
No-idle, no-wait: when shop scheduling meets dominoes,

eulerian and hamiltonian paths

J-C. Billauta, F. Della Croceb,c, F. Salassab, V. T’kindta

aUniversité Francois-Rabelais de Tours, ERL CNRS OC 6305, Tours, France
bDIGEP, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy

cCNR, IEIIT, Torino, Italy

Abstract

In shop scheduling, several applications exist where it is required that some
components perform consecutively. We refer to no-idle schedules if machines
are required to operate with no inserted idle time and no-wait schedules
if tasks cannot wait between the end of an operation and the start of the
following one. We consider here no-idle/no-wait shop scheduling problems
with makespan as performance measure and determine related complexity
results. We first analyze the two-machine no-idle/no-wait flow shop problem
and show that it is equivalent to a special version of the game of dominoes
which is polynomially solvable by tackling an Eulerian path problem on a
directed graph. We present for this problem an O(n) exact algorithm. As a
byproduct we show that the Hamiltonian Path problem on a digraph G(V,A)
with a special structure (where every pair of vertices i,j either has all succes-
sors in common or has no common successors) reduces to the two-machine
no-idle/no-wait flow shop problem. Correspondingly, we provide a new poly-
nomially solvable special case of the Hamiltonian Path problem. Then, we
show that also the corresponding m-machine no-idle no-wait flow shop prob-
lem is polynomially solvable and provide an O(mn log n) exact algorithm.
Finally we prove that the 2-machine no-idle/no-wait job shop problem and
the 2-machine no-idle/no-wait open shop problem are NP-Hard in the strong
sense.

Keywords: No-idle no-wait shop scheduling, dominoes, eulerian path,
hamiltonian path, Numerical Matching with Target Sums

1. Introduction

In shop scheduling, typically when machines represent very expensive
equipments and the fee is directly linked to the actual time consumption, it

1

is of interest to determine so-called no-idle solutions, that is schedules where
machines process the jobs continuously without inserted idle time. Also,
particularly in metal-processing industries, where delays between operations
interfere with the technological process, it is required to obtain no-wait sched-
ules where each job is subject to the so-called no-wait constraint, that is it
cannot be idle between the completion of an operation and the start of the
following one.

We attack here the simultaneous combination of these two requirements
by considering no-idle/no-wait shop scheduling problems with three different
shop configurations namely flow shop, job shop and open shop. We focus on
the makespan as performance measure. We first deal with the two-machine
flow shop problem and the m-machine flow shop problem showing that both
are polynomially solvable and present connections with the game of dominoes
and well-known graph problems. Then, we prove that the two-machine job
shop and the two-machine open shop are NP -hard in the strong sense. Using
the standard three-field notation [16], the three two-machine shop problems
are denoted as F2|no−idle, no−wait|Cmax for the flow shop, J2|no−idle, no−
wait|Cmax for the job shop and O2|no − idle, no − wait|Cmax for the open
shop, respectively, while the general flow shop case is denoted as F |no −
idle, no− wait|Cmax.

With respect to the relevant literature, in one of the pioneering works in
scheduling [14], it is shown that problem F2||Cmax is solvable in O(n log n)
time by first arranging the jobs with p1,j ≤ p2,j in non-decreasing order of p1,j,
followed by the remaining jobs arranged in non-increasing order of p2,j, where
pi,j denotes the processing time of job Jj on machine Mi. As mentioned in [1],
F2|no−idle|Cmax can also be solved in O(n log n) time by simply packing the
jobs on the second machine once the schedule computed by the algorithm in
[14] is given. In [17], it is shown that problem F2|no−wait|Cmax can be seen
as a special case of the Gilmore-Gomory Travelling Salesman Problem [10]
and therefore is solvable too in O(n log n) time. Besides, problems F3||Cmax,
F3|no− idle|Cmax and F3|no− wait|Cmax were all shown to be NP -hard in
the strong sense by [7], [3] and [18] respectively. In [1], it is reported that
both problems F2|no − idle|

∑
Cj and F2|no − wait|

∑
Cj are NP -hard

by exploiting the fact that the NP -hardness proof of problem F2||
∑
Cj

in [7] was given by constructing a flow shop instance that happened to be
both no-idle and no-wait. Similar consideration holds for problem F2|no −
idle, no−wait|

∑
Cj. For surveys on no− idle flow shop scheduling, we refer

to [11, 4]. For surveys on no-wait scheduling, we refer to [12, 2]. In [15], the
links between problems F |no−idle|Cmax and F2|no−wait|Cmax are discussed

2

and some efficiently solvable special cases are shown. The recent literature on
no−wait flow shop scheduling includes [13] where it is shown that minimizing
the number of interruptions on the last machine is solvable in O(n2) time on
two machines (the problem is denoted as F2|no − wait|G) while it is NP -
hard on three or more machines. Finally, we mention the contribution of [9],
where it is shown that, if some processing times are allowed to be zero and
zero processing times imply that the corresponding operations should not be
performed, then problem F2|no − idle, no − wait|Cmax is NP -hard in the
strong sense. Here, we deal with the standard versions of no-idle/no-wait
shop problems where all processing times are required to be strictly positive.

