
On The Parameterized Tractability of the
Just-In-Time Flow-Shop Scheduling Problem

Danny Hermelin
Ben-Gurion University of the Negev

hermelin@bgu.ac.il

Dvir Shabtay
Ben-Gurion University of the Negev

dvirs@bgu.ac.il

Nimrod Talmon
Weizmann Institute of Science
nimrodtalmon77@gmail.com

May 11, 2019

Abstract
Since its development in the early 90’s, parameterized complexity has

been widely used to analyze the tractability of many NP-hard combi-
natorial optimization problems with respect to various types of problem
parameters. While the generic nature of the framework allows the analy-
sis of any combinatorial problem, the main focus along the years was on
analyzing graph problems. In this paper we diverge from this trend by
studying the parameterized complexity of Just-In-Time (JIT) flow-shop
scheduling problems. Our analysis focuses on the case where the number
of due dates is considerably smaller than the number of jobs, and can thus
be considered as a parameter. We prove that the two-machine problem is
W[1]-hard with respect to this parameter, even if all processing times on
the second machine are of unit length, while the problem is in XP even
for a parameterized number of machines. We then move on to study the
tractability of the problem when combining the different number of due
dates with either the number of different weights or the number of differ-
ent processing times on the first machine. We prove that in both cases
the problem is fixed-parameter tractable for the two machine case, and is
W[1]-hard for three or more machines.

1 Introduction
The concept of just-in-time (JIT) production have attracted the attention of
many industries in the last 50 years and has been wieldy adopted over the

1

ar
X

iv
:1

70
9.

04
16

9v
1

 [
cs

.D
S]

 1
3

Se
p

20
17

years to improve production efficiency in many industries (see, e.g., White and
Prybutok [25] and Fullerton and McWatters [13]). One of the main concepts
in JIT production systems is to make sure that customer orders (jobs to be
produced) are completed exactly when required, avoiding unnecessary inventory
and late delivery costs. Therefore, in the field of JIT scheduling, the objective
to be minimized include penalties for both early and tardy completion of jobs.
Two main types of such a cost functions are described in the literature. In the
first, there is a penalty for each job that is proportional to the deviation of its
completion time from the required due date. In the second, however, jobs that
are not completed exactly at the due date incur a penalty which is independent
of the deviation from the required due-date. Scheduling problems with a cost
function of the first type are commonly known as earliness-tardiness scheduling
problems (see Baker and Scudder [2] for a survey), while problems with a cost
function of the second type are commonly known as JIT scheduling problems
(see Shabtay and Steiner [22] for a survey). It should be noted that the set
of JIT scheduling problems on a single and parallel machines forms a special
case of another important set of scheduling problems, which is the set of fixed
interval scheduling problems (see Kovalyov et al. [16] for a survey).

The JIT scheduling problem is solvable in polynomial time on a single
machine (see Lann and Mosheiov [17]), and on various parallel machine sys-
tems (see, e.g., Arkin and Silverberg [1], Carlisle and Lloyd [4] and Čepek and
Sung [5]). However, this is not the case when we move to more sophisticated
scheduling systems such as flow-shop, job-shop and open-shop (see Choi and
Yoon [6] and Shabtay and Bensoussan [21]). The NP-hardness proof of the JIT
scheduling problem on the later machine systems heavily depends on the fact
that several parameters of the problem (such as the number of different pro-
cessing times and the number of different due dates) may be arbitrary large in
theory.

Such an assumption, however, may not be valid in many real-life schedul-
ing problems. For example, in many cases the manufacturer produces only a
predefined set of different products, yielding instances with limited number of
different processing times. As another example, in many production systems the
manufacturer limit the number of due dates such that each fits to one out of a
predefined set of delivery dates, resulting instances with only limited number of
different due dates. Therefore, it is quite natural to ask, if the NP-hard variants
of the JIT scheduling problem becomes tractable when some of their natural
parameters are of a limited size.

