6 Numerical results for real-world instance

	7 Conclusions
	References