The paper proceeds as follows. In Section 2, we show that problem
F2|no− idle, no−wait|Cmax is equivalent to an oriented version of the Single
Player Dominoes problem which has been shown in [5] to be polynomially
solvable and presents an O(n) time solution approach. As a byproduct, we
also consider a special case of the Hamiltonian Path problem (denoted as
Common/Distinct Successors Directed Hamiltonian Path - CDSDHP - prob-
lem) on a directed graph G(V,A) with a specific structure so that every pair
of vertices i, j either has all successors in common or has no common succes-
sor. In other words, either the successors of i coincide with the successors of
j or i, j have distinct successors. We prove that problem CDSDHP reduces
to problem F2|no− idle, no−wait|Cmax. Correspondingly, we provide a new
polynomially solvable special case of the Hamiltonian Path problem. In Sec-
tion 3, we show that also the general F |no − idle, no − wait|Cmax problem
with m machines is polynomially solvable and present an O(mn log n) time
solution approach. Finally, section 5 provides the unary NP -Hardness proof
of problems J2|no− idle, no− wait|Cmax and O2|no− idle, no− wait|Cmax.

2. Two-machine no-idle no-wait flow shop scheduling

In the F2|no− idle, no− wait|Cmax problem, a set of n jobs is available
at time zero. Each job Jj must be processed non-preemptively on two con-
tinuously available machines M1,M2 with known integer processing times
p1,j, p2,j > 0, respectively. Each machine is subject to the so-called no-idle
constraint, namely, it processes continuously one job at a time, and opera-
tions of each job cannot overlap. Each job is subject to the so-called no-wait
constraint, namely, it cannot be idle between the completion of the first op-
eration and the start of the second operation. All jobs are processed first
on machine M1 and next on machine M2 and, given the no-wait constraint,
the jobs sequences on the two machines must be identical. Let us denote by

3

p(A) =
∑n

j=1 p1,j the sum of processing times on the first machine and by
p(B) =

∑n
j=1 p2,j the sum of processing times on the second machine. For

any given sequence σ, [j]σ denotes the job in position j.

Consider Figure 1 which provides an illustrative example of a feasible
no-idle, no-wait schedule for a 4-job problem.

M1

M2

p1,[1] p1,[2]

p2,[1]

p1,[3]

p2,[2]

p1,[4]

p2,[4]p2,[3]

Figure 1: A no-idle no-wait schedule for a 2-machine flow shop

We point out that the no − idle, no − wait requirement is very strong.
Indeed, any feasible sequence σ for problem F2|no − idle, no − wait|Cmax,
forces consecutive jobs to share common processing times in such a way that

p2,[j]σ = p1,[j+1]σ ∀j ∈ ..., n− 1. (1)

As mentioned in the introduction, a related problem denoted by F2|no−
wait|G is tackled in [15], where the aim is to minimize the number of interrup-
tions (idle times) on M2. We remark that this problem does not constitute a
generalization of problem F2|no− idle, no− wait|Cmax since an optimal so-
lution with no interruptions of problem F2|no−wait|G may be non-optimal
for problem F2|no− idle, no− wait|Cmax. Consider a 2− job instance with
processing times p1,1 = b, p2,1 = a, p1,2 = a, p2,2 = b, with b > a. Then,

sequence (J1, J2) is no-idle, no-wait, has makespan C
(J1,J2)
max = 2b + a and is

optimal for problem F2|no− wait|G as it has no interruptions. However, it
is not optimal for problem F2|no− idle, no−wait|Cmax as sequence (J2, J1)

is also no-idle, no-wait and has makespan C
(J2,J1)
max = 2a+ b < 2b+ a.

2.1. The F2|no− idle, no− wait|Cmax problem and the game of dominoes

We first provide a lemma on specific conditions of any instance of problem
F2|no− idle, no− wait|Cmax for which a feasible solution may exist.

Lemma 1.

(C1) A necessary condition to have a feasible solution for problem F2|no −
idle, no− wait|Cmax is that there always exists an indexing of the jobs
so that p1,2, ...p1,n and p2,1, ..., p2,n−1 constitute different permutations
of the same vector of elements.

4

(C2) When the above condition (C1) holds, then

Case 1 if p1,1 6= p2,n, every feasible sequence must have a job with process-
ing time p1,1 in first position and a job with processing time p2,n
in last position.

Case 2 if p1,1 = p2,n then there exists at least n feasible sequences each
starting with a different job by simply rotating the starting se-
quence as in a cycle.

Proof. Condition (C1) trivially holds from expression (1). For condition C2,
if p1,1 6= p2,n, then the processing time on the first machine of the job in first
position must be equal to p1,1 (similarly the processing time on the second
machine of the job in last position must be equal to p2,n) or else there is no
way to fulfil expression (1). Besides, If p1,1 = p2,n and a feasible sequence σ
exists fulfilling expression (1), then p1,[1]σ = p2,[n]σ also holds. But then, any
forward or backward rotation of σ also provides a feasible solution.

Next, we show that for any feasible solution the makespan is determined
by the processing time of the first job on the first machine plus p(B). The
following lemma holds.

Lemma 2. The makespan of any feasible sequence σ is given by the process-
ing time of the first job on the first machine plus the sum of jobs processing
times on the second machine.