In this paper we study the parameterized tractability of the JIT scheduling
problem in a flow-shop scheduling system. We do so by using the theory of
parameterized complexity, which has been developed in the early 90’s by the
computer science community. The main idea in parameterized complexity is to
analyze the tractability of NP-hard problems with respect to (wrt.) various in-
stance parameters that may be independent of the total input length. Although
the area of parameterized complexity has enjoyed tremendous success in many
fields of combinatorial optimization since its development in the early 90’s (see,
e.g., [7, 12, 9, 19]), it is rarely used to analyze hard scheduling problems. In fact,

2

we are aware of only handful number of papers which provide a parameterized
analysis of scheduling problems [3, 11, 15, 18, 23, 24].

Below, we continue the introduction by providing a brief exposition to the
theory of parameterized complexity. Then, we formally define the scheduling
problem we aim to analyze, survey the known results in the literature that are
related to this problem, and present our research objectives.

1.1 Basic Concepts in Parameterized Complexity Theory
The main objective in parameterized complexity theory is to analyze the tractabil-
ity of NP-hard problems wrt. their natural parameters. Consider an NP-hard
problem π and let n denotes its instance size.

Definition 1. Problem π is fixed-parameter tractable (FPT) wrt. some param-
eter k if there is an algorithm that solves any instance of π in f(k)no(1) time,
for some computable function f that solely depends on k. An algorithm running
in this running time is said to be a fixed-parameter algorithm.

Definition 2. Problem π belongs to the XP set, wrt. some parameter k if there
is an algorithm that solves any instance of π in nf(k) time, for some computable
function f that solely depends on k. An algorithm running in this running time
is said to be an XP algorithm.

Note that a fixed-parameter algorithm is capable of solving instances where
k is fixed (or upper bounded by a constant) in polynomial time, where, impor-
tantly, the degree of the polynomial does not depend on the value of the param-
eter k. The main advantage of a fixed-parameter algorithm, compared to an
XP algorithm with time complexity O(nk), is that it separates the dependency
between the instance size and the size of the parameter in the running time cal-
culation, making a fixed-parameter algorithm, asymptotically speaking, much
more efficient. There are parameterized analogues of NP-hardness which can be
used to show that a problem is presumably not fixed-parameter tractable. Sim-
ilarly to the reductions used to show NP-hardness of some (non-parameterized)
problem, the standard technique for showing parameterized hardness is through
a parameterized reduction.

Definition 3. A parameterized reduction from a problem π2 to a problem π1 is
an algorithm mapping an instance I2 of π2 with parameter k2 to an instance I1
of π1 with a parameter k1 in time f(k2)|I2|O(1) such that k1 ≤ f(k2) and I1 is
a yes-instance for π1 if and only if I2 is a yes-instance for π2.

There are several classes of problems that are conjectured not to be fixed-
parameter tractable, with the class of W[1]-hard problems and the class of W[2]-
hard problems being the most popular. Indeed, for i = 1, 2, a decision problem
π is W[i]-hard wrt. parameter k if π being fixed-parameter tractable wrt. k infers
that all problems in W[i] are fixed-parameter tractable as well.

For proving that a problem is W[1]-hard one can provide a parameterized
reduction from a known W[1]-hard problem, such as the Clique problem, with

3

k being the size of the clique. Similarly, for proving that a problem is W[2]-hard
one can provide a parameterized reduction from a known W[2]-hard problem,
such as the Set Cover problem, with k being the number of sets in the cover.
(while W[1] and W[2] are, formally speaking, different complexity classes, they
both presumably rule out the existence of a fixed-parameter algorithm and for
our point of view, similarly to the point of view of most papers studying param-
eterized complexity, the difference between them is of no special significance.)

1.2 Problem Definition
The aim of the current paper is to study the JIT flow-shop scheduling prob-
lem from a parameterized complexity perspective; the problem can be de-
fined as follows. We are given a set of n independent, non-preemptive jobs,
J = {J1, J2, . . . , Jn}, which are available for processing at time zero and are to
be scheduled on a set of m machines, M = {M1,M2, . . . ,Mm}. The machines
are arranged in a flow-shop machine setting; in such a setting all jobs are to be
processed on all the machines and each job has to follow the same route trough
the machines, i.e., all jobs have to be processed first on M1, then on M2, and
so on, in a topological order up to Mm.

For i = 1, . . . ,m and j = 1, . . . , n, let Oij represents the processing operation
of job Jj on machine Mi and let p(i)j represents its processing time. We use dj
to represent the due date of job Jj and wj to represent the gain (income) of
completing job Jj in a JIT mode (i.e., exactly at time dj). We assume that all
the dj , wj , and the p(i)j values, are positive integers.

