Skip to main content
Log in

An implicit model for multi-activity shift scheduling problems

  • Published:
Journal of Scheduling Aims and scope Submit manuscript

Abstract

We consider a multi-activity shift scheduling problem where the objective is to construct anonymous multi-activity shifts that respect union rules, satisfy the demand and minimize workforce costs. An implicit approach using adapted forward and backward constraints is proposed that integrates both the shift construction and the activity assignment problems. Our computational study shows that using the branch-and-bound procedure of CPLEX 12.6 on the proposed implicit model yields optimal solutions in relatively short times for environments including up to 2970 millions of explicit shifts. Our implicit model is compared to the grammar-based implicit model proposed by Côté et al. (Manag Sci 57(1):151–163, 2011b) on a large set of instances. The results prove that both implicit models have their strengths and weaknesses and are more or less efficient depending on the scheduling environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aykin, T. (1996). Optimal shift scheduling with multiple break windows. Management Science, 42(4), 591–602.

    Article  Google Scholar 

  • Bechtold, S. E., & Jacobs, L. W. (1990). Implicit modeling of flexible break assignments in optimal shift scheduling. Management Science, 36(11), 1339–1351.

    Article  Google Scholar 

  • Bechtold, S. E., & Jacobs, L. W. (1996). The equivalence of general set-covering and implicit integer programming formulations for shift scheduling. Naval Research Logistics (NRL), 43(2), 233–249.

    Article  Google Scholar 

  • Cezik, T., & Günlük, O. (2004). Reformulating linear programs with transportation constraints with applications to workforce scheduling. Naval Research Logistics (NRL), 51(2), 275–296.

    Article  Google Scholar 

  • Côté, M. C., Gendron, B., Rousseau, L. M. (2007). Modeling the regular constraint with integer programming. In Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 29–43). Berlin/Heidelberg: Springer.

  • Côté, M. C., Gendron, B., Quimper, C. G., & Rousseau, L. M. (2011a). Formal languages for integer programming modeling of shift scheduling problems. Constraints, 16(1), 54–76.

    Article  Google Scholar 

  • Côté, M. C., Gendron, B., & Rousseau, L. M. (2011b). Grammar-based integer programming models for multiactivity shift scheduling. Management Science, 57(1), 151–163.

    Article  Google Scholar 

  • Côté, M. C., Gendron, B., & Rousseau, L. M. (2013). Grammar-based column generation for personalized multi-activity shift scheduling. INFORMS Journal on Computing, 25(3), 461–474.

    Article  Google Scholar 

  • Dahmen, S., & Rekik, M. (2015). Solving multi-activity multi-day shift scheduling problems with a hybrid heuristic. Journal of Scheduling, 18, 207–223.

    Article  Google Scholar 

  • Dantzig, G. B. (1954). Letter to the editor-a comment on Edie’s traffic delays at toll booths. Journal of the Operations Research Society of America, 2(3), 339–341.

    Article  Google Scholar 

  • Demassey, S., Pesant, G., Rousseau, L. M. (2005). Constraint programming based column generation for employee timetabling. In Second international conference, CPAIOR 2005, May 2005, Prague, Czech Republic. Lecture Notes in Computer Science (Vol. 3524, pp. 140–154). Berlin/Heidelberg: Springer.

  • Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153(1), 3–27.

    Article  Google Scholar 

  • Fischetti, M., Liberti, L. (2012). Orbital shrinking. In Combinatorial optimization (pp. 48–58). New York, NY: Cambridge University Press.

  • Lequy, Q., Bouchard, M., Desaulniers, G., Soumis, F., & Tachefine, B. (2012). Assigning multiple activities to work shifts. Journal of Scheduling, 15(2), 239–251.

    Article  Google Scholar 

  • Moondra, S. L. (1976). An lp model for work force scheduling for banks. Journal of Bank Research, 7(4), 299–301.

    Google Scholar 

  • Quimper, C. G., & Rousseau, L. M. (2010). A large neighbourhood search approach to the multi-activity shift scheduling problem. Journal of Heuristics, 16(3), 373–392.

    Article  Google Scholar 

  • Rekik, M., Cordeau, J. F., & Soumis, F. (2004). Using Benders decomposition to implicitly model tour scheduling. Annals of Operations Research, 128(1), 111–133.

    Article  Google Scholar 

  • Rekik, M., Cordeau, J. F., & Soumis, F. (2008). Solution approaches to large shift scheduling problems. RAIRO-Operations Research, 42(2), 229–258.

    Article  Google Scholar 

  • Rekik, M., Cordeau, J. F., & Soumis, F. (2010). Implicit shift scheduling with multiple breaks and work stretch duration restrictions. Journal of Scheduling, 13(1), 49–75.

    Article  Google Scholar 

  • Restrepo, M. I., Lozano, L., & Medaglia, A. L. (2012). Constrained network-based column generation for the multi-activity shift scheduling problem. International Journal of Production Economics, 140(1), 466–472.

    Article  Google Scholar 

  • Salvagnin, D., Walsh, T. (2012). A hybrid MIP/CP approach for multi-activity shift scheduling. In M. Milano (Ed.), Proceedings of the 18th international conference on principles and practice of constraint programming, CP 2012, Québec City, QC, Canada, October 8–12, 2012 (pp. 633–646). Berlin/Heidelberg: Springer.