Proof. As mentioned above, for any feasible sequence σ, we have p2,[j]σ =
p1,[j+1]σ ∀j ∈ 1, ..., n− 1. Correspondingly,

C[1]σ = p1,[1]σ + p2,[1]σ
C[2]σ = p1,[1]σ + p2,[1]σ + p2,[2]σ

· · ·

C[j]σ = p1,[1]σ +

j∑
i=1

p2,[i]σ

Hence,

Cmaxσ = C[n]σ = p1,[1]σ +
n∑
i=1

p2,[i]σ = p1,[1]σ +
n∑
i=1

p2,i. (2)

One may consider approaching problem F2|no− idle, no− wait|Cmax by
solving first problem F2|no− idle, no− wait|G. Then, if a solution without

5

interruption is found, it is immediate to determine the optimal F2|no −
idle, no − wait|Cmax sequence by exploiting Lemmata 1, 2. Alternatively,
F2|no − idle, no − wait|Cmax has no feasible solution. This would induce,
however, the same O(n2) complexity of the algorithm provided in [13] for
problem F2|no− idle, no− wait|G.

To reach a better complexity, we strongly exploit the specific no-idle/no-
wait constraint that strictly links the F2|no− idle, no− wait|Cmax problem
to the game of dominoes. Dominoes are 1 × 2 rectangular tiles with each
1 × 1 square marked with spots indicating a number. A traditional set of
dominoes consists of all 28 unordered pairs of numbers between 0 and 6. We
refer here to the generalization of dominoes presented in [5] in which n tiles
are present, each of the tiles can have any integer (or symbol) on each end
and not necessarily all pairs of numbers are present.

Figure 2: Solution of a Single Player Dominoes problem with 12 dominoes

In [5], it is shown that the Single Player Dominoes (SPD) problem (where
a single player tries to lay down all dominoes in a chain with the numbers
matching at each adjacency) is polynomially solvable as it can be seen as the
solution of an Eulerian path problem on an undirected multigraph (in a way
similar to the result provided in [13] but requiring lower complexity). Figure
2 shows the solution of an SPD problem with 12 tiles with numbers included
between 0 and 6.

We refer here to the oriented version of SPD, denoted by OSPD, where
all dominoes have an orientation, e.g. if the numbers are i and j, only the
orientation i→ j is allowed but not viceversa. The following Lemma holds.

Lemma 3. Problem OSPD is polynomially solvable.

Proof. Following the proof for problem SPD in [5], we construct a multi-
graph G where vertices correspond to numbers and arcs (instead of edges)
correspond to oriented dominoes. The rest works similarly. Hence, in this

6

case, the problem reduces to finding an Eulerian directed path in a directed
multigraph which in turn is polynomially solvable [6].

The following proposition holds.

Proposition 1. F2|no−idle, no−wait|Cmax polynomially reduces to OSPD.

Proof. By generating for each job Jj a related domino {p1,j, p2,j}, we know
that any complete sequence of oriented dominoes in OSPD corresponds to
a feasible sequence for F2|no − idle, no − wait|Cmax and viceversa. But
then, due to Lemma 1, the jobs processing times either respect case 1 or
case 2 of condition (C2). In case 1, the related sequence is optimal for
F2|no − idle, no − wait|Cmax as the processing time of the first job on the
first machine is given and correspondingly, due to Lemma 2, the makespan is
given. In case 2, we simply rotate the sequence in order to start with a job Jk
having the smallest processing time on the first machine, that is job Jk with
p1,k = mini=1,..,n p1,i. Correspondingly, the makespan Cmax = p1,k +

∑n
i=1 p2,i

is minimum and the related solution is optimal.

By means of the reduction in Proposition 1, we propose an optimal algo-
rithm, referred to as AlgF2, which solves problem F2|no−idle, no−wait|Cmax

in linear time.

Proposition 2. Algorithm AlgF2 solves problem F2|no−idle, no−wait|Cmax

in O(n) time.

Proof. Algorithm AlgF2 takes upon entry the set of n jobs and its associated
multigraph G built as described in Lemma 3: each job processing time p1,i
or p2,i corresponds to a vertex and there exists an arc from vertex k to vertex
` iff there exists a job Ji such that p1,i = k and p2,i = `. Then, computing
a feasible schedule to the F2|no − idle, no − wait|Cmax problem reduces to
computing, if it exists, a directed Eulerian path in G. The computation of an
optimal solution is done by Algorithm AlgF2 directly by exploiting existence
conditions of such a path.
Concerning the running time of the algorithm, it can be noticed that lines
1-5 can be executed in O(n) time by an appropriate implementation. Lines 7
and 10 require to compute an Eulerian path in an oriented graph with n arcs,
which can be done in O(n) time ([6]). Notice that the construction of graph
G, needed as an input to the algorithm, can also be built in O(n) time.

Consider the 9-job example of Table 1.
The corresponding optimal solution is provided in Figure 3.