For a JIT scheduling problem, a partition of the set J into two disjointed
subsets E and T is considered to be a feasible partition (or a feasible schedule),
if it is possible to schedule jobs belonging to the set E such that they are all
completed in a JIT mode. In a feasible schedule, without loss of generality, jobs
belonging to the set T are assumed to be rejected. The objective is to find a
feasible schedule with a maximal weighted number of jobs in the set E; that is,
to maximize

∑
Jj∈E wj .

Following the classical three-field notation of [14], we denote our JIT flow-
shop scheduling problem by Fm||

∑
Jj∈E wj , where Fm in the first field indicates

that the scheduling is done in a flow-shop scheduling system with m machines
and the objective to be maximized appears in the last field. Note that the
middle (second) field is empty, while in general it is used to specify specific
processing characteristics and constraints. By Fm|||E| we refer to the special
case where weights are identical, and the problem is simply to maximize the
number of JIT jobs.

1.3 Related Work
The first to study the Fm||

∑
Jj∈E wj problem were Choi and Yoon [6]. By a

reduction from the Partition problem, they proved that the two-machine case
is NP-hard. They also show that the unweighted version of the problem is

4

solvable in polynomial time (specifically, O(n4) time) for two machines and
that it is strongly NP-hard for three machines. They left, however, an open
question concerning whether the F2||

∑
Jj∈E wj problem is strongly NP-hard

or ordinary NP-hard. Shabtay and Bensoussan [21] resolved this question by
providing a pseudo-polynomial time algorithm for its solution (meaning that
the problem on two machines is ordinary NP-hard). Shabtay and Bensoussan
also show how the pseudo-polynomial time algorithm can be converted into a
fully polynomial time approximation scheme (FPTAS), which provides (1 + ε)
approximation in O((n4/ε) log(n2/ε)) time. The latter result was later improved
by Elalouf et al. [10], who accelerated the running time of the FPTAS by a factor
of n log(n/ε).

Shabtay [20] provided an O(n3) time algorithm for solving the F2|||E| prob-
lem, improving an earlier result of Choi and Yoon [6] by a factor of n. Shabtay
further showed that the problem on m machines with machine-independent pro-
cessing times is ordinary NP-hard in general and is solvable in O(n4) time as
long as all weights are identical. If, on the other hand, the processing times are
job-independent (but machine-dependent), then the m machine problem is solv-
able in polynomial time (specifically, O(n3)). This time complexity was pushed
down to O(n log n) if in addition to job-independent processing times, it holds
that all weights are identical. Finally, Shabtay [20] show that the m machine
problem is solvable in O(mn2) time if there is a no-wait restriction, i.e., if jobs
are not allowed to wait between machines.

1.4 Research Objective
Our main research objective is to study the tractability of the hard variations
of the Fm||

∑
Jj∈E wj problem wrt. the number of different due dates, #d. In

Section 2 we provide some important properties of an optimal schedule. In Sec-
tion 3 we prove that the two-machine problem is W[1]-hard wrt. this parameter,
even if all processing times in the second machine are of unit size. We also prove
that the more general m-machine problem belongs to XP, for a parameterized
number of machines.

We further continue to consider combining the number #d of different due
dates (as a parameter) with two other parameters: the number of different
processing times on the first machine (#p1) and the number of different weights
(#w). In Section 4 we prove, for both of these combined cases, that the two-
machine problem is fixed-parameter tractable; and in Section 5 we prove that
the corresponding three-machine problem is W[1]-hard. A summary and future
research section concludes our paper (our results are also summarized in Table 1
below).

5

F2||
∑
Jj∈JIT wj F3||

∑
Jj∈JIT wj

#d XP (Theorem 2) XP (Corollary 1)

#d+ #w FPT (Theorem 4) W[1]-hard (Theorem 6)

#d+ #p1 FPT (Theorem 3) W[1]-hard (Theorem 5)

#d+ #p2 W[1]-hard (Theorem 1)

Table 1: Summary of our results. The number of different due dates is denoted

by #d, the number of different processing times in the first (second) machine is

denoted by #p1 (#p2), and the number of different weights is denoted by #w.