  • Thompson, G. M. (1995). Improved implicit optimal modeling of the labor shift scheduling problem. Management Science, 41(4), 595–607.

    Article  Google Scholar 

  • Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., & De Boeck, L. (2013). Personnel scheduling: A literature review. European Journal of Operational Research, 226(3), 367–385.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fonds de Recherche Nature et Technologie du Québec (FRNTQ) through its new researchers start-up grant. This support is gratefully acknowledged. The authors thank Louis Martin Rousseau, Marie-Claude Côté and Maria Isabel Restrepo for providing their benchmark and their source code, thus allowing a comparison with their grammar-based approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monia Rekik.

Appendices

Appendix A: The grammar used to adapt the Côté et al. (2011) model to instances in the Dahmen set

All the grammars used are presented in accordance with the notations adopted by Côté et al. (2011). For clarity, they are not stated in Chomsky normal form. For each production P,‘\( \rightarrow _{S,[min,max]} \)’ restricts the subsequences generated to have a position belonging to the set of periods S and a span between min and max periods. When S or [minmax] are not specified for a production, there are no restrictions on its position or span, respectively. The grammar used for the Dahmen set with no restrictions on the number of activities, denoted \( \mathcal {G} \), is defined as follows:

$$\begin{aligned}&\mathcal{{G}} = (\Sigma =((a_j)_{j \in J=\lbrace 1, 2, \ldots , |A| \rbrace },b,r),\nonumber \\&N=(S, R, (Q_t, P_t, W_t, B_t)_{t \in T}, (J_j, T_j, A_j)_{j \in J}, P, S)\nonumber \\&\forall t \in T, \quad \forall j, k \in J: j \ne k\nonumber \\&S \rightarrow _{\lbrace 0 \rbrace ,[96,96]} R Q_t | Q_t R | R Q_t R \nonumber \\&Q_t \rightarrow _{S_t,[L_t^{min},L_t^{max}]} P_t B_t W_t \nonumber \\&B_t \rightarrow b^{LB_t}, R \rightarrow R r | r \nonumber \\&P_t \rightarrow _{[LAM_{t}^{min},LAM_{t}^{max}]} J_j T_j , W_t \rightarrow _{[LPM_{t}^{min},LPM_{t}^{max}]} J_j T_j \nonumber \\&P_t \rightarrow _{[LAM_{a_j,t}^{min},LAM_{a_j,t}^{max}]} J_j , W_t \rightarrow _{[LPM_{a_j,t}^{min},LPM_{a_j,t}^{max}]} J_j \nonumber \\&J_j \rightarrow _{[L_a^{min},L_a^{max}]} A_j, T_j \rightarrow J_{k} T_{k} | J_{k}, A_j \rightarrow A_j a_j | a_j, \nonumber \\&\text{ where } LAM_{a_j,t}^{min}=\max \lbrace LAM_{t}^{min}, L_{a_j}^{min} \rbrace \nonumber \\&LAM_{a_j,t}^{max}=\min \lbrace LAM_{t}^{max}, L_{a_j}^{max} \rbrace \nonumber \\&LPM_{a_j,t}^{min}=\max \lbrace LPM_{t}^{min}, L_{a_j}^{min} \rbrace \nonumber \\&LPM_{a_j,t}^{max}=\min \lbrace LPM_{t}^{max}, L_{a_j}^{max} \rbrace . \nonumber \end{aligned}$$

When restrictions on the number of activities are considered (that is, \(NA_{am} , NA_{pm} = 2\)), some of the productions above defining \( \mathcal {G} \) are changed as follows:

$$\begin{aligned}&\mathcal{{G}}^{r} = (\Sigma =((a_j)_{j \in J=\lbrace 1, 2, \ldots , |A| \rbrace },b,r), N=(S, R, \nonumber \\&(Q_t, P_t, W_t, B_t)_{t \in T}, (J_j, A_j)_{j \in J}, (T_{j,k})_{j,k\in J: j \ne k}, P, S)\nonumber \\&\forall t \in T, \quad \forall j, k \in J: j \ne k\nonumber \\&P_t \rightarrow _{[LAM_{t}^{min},LAM_{t}^{max}]} J_j T_{j,k} \nonumber \\&W_t \rightarrow _{[LPM_{t}^{min},LPM_{t}^{max}]} J_j T_{j,k}\nonumber \\&T_{j,k} \rightarrow J_{k} T_{k,j} | J_{k}. \nonumber \end{aligned}$$

Appendix B: Additional results for Section 6

Table 7 Average, minimum and maximum number of explicit shifts for the generated instances
Table 8 Number of variables and constraints of model G for the Dahmen set with no restrictions on the number of activities
Table 9 Computational performance of models P and G for the instances in Dahmen set with no restrictions solved to optimality within an hour
Table 10 Computational performance of models \(P^r\) and \(G^r\) for the instances in Dahmen set solved to optimality by both models within an hour
Table 11 Model size of P and G for the Côté set

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahmen, S., Rekik, M. & Soumis, F. An implicit model for multi-activity shift scheduling problems. J Sched 21, 285–304 (2018). https://doi.org/10.1007/s10951-017-0544-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10951-017-0544-y

Keywords

Navigation