7

Algorithm AlgF2: Solving the F2|no− idle, no−wait|Cmax problem

Data: A set of n jobs to be scheduled with processing times p1,i and
p2,i, the associated multigraph G

Result: An optimal no-wait no-idle schedule, if it exists
1 V = {p1,i, p2,i/i = 1, ..., n};
2 d+(αi) = |{j/p1,j = αi}|, ∀αi ∈ V ;
3 d−(αi) = |{j/p2,j = αi}|, ∀αi ∈ V ;
4 d(αi) = d+(αi)− d−(αi), ∀αi ∈ V ;
5 S = {αi/d(αi) 6= 0} ;
6 if (|S|=0) then
7 Compute an Eulerian walk ew in G starting from vertex

αi = minαk∈V(αk);

8 else
9 if (|S| = 2 and (d(α1) = 1 and d(α2) = −1, α1, α2 ∈ S)) then

10 Compute an Eulerian walk ew in G from vertex α1 to vertex α2;
11 else
12 Exit: Problem infeasible;
13 end

14 end
15 s∗ is the optimal schedule, with s∗[k] the job corresponding to arc

ew[k], ∀k = 1, ..., n;
16 return s∗

i J1 J2 J3 J4 J5 J6 J7 J8 J9
p1,i 5 3 4 6 1 5 3 2 4
p2,i 3 4 6 1 5 3 2 4 5

Table 1: A 9-job instance of problem F2|no− idle, no− wait|Cmax

8

M1

M2

10 34

p1,9p1,8p1,7p1,6

p1,5

p1,4p1,3p1,2p1,1
?

p2,9p2,6 p2,8p2,7p2,5

p2,4

p2,1 p2,2 p2,3
=

5 15 20 25 30
Cmax = 34

Figure 3: The optimal solution of the problem of Table 1

The input data and the solution of the OSPD problem corresponding to
the F2|no− idle, no− wait|Cmax instance of Table 1 are provided in Figure
4.

J9

J8

J7

J6

J5

J4

J3

J2

J1

J8 J7 J6

J2 J3 J4

J9

J1

J5

Figure 4: The dominoes corresponding to the flow shop instance of Table 1 and the related
OSPD problem solution

The multigraph computed by Algorithm AlgF2 on the flow shop instance
of Table 1 is depicted in Figure 5.

2.2. The F2|no − idle, no − wait|Cmax problem and the Common/Distinct
Successors Directed Hamiltonian Path problem.

Problem F2|no−idle, no−wait|Cmax is also linked to a special case of the
Hamiltonian Path problem on a connected digraph. Consider a connected
digraph G(V,A) that has the following property: ∀vi, vj ∈ V , either Si ∩
Sj = ∅, or Si = Sj, where Si denotes the set of successors of vertex vi. In

9

1

2 3

4

56

J1

J2

J3
J4

J5

J6

J7

J8

J9

Figure 5: The multigraph originated by Algorithm AlgF2 on the flow shop instance of
Table 1

other words, each pair of vertices either has no common successors or has
all successors in common. Let indicate the Hamiltonian path problem in
that graph as the Common/Distinct Successors Directed Hamiltonian Path
(CDSDHP) problem. Notice that problem CDSDHP may have no feasible
solution as indicated in Figure 6.

V1

V7 V2

V6 V3

V5 V4

Figure 6: A non feasible instance of the CDSDHP problem

The following straightforward lemma holds.

Lemma 4. Problem OSPD polynomially reduces to problem CDSDHP.

Proof. Given an OSPD problem with n tiles, it is sufficient to generate a
digraph G(V,A) where each oriented tile corresponds to a vertex and there
is an arc between two vertices if the corresponding tiles can match. Then,
any complete sequence of oriented dominoes in OSPD corresponds to an
hamiltonian path in the digraph and viceversa.

From Property 1 and Lemma 4, we know that F2|no−idle, no−wait|Cmax

∝ OSPD ∝ CDSDHP. Figure 7 depicts the CDSDHP instance corresponding
to the OSPD problem of Figure 4 and to the flow shop instance of Table 1.

10

5,3

V1

4,5
V9 3,4

V2

2,4V8 4,6 V3

3,2
V7

6,1
V4

5,3

V6

1,5

V5

Figure 7: The CDSDHP instance corresponding to the OSPD problem of Figure 4 and to
the flow shop instance of Table 1

The polynomial reduction between these problems actually works also in the
opposite sense as indicated by the following Proposition 3.

For any given instance of problem CDSDHP, consider algorithm AlgGenerF2

which constructs a related instance of problem F2|no− idle, no−wait|Cmax.
The following proposition holds.

Proposition 3. CDSDHP polynomially reduces to problem F2|no−idle, no−
wait|Cmax.

Proof. For any given instance of CDSDHP, we generate an instance of F2|no−
idle, no − wait|Cmax according to Algorithm AlgGenerF2. Notice that the
jobs processing times are generated in such a way that, if there is an arc
from vi to vj, then, we have p2,i = p1,j. If a feasible sequence of F2|no −
idle, no−wait|Cmax exists, then, for each pair of consecutive jobs Ji, Jj with
Ji preceding Jj, we have p2,i = p1,j and, correspondingly, there is an arc from
vi to vj. Thus, the corresponding sequence of vertices constitutes an Hamil-
tonian directed path for the considered instance of CDSDHP. Conversely, if
an Hamiltonian directed path exists for the considered instance of CDSDHP,
the corresponding sequence of jobs in problem F2|no− idle, no− wait|Cmax

is also feasible.