2 General Properties
Let σi be the processing order of the set of JIT jobs (i.e., the set E) on the
machine Mi, for i = 1, . . . ,m. A job schedule is called a permutation schedule if
σ1 = σ2 = . . . = σm. The following two lemmas are due to Choi and Yoon [6].

Lemma 1. There exists an optimal schedule for the Fm||
∑
Jj∈E wj problem in

which σ1 = σ2.

Lemma 2. In an optimal schedule for the Fm||
∑
Jj∈E wj problem, σm follows

the earliest due date (EDD) order.

It follows from Lemma 1 and Lemma 2 that there exists an optimal permu-
tation schedule for the F2||

∑
Jj∈E wj problem in which both σ1 and σ2 follow

the EDD rule. When m ≥ 3, however, the optimal schedule is not necessarily
a permutation schedule; indeed, Choi and Yoon [6] provide a counterexample
showing that there exists a set of instances for the F3||

∑
Jj∈E wj problem in

which the optimal permutation in M1 and M2 does not follow the EDD rule.
Let σi = (Jσi(1), Jσi(2), . . . , Jσi(n)). Then, the following lemma holds.

Lemma 3. There exists an optimal schedule in which jobs in machines
M1, . . . ,Mm−1 are scheduled as soon as possible, i.e., where job Jσi(j) starts
on Mi at the time which is the maximum between (i) the completion of job
Jσi(j−1) on Mi; and (ii) the completion of job Jσi(j) on Mi−1.

3 The Complexity of JIT Flow-Shop wrt. #d

In this section we consider the parameterized complexity of the JIT flow-shop
with respect to a single parameter, namely the number #d of different due dates.

3.1 The W[1]-Hardness of the Two-Machines Case
Consider the following definition of the kSUM problem.

6

p(1) p(2) w d
J11 x1 1 T + x1 T
...

...
...

...
...

J1h xh 1 T + xh T
...

...
...

...
...

Jk1 x1 1 T + x1 kT
...

...
...

...
...

Jkh xh 1 T + xh kT
Jkh+1 (k + 1)T −B 1 k2(T + 1)2 (k + 1)T + 1

Table 2: jobs created in the reduction described in the proof of Theorem 1.

Definition 4 (kSUM). Given a set of h integers X = {x1, . . . , xh}, an integer
k (1 ≤ k < h), and an integer B, determine whether there exists a set S ⊆ X
(possibly with repetitions) such that |S| = k and

∑
xi∈S xi = B.

It is known that the kSUM is W[1]-hard wrt. k (see [8]). Below we prove that
the F2||

∑
Jj∈E wj problem is W[1]-hard wrt. #d by providing a parameterized

reduction from the kSUM problem.

Theorem 1. The F2||
∑
Jj∈E wj problem is W[1]-hard when parameterized by

the number #d of different due dates even if all jobs have unit processing times
on the second machine.

Proof. Given an instance of kSUM we construct an instance for the decision
version of the F2||

∑
Jj∈E wj problem as follows. The set J includes n = kh+ 1

jobs. The first kh jobs are the union of k sets J1,J2,,Jk, where each set Ji
(i ∈ {1, . . . , k}) includes h jobs. Let Jij be the jth job in the set Ji. Moreover,
for any job Jij , let dij , wij , p

(1)
ij , and p(2)ij , be the due date, the weight, and the

processing times on machines M1 and M2, respectively.
For any job Jij , we set (i) dij = iT , where T =

∑
xi∈X xi; (ii) wij = T +xj ;

(iii) p(1)ij = xj ; and (iv) p(2)ij = 1. For job Jkh+1, we set (i) dkh+1 = (k+1)T +1;
(ii) wkh+1 = k2(T + 1)2; (iii) p(1)kh+1 = (k+ 1)T −B; and (iv) p(2)kh+1 = 1. In our
decision version of the Fm||

∑
Jj∈E wj problem we ask whether there is a feasible

schedule (partition) with
∑
Jj∈E wj ≥ kT + B + k2(T + 1)2. This finishes the

description of the polynomial-time reduction (a tabular representation of jobs
created by the reduction is given in Table 2).

Below we argue for the correctness of the reduction. We begin by notic-
ing that, since all jobs in the set Ji (i = 1, . . . , k) share the same due date,
namely iT , it follows that, in any feasible schedule, at most one of them can be
scheduled in a JIT mode.