Remark 1. Problem CDSDHP is solvable in O(n2) time. Indeed, the while-
loop in Algorithm AlgGenerF2 is applied at most O(n) times and the prede-
cessors and successors of any given vk are at most O(n). Correspondingly,
Algorithm AlgGenerF2 has O(n2) complexity, while, from Proposition ref-
propAlgF2, we know that problem F2|no− idle, no−wait|Cmax is solvable in
linear time.

3. m-machine no-idle no-wait flow shop scheduling

In this section we focus on the m-machine no-wait no-idle flowshop prob-
lem. Here each job Jj has processing times pi,j, for all machines M1, ...,Mm.

11

Algorithm AlgGenerF2: Generating an instance of problem F2|no−
idle, no− wait|Cmax

Data: A digraph G(V,A) such that ∀vi, vj ∈ V , either Si ∩ Sj = ∅, or
Si = Sj

Result: An instance of problem F2|no− idle, no− wait|Cmax with n
jobs where n = |V |

1 ∀vj ∈ V generate a corresponding job Jj;
2 count = 1;
3 while ∃vk : p1,k or p2,k have not yet been determined do
4 if (vk has a self-loop) then
5 p1,k = p2,k = count; count = count+ 1;
6 else
7 if (both p1,k and p2,k have not yet been determined);
8 then
9 p1,k = count; p2,k = count+ 1; count = count+ 2;

10 else
11 if (p1,k has not yet been determined);
12 then
13 p1,k = count; count = count+ 1;
14 else
15 if (p2,k has not yet been determined);
16 then
17 p2,k = count; count = count+ 1;
18 end

19 end

20 end

21 end
22 ∀vj successor of vk, p1,j = p2,k;
23 ∀vj predecessor of vk, p2,j = p1,k;
24 ∀vj having common successors with vk, p2,j = p2,k;
25 ∀vj having common predecessors with vk, p1,j = p1,k;

26 end
27 return

12

Let us first introduce a generalized version of Lemma 1 illustrated in Figure
8.

M1

M2

M3

Mm−1

Mm

...

1 2 3 n− 1 n

1 2 3 n− 1 n

1 2 3 n− 1 n

1

1

2

2

3

3

n− 1 n

n− 1 n. . .

. . .

. . .

. . .

. . .

Figure 8: Solution of an m-machine flowshop problem

Lemma 5. (C3) A necessary condition to have a feasible solution for prob-
lem F |no− idle, no−wait|Cmax is that there always exists an indexing
of the jobs so that, ∀j = 1, ...,m− 1, pj+1,1, ..., pj+1,n−1 and pj,2, ..., pj,n
constitute different permutations of the same vector of elements.

(C4) When the above condition (C3) holds, then

Case 1 if (p1,1 6= p2,n or p2,1 6= p3,n or ... or pm−1,1 6= pm,n), every feasible
sequence must have a job with processing times (p1,1, ..., pm−1,1) on
machines M1 to Mm−1 in first position and a job with processing
time (p2,n, ..., pm,n) on machines M2 to Mm in last position.

Case 2 if (p1,1 = p2,n and p2,1 = p3,n and ... and pm−1,1 = pm,n) then there
exists at least n feasible sequences each starting with a different job
by simply rotating the starting sequence as in a cycle.

Proof. Similar to that of Lemma 1.

From Lemma 5 and Figure 8 we can evince that in an optimal sequence if
job Ji immediately precedes job Jk we must have pj+1,i = pj,k,∀j = 1, ...,m−
1. Consequently, for a feasible subsequence (J`, Ji, Jk) we must have:

[p2,`; ...; pm,`] = [p1,i; ...; pm−1,i] and [p2,i; ...; pm,i] = [p1,k; ...; pm−1,k]. (3)

This can be represented in terms of dominoes as indicated in Figure 9.
The following proposition holds.

Proposition 4. Problem F |no− idle, no− wait|Cmax can be solved to opti-
mality in O(mn log n) time.

13

Figure 9: Three consecutive jobs / dominos

Proof. We show that any instance of the F |no−idle, no−wait|Cmax problem
can be reduced to another instance of problem F2|no− idle, no−wait|Cmax.
The reduction works as follows. From any instance Im of the m-machine
problem, build 2n vectors [p1,i; ...; pm−1,i] and [p2,i; ...; pm,i], for each job Ji ∈
Im. Sort these vectors according to the lexicographical increasing order of
their values and let v[t] be the t-th vector in this order. This process requires
O((m − 1)n log n) ≈ O(mn log n) time to be done. Then, we create an
instance I2 of the 2-machine problem: ∀Ji ∈ Im, we create a new job J` ∈ I2
such that p1,` = t1 and p2,` = t2 with v[t1] = [p1,i; ...; pm−1,i] and v[t2] =
[p2,i; ...; pm,i]. This process can be done in O((m − 1)n log n) ≈ O(mn log n)
time.

Finally, apply Algorithm AlgF2 to I2. If instance I2 is infeasible, then
there does not exist a feasible solution to Im due to equation 3 which cannot
be answered for any triplet of consecutive jobs. If instance I2 admits a feasible
solution, then a feasible solution to Im can be easily derived since jobs in I2
correspond to jobs in Im. Let s be the sequence of jobs of Im obtained from
the optimal solution returned by Algorithm AlgF2 on I2. If Case 1 of (C4)
holds for s then s is also optimal for Im. Otherwise, it means that Case 2 holds
and then the optimal solution s∗ to Im is obtained by considering the circular
permutation of jobs in s where job J` with ` = argmink=1...n(

∑m−1
j=1 pj,k) is

put first. The building of s∗ can be done in O((m − 1)n) ≈ O(mn) time.
Consequently, the solution of the F |no − idle, no − wait|Cmax problem can
be done with an overall O(mn log n) time complexity.