Therefore, it holds that
|E| ≤ k + 1. (1)

7

Let us now prove that, if we have a yes-instance for the kSUM, then there ex-
ists a feasible schedule for the constructed instance of the F2||

∑
Jj∈E wj problem

with
∑
Jj∈E wj ≥ kT +B+k2(T + 1)2. The fact that we have a yes-instance to

kSUM implies that there exists a subset of k elements S = {x[1], x[2], . . . , x[k]} ⊆
X such that

∑k
j=1 x[j] = B, where [j] is the index of the jth element in S.

We then construct the following feasible schedule for the constructed instance
of our scheduling problem. We set E = {J1[1], J2[2], . . . , Jk[k]} ∪ {Jkh+1} and
T = J \E. For i = 1, . . . , k, we then schedule job Ji[i] during the time in-
terval (

∑i−1
j=1 x[j],

∑i
j=1 x[j]] on M1, and during the time interval (iT − 1, iT]

on M2 (since
∑k
j=1 x[j] = B < T , it follows that there is no overlap between

the processing operations of the same job on both machines). Moreover, we
schedule job Jkh+1 during the time interval (B, (k + 1)T] on M1 (which is just
after the completion of job Jk[k] on that machine) and during the time inter-
val ((k + 1)T, (k + 1)T + 1] on M2. The constructed schedule is illustrated in
Figure 1. Since there is no overlap between the processing operations and all
jobs in the set E, and these jobs are scheduled in a JIT mode, we have that the
schedule is feasible; further, it follows that

∑
Jj∈E

wj =

k∑
i=1

(T + x[i]) + k2(T + 1)2 = kT +B + k2(T + 1)2; (2)

thus, the constructed instance of our scheduling problem is a yes-instance.
Now we prove that, if we have a no-instance for the kSUM, then a feasi-

ble schedule for the constructed instance of the F2||
∑
Jj∈E wj problem with∑

Jj∈E wj ≥ kT +B+T 2(k+1)2 does not exist. By contradiction, assume that
a feasible partition (schedule) τ = E ∪T with

∑
Jj∈E wj ≥ kT +B+T 2(k+ 1)2

exists. The fact that at most a single job from each Ji can be scheduled
in a JIT mode in any feasible schedule implies that the total weight of the
subset of JIT jobs among all jobs in ∪ki=1Ji is at most kT + T = T (k +
1). Therefore, Jkh+1 is included in set the E (as otherwise, we have that∑
Jj∈E wj ≤ T (k + 1) < kT + B + T 2(k + 1)2, contradicting our assump-

tion that
∑
Jj∈E wj ≥ kT + B + T 2(k + 1)2). Let E′ = E \ {Jkh+1}. Since∑

Jj∈E wj ≥ kT +B + T 2(k + 1)2 and Jkh+1 ∈ E, we conclude that∑
Jj∈E′

wj =
∑
Jj∈E

wj − wkh+1 ≥ kT +B. (3)

Let us now prove that |E′| = k. The fact that |E′| ≤ k follows from eq. (1)
above and the fact that |E′| = |E|−1. Consider now a JIT set E′ with |E′| < k.
Then, we have that∑

Jij∈E′
wij =

∑
Jij∈E′

(T + xj) = |E′|T +
∑

Jij∈E′
xj ≤ (k − 1)T + T ≤ kT, (4)

8

Figure 1: An optimal schedule for a reduced instance as described in Theorem 1,
for k = 3.

which contradicts the relation in eq. (3). Thus, |E′| = k. Based on eq. (3), we
can now conclude that ∑

Jij∈E′
xj ≥ B. (5)

The fact that Jkh+1 ∈ E implies that this job is scheduled during the time
interval ((k + 1)T, (k + 1)T + 1] on M2, which in turn implies that it starts not
later than in time point B on M1. The fact that p(1)kh+1 = (k + 1)T − B ≥ kT
and that any job in E′ has a due date which is not greater than kT implies that
all jobs in E′ shall be scheduled prior to job Jkh+1 on M1. Thus, we have that∑

Jij∈E′
p1j =

∑
Jij∈E′

xj ≤ B. (6)

Based on eq. (5) and eq. (6) we conclude that
∑
Jj∈E′ xj = B; this means

that, by setting S = {xj |Jij ∈ E′}, we can obtain a solution for the kSUM with
|S| = k and

∑
xi∈S xi = B.