4. Two-machine no-idle no-wait job shop scheduling

In this section we consider problem J2|no − idle, no − wait|Cmax. In
the job shop configuration, differently from the flow shop, each job has its
own processing routing. Also, when jobs with different processing routes are
present, for every feasible solution, the jobs sequences on the two machines
are necessarily different due to the no-wait constraint on the jobs. We es-
tablish the complexity of this problem by proving that it is NP -Hard in the
strong sense. To this extent we consider the Numerical Matching with Tar-

14

get Sums (NMTS) problem that has been shown to be NP -complete in the
strong sense [8].

NMTS
Instance: Disjoint sets X and Y , each containing m elements, a size s(k) ∈
Z+ for each element k ∈ X ∪ Y , and a target vector < t1, t2, ..., tm > with
positive integer entries where

∑m
i=1 ti =

∑m
i=1 s(xi) +

∑m
i=1 s(yi).

Question: Can X ∪ Y be partitioned into m disjoint sets D1, D2, ..., Dm

each containing exactly one element from each of X and Y such that, for
1 ≤ i ≤ m,

∑
k∈Di s(k) = ti?

Proposition 5. Problem J2|no − idle, no − wait|Cmax is NP -Hard in the
strong sense.

Proof. We show that NMTS polynomially reduces to problem J2|no−idle, no−
wait|Cmax. For any given instance of NMTS, we generate in O(m) time an in-
stance of J2|no− idle, no−wait|Cmax with n = 3m jobs in the following way.
Jobs J1, ..., Jm and jobs J2m+1, ..., J3m follow the M1 →M2 processing route.
Jobs Jm+1, ..., J2m follow the M2 → M1 processing route. Let us introduce
P =

∑m
i=1 ti +

∑m
i=1 s(xi) +

∑m
i=1 s(yi). The processing times are as follows:

p1,1, ..., p1,2m = 1; p1,2m+i = ti + 3P, ∀i = 1, ...,m; p2,i = s(xi) + P, ∀i =
1, ...,m; p2,m+i = s(yi) + 2P, ∀i = 1, ...,m; p2,2m+1, ..., p2,3m = 2.

From now on, we will denote jobs J1, ..., Jm as the x-jobs (as they relate to
set X of NMTS). Similarly, jobs Jm+1, ..., J2m are denoted as the y-jobs and
jobs J2m+1, ..., J3m are denoted as the t-jobs. Also, we will refer to a pattern
α − β − γ whenever a triplet α − β − γ is consecutively repeated on one
machine. As an example, the triplet x− t− y on M1 indicates that a x-job is
immediately followed by a t-job and then by a y-job on M1. Correspondingly,
the pattern x − t − y on M1 indicates that the sequence on M1 is given by
m consecutive triplets x− t− y.

The total load of machine M1 is given by L1 =
∑3m

i=1 p1,i = 2m+ 3mP +∑m
i=1 ti. Also, the total load of machine M2 is given by L2 =

∑3m
i=1 p2,i = 2m+

3mP +
∑m

i=1 s(xi) +
∑m

i=1 s(yi). Hence L1 = L2. Then, L = max{L1, L2} =
L1 = L2 constitutes a trivial lower bound on the makespan of the problem.
We remark that, on the one hand, the processing times on M1 are unitary
for x-jobs and y-jobs and have value > 3P for t-jobs. On the other hand, the
processing times on M2 have value 2 for t-jobs and value > P for x-jobs and
> 2P for y-jobs respectively.

In any feasible no-idle no-wait schedule, on M1 every t-job (except possi-
bly the last one) must be immediately followed by a y-job first and then by

15

a x-job, that is a t-job necessarily induces on M1 a triplet t− y− x. Indeed,
two t-jobs cannot be adjacent on M1, or else there would be idle time on M2

between the completion of the first t-job and the start of the second t-job.
Also, a t-job cannot be immediately followed by an x-job on M1, or else the
x-job would be waiting one unit of time between its completion on M1 and
its start on M2. Finally, a triplet t − y − y cannot hold as it would induce
an idle time between the two y-jobs on M1 and a triplet t − y − t cannot
hold as it would induce an idle time between the two t-jobs on M2. As a
consequence, as there are m t-jobs, a feasible schedule on M1 follows either
pattern t− y − x, or pattern y − x− t or pattern x− t− y.

First consider pattern y − x− t on M1. This means that the first y-job,
say job Jj, would be the first job in the sequence of M1 and (due to the
M2 →M1 processing order) would be processed first on machine M2 so that
C1,j = C2,j + 1. Hence, the following job on M2 is necessarily the x-job, say
job Ji, with C1,i = C1,j + 1 = C2,j + 2 which means that there is an idle time
on M2 between the end of job Jj and the beginning of job Ji. So, pattern
y − x− t on M1 cannot lead to a feasible schedule.