3.2 An XP Algorithm for a Parameterized Number of Ma-
chines

In this subsection we prove that the hardness result proven in Theorem 1 is
tight, by providing an XP algorithm for the Fm||

∑
Jj∈E wj problem. We start

by providing an XP algorithm for m = 3 and then show how we can extend the
result for a parameterized number of machines.

To do so, let us denote (without loss of generality) the different due dates
by d1, . . . , d#d, such that d1 < d2 < . . . < d#d. Moreover, we say that job Jj is
of type i if its due date is di, for i = 1, . . . ,#d.

Importantly, the fact that all jobs of the same type share the same due date
implies that at most one of them can be scheduled in a JIT mode.

9

Let Ω be a set that includes all subsets of jobs sharing the property that
each ω ∈ Ω includes at most #d jobs each of which is of a different type. Note
that (i) the set of feasible JIT jobs is an element of Ω; and (ii) | Ω |= O(n#d).

Consider a specific subset of jobs ω ∈ Ω. Next, we explain how we can
determine, in XP time, whether there exists a feasible schedule where all jobs
in ω are scheduled in a JIT mode. Given a set ω, we renumber jobs in the set
ω = {J1, J2, . . . , Jd′} such that d1 < d2 < . . . < dd′ (d′ ≤ #d). We first check
if the condition that dj−1 + p

(3)
j ≤ dj holds for j = 1, . . . , d′, where d0 = 0 by

definition. If not, then there is no feasible schedule with E = ω. Otherwise,
based on Lemma 1, we have that there are d′! possible permutations to schedule
jobs in ω on machines M1 and M2 (as according to this lemma there exists an
optimal schedule where the permutation on the first two machines is identical).
For each such possible permutation σ, we schedule jobs onM1 andM2 according
to Lemma 3, and therefore obtain (in linear time) the completion time C(2)

j of
each job Jj on M2.

Finally, we check if job Jj is indeed ready to be scheduled during the time
interval (dj − p(3)j , dj] on M3 for j = 1, . . . , n; that is, if C(2)

j ≤ dj − p(3)j , for
j = 1, . . . , n. If this last condition holds, then there is a feasible schedule with
E = ω. By checking, in a similar fashion, the feasibility of each subset in Ω, we
can find (in XP time) an optimum schedule. To summarize the above discussion,
we can use Algorithm 1 below to solve the F3||

∑
Jj∈E wj problem in XP time

wrt. #d.

Theorem 2. The F3||
∑
Jj∈E wj problem is solvable in O(n#d+1#d!) time, and

thus belongs to XP wrt. the parameter #d.

Proof. The fact that Algorithm 1 solves the F3||
∑
Jj∈E wj problem follows from

the discussion that precedes the algorithm description. Step 1 requires O(n#d)
time, as is the number of times we perform Step 2. The fact that the most
time consuming step within Step 2 of Algorithm 1 is Step 2.4, which requires
O(n#d!) time, completes our proof.

We note that the result in Theorem 2 can be extended to show that the
more general Fm||

∑
Jj∈E wj problem is solvable in XP time for any fixed m

value. The only change required in Algorithm 1 is in Step 2.3 where we need
to enumerate not only all possible permutations on the first two machine, but
also the permutations on machines M3,M4, . . . ,Mm−1 (recall that according to
Lemma 1 and Lemma 2 there exists an optimal schedule in which job permu-
tations on the first two machines are identical; further, in an optimal schedule
job permutation on the last machine follows the EDD rule). We conclude as
follows.

Corollary 1. The Fm||
∑
Jj∈E wj problem is solvable in O(n#d+1(#d!)m−2)

time, and thus, when m is fixed, belongs to XP wrt. the number #d of different
due dates.

10

Algorithm 1: An XP algorithm for the F3||
∑
Jj∈E wj problem wrt. #d.

Initialization:

Set Opt = 0, d0 = 0, and E∗ = ω∗ = ∅.
Step 1:

Construct a set Ω, which includes all possible subsets of jobs that are of

different types.