Hence, every feasible sequence on M1 either follows pattern x− t− y or
pattern t − y − x. In the first case, the pattern on M2 is x − y − t and the
relevant Gantt diagram is shown in Figure 10 for the case of 6 jobs. In this
case, the makespan is given by the load of M2 plus the processing time on
M1 of the first x-job, that is Cmax = L2 + 1 = L + 1. Further, note that
each t-job Jk on M1 starts and completes when an x-job Jj starts and a y-job
Ji completes on M2, respectively. Also, the sum p2,i + p2,j of the processing
times on M2 of the x-job and the y-job is equal to the processing time p1,k on
M1 of the t-job. But then, it provides a true assignment to the corresponding
NMTS problem, as p2,i + p2,j = s(xi) + s(yj) + 3P and p1,k = tk + 3P , that
is s(xi) + s(yj) = tk.

M1

M2

x-job

t-job

x-job y-job

y-job

t-job

x-job

t-job

x-job y-job

y-job

t-job

Figure 10: The x− t− y on M1 / x− y − t on M2 patterns sequence

In the latter case, the sequence on M1 follows pattern t − y − x, that is
starts with a t-job and ends with an x-job. The corresponding pattern on M2

is y−t−x. Hence, as the x-jobs follow the M1 →M2 processing route, the last

16

x-job on M1 will then need to be processed also on M2. Thus, if we denote by
Jh this last x-job, the makespan will be Cmax = L1 + p2,h > L1 + P = L+ P
which is worse than the schedule obtained with pattern x− t− y on M1.

To conclude, if there exists a feasible schedule for the two-machine job
shop problem with the shape x− t− y on M1 and x− y− t on M2 and value
= L + 1, then this schedule is optimal and enables to derive in O(m) time
a yes answer to NMTS. Conversely, if there is no feasible solution to the job
shop problem or the value is > L+P , then the answer to NMTS is no. This
shows that the two-machine job shop problem is NP-hard.

5. Two-machine no-idle no-wait open shop scheduling

In this section we consider problem O2|no− idle, no−wait|Cmax. In the
open shop configuration, no specific routing is assumed for each job which
can be either started first on M1 and then on M2 or viceversa. We establish
the complexity of this problem by proving that it is NP -Hard in the strong
sense.

Proposition 6. Problem O2|no − idle, no − wait|Cmax is NP -Hard in the
strong sense.

Proof. We show that NMTS polynomially reduces to problemO2|no−idle, no−
wait|Cmax in a way similar to Proposition 5. From any given instance of
NMTS, we generate in O(m) time an instance of O2|no−idle, no−wait|Cmax

with 3m jobs having the same processing times as in the job shop case.

To show the reduction, we first show that no feasible solution exists with
Cmax = L and that, if a feasible solution exists with value Cmax = L+1, then
a true assignment to the related NMTS problem holds and can be derived in
O(m) time from the solution of the O2|no− idle, no− wait|Cmax problem.

In order to have Cmax = L, both machines should start processing at
time 0. However, if an x-job (or a y-job) starts at time 0 on M1, then no
job can start at time 0 on M2 or else the no-wait requirement on the x-job
(the y-job) would be violated as all processing times on M2 have length ≥ 2.
Besides, if a t-job starts at time 0 on M1, whatever job starting at time 0
on M2 would then violate the no-wait requirement as any processing time on
M2 has length inferior to the processing time of any t-job on M1. To fulfil
the no-wait requirement, the considered job on M2 would need to start at a

17

time t0 >> 0 but then Cmax would be much larger than L. Thus, no feasible
solution exists with Cmax = L.

In order to have Cmax = L+ 1, the first job cannot start on any machine
after time 1. Notice, that the same argument explicited above rules out the
possibility of having a t-job starting at time t0 ≤ 1 on M1. Also, if an x-
job (a y-job) starts at time 1 and completes at time 2 on M1, in order to
fulfil the no-wait requirement on the x-job (the y-job), a t-job should start
at time 0 on M2. But then, the t-job will start at time 2 on M1 and the x-
job (y-job) will start at time 2 on M2. Correspondingly, to fulfil the no-idle
no-wait requirement only a y-job (x-job) can be processed on M2 once the
x-job (y-job) is completed and the sum of the processing times of the x-job
and y-job on M2 must be equal to the processing time of the t-job on M1.
This corresponds to the start of a pattern x − t − y (y − t − x) on M1 and
t−x−y (t−y−x) on M2 where all the t-jobs and y-jobs (x- jobs) follow the
M2 → M1 processing route and all the x-jobs (y-jobs) follow the M1 → M2

processing route. The resulting makespan is L + 1. The corresponding two
feasible schedules for a 6-job problem are depicted in Figure 11.

M1

M2

x-job

t-job

x-job y-job

y-job

t-job

x-job

t-job

x-job y-job

y-job
(y-job) (x-job)(y-job) (x-job)

t-job (y-job) (x-job) (y-job) (x-job)

Figure 11: Two open shop patterns

Alternatively an x-job (y-job) must start at time 0 on M1 and at time
1 on M2 and, by applying the same reasoning it turns out that the only
way to have a feasible schedule with Cmax = L + 1 is to stick to patterns
x− t− y (y− t− x) on M1 and x− y− t (y− x− t) on M2. We remark that
patterns x− t−y on M1 and x−y− t on M2 are the same patterns of the job
shop problem, hence Figure 10 for a 6-job instance holds also here. Besides,
by swapping every x-job with a y-job in Figure 10, we get the graphical
representation of the solution with patterns y − t − x on M1 and y − x − t
on M2.

By the same reasoning of the job shop case, we can see for all four cases,
that if a feasible schedule with Cmax = L + 1 exists, then it provides also
a true assignment to the corresponding NMTS problem by matching every

18

pair of x-job, y-job to the related t-job. Hence, given the solution of the gen-
erated instance of the O2|no− idle, no−wait|Cmax problem, either a feasible
solution exists with Cmax = L+1 and a true assignment to the corresponding
NMTS problem is then obtained in O(m) time, or else either Cmax > L + 1
or no feasible solution exists for problem O2|no − idle, no − wait|Cmax and
correspondingly no true assignment exists for the NMTS problem.

6. Conclusions

We considered no-idle/no-wait shop scheduling problems with makespan
as performance measure. We firstly focused on the F2|no−idle, no−wait|Cmax

problem for which we established the connection to a special game of domi-
noes, namely the Oriented Single Player Dominoes, and provided an O(n)
algorithm to solve both problems to optimality. As a byproduct, we also
considered a special case of the Hamiltonian Path problem (denoted as Com-
mon/Distinct Successors Directed Hamiltonian Path) and proved that it re-
duces to problem F2|no−idle, no−wait|Cmax. Correspondingly, we presented
a new polynomially solvable special case of the Hamiltonian Path problem.
Then, we extended our analysis to the more general F2|no − idle, no −
wait|Cmax problem showing that it can be transformed into a two-machine
instance. Correspondingly, by applying the same approach as in the two-
machine case, we showed that it can be solved with complexity O(mn log n).
For this problem we have also proposed a vectorial version of the Oriented
Single Player Dominoes problem with tiles composed by vectors of numbers.
Finally, we proved that both the two-machine job shop and the two-machine
open shop problems are NP-hard in the strong sense by reduction from the
Numerical Matching with Target Sums.

Bibliography

[1] I. Adiri and D. Pohoryles. Flowshop / no-idle or no-wait scheduling to minimize the
sum of completion times. Naval Research Logistics, 29, 495–504, 1982.

[2] A. Allahverdi. A survey of scheduling problems with no-wait in process. European
Journal of Operational Research, 255, 665–686, 2016.

[3] P. Baptiste and K.H. Lee. A branch and bound algorithm for the F |no− idle|Cmax.
Proceedings of the International Conference on Industrial Engineering and Produc-
tion Management, 1, 429–438, 1997.

[4] P. Chrétienne. On scheduling with the non-idling constraint. 4OR, 12, 101-121, 2014.

[5] E.D. Demaine, F. Ma and E. Waingarten. Playing Dominoes Is Hard, Except by
Yourself. FUN 2014, LNCS, 8496, 137–146, 2014.

19

[6] H. Fleischner. Eulerian Graphs and Related Topics Annals of Discrete Mathematics,
Part 1, Volume 2, Elsevier, 1991.

[7] M.R. Garey, D.S. Johnson and R. Sethi. The Complexity of Flowshop and Jobshop
Scheduling. Mathematics of Operations Research, 1, 117–129, 1976.

[8] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman and CO., New York, 1982.

[9] K. Giaro. NP-hardness of compact scheduling in simplified open and flow shops.
European Journal of Operational Research 130, 90–98, 2001.

[10] P.C. Gilmore, R.E. Gomory. Sequencing a one state variable machine: A solvable
case of the traveling salesman problem. Operations Research 12, 655–679, 1964.

[11] Y. Goncharov and S. Sevastyanov The flow shop problem with no-idle constraints: A
review and approximation. European Journal of Operational Research 196, 450–456,
2009.

[12] N.G. Hall and C. Sriskandarajah. A Survey of Machine Scheduling Problems with
Blocking and No-Wait in Process. Operations Research, 44, 510–525, 1996.

[13] W. Höhn, T. Jacobs and N. Megow. On Eulerian extensions and their application
to no-wait flowshop scheduling. Journal of Scheduling, 15, 295–309, 2012.

[14] S.M. Johnson. Optimal two- and three-stage production schedules with setup times
included. Naval Research Logistics Quarterly, 1, 61–68, 1954.

[15] P.J. Kalczynski and J. Kamburowski. On no-wait and no-idle flow shops with
makespan criterion. European Journal of Operational Research, 178, 677-685, 2007.

[16] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys. Sequencing and
Scheduling: Algorithms and Complexity. S.C. Graves, A.H.G. Rinnooy Kan and P.
Zipkin (Eds.): Handbooks in Operations Research and Management Science vol 4:
Logistics of Production and inventory, North-Holland, Amsterdam, 445 – 522, 1993.

[17] S.S. Reddi and C.V. Ramamoorthy. On the flowshop sequencing problem with no-
wait in process. Operational Research Quarterly, 23, 323–331, 1972.

[18] H. Röck. The three machine no-wait flowshop problem is NP-complete. Journal of
the Association for Computing Machinery, 31, 336–345, 1984.

20