Step 2:

while Ω 6= ∅ do
Step 2.1:

Select a specific set ω ∈ Ω, and set Ω = Ω \ ω.
Renumber jobs in ω = {J1, J2, . . . , Jd′} such that d1 < d2 < . . . < dd′ .

If
∑
Jj∈ω wj ≤ Opt return to Step 2.

Step 2.2:

for j = 1 to d′ do

if dj−1 + p
(3)
j > dj then

return to Step 2.

Step 2.3:

Construct a set Σ which includes all possible permutations of the d′

jobs in ω.

Step 2.4:

while Σ 6= ∅ do
Select a specific permutation σ ∈ Σ, and set Σ = Σ \ σ.
Step 2.4.1:

Define J[j] as the j’th job in σ, and set C(1)
[0] = C

(2)
[0] = 0.

Step 2.4.2:

for j = 1 to d′ do
Set C(1)

[j] = C
(1)
[j−1] + p

(1)
[j] and C(2)

[j] = max{C(2)
[j−1], C

(1)
[j] }+ p

(2)
[j] .

if C(2)
j > dj − p(3)j then

return to Step 2.4.

Step 2.4.3:

Set Opt =
∑
Jj∈ω wj , E

∗ = ω, and σ∗ = σ. Goto Step 2.

Output:

The optimal set of on-time jobs is E∗. Schedule jobs in E∗ on M1 and M2

according to Lemma 3 with permutation σ = σ∗. Moreover, schedule

each job Jj ∈ E∗ on M3 during the time interval (dj − p(3)j , dj].

11

4 Two-Machines JIT Flow-Shop wrt. Combined
Parameters

Theorem 1 shows the (fixed-parameter) intractability of the F2||
∑
Jj∈E wj prob-

lem when we combine #d with the number of different processing times on the
second machine (#p(2)). Below, we analyze the tractability of the F2||

∑
Jj∈E wj

problem when we combine #d with either the number of different processing
times on the first machine (#p(1)) or with the number of different weights (#w).

Since we focus on the two machine case, according to Lemmas 1 and 2, there
exists an optimal schedule with all jobs in the set E being scheduled according
to the EDD rule on both machines. Suppose that all n jobs are numbered
according to the EDD rule such that d1 ≤ d2 ≤ . . . ≤ dn. Moreover, consider
two subschedules S1 and S2 defined on a subset of the first j jobs, with a
corresponding feasible JIT sets E1 and E2, respectively. Then the following
lemma holds (see Shabtay [20]).

Lemma 4. Subschedule S2 is dominated by subschedule S1 if the following
two conditions holds: (i)

∑
Jj∈E1

wj ≥
∑
Jj∈E2

wj; and (ii)
∑
Jj∈E1

p
(1)
j ≤∑

j∈E2
p
(1)
j .

4.1 FPT for the Two-Machine Case wrt. #d+#p(1)

In this subsection, we say that two jobs Ji and Jj are of the same type if
both di = dj and p

(1)
i = p

(1)
j . Let k be the number of different job types

(k ≤ #d ·#p(1)). Note that (i) at most one job of each type can be scheduled
in a JIT mode; and (ii) jobs of the same type are differentiated by their weight
and by their processing time on the second machine.

Given an instance for the F2||
∑
Jj∈E wj problem, we partition the set J

into subsets of job types J1,J2, . . . ,Jk, where all jobs in Ji (i = 1, . . . , k) have
the same due date, di, and the same processing time on M1, p

(1)
i . Now, let Jij

be the jth job in Ji. Given a job schedule, we say that job set (type) Ji is a JIT
job set if one of jobs in Ji is scheduled in a JIT mode. Accordingly, a subset
of job types is considered to be a feasible subset of job types if there exists a
feasible schedule which includes a single job of each of these types in the set of
JIT jobs (set E).

Let Ω be a set that includes all possible (feasible or not) subsets of job types
having different due dates. Note that (i) the sets of all feasible subsets of job
types is a subset of Ω; and (ii) | Ω |= O(2k).

Consider now a specific subset of job sets ω ∈ Ω. Below we explain how we
can determine, in polynomial time, the best feasible schedule (if such exists) out
of all feasible schedules sharing the common property that all job sets in ω are
JIT job sets.

Given a set ω, we renumber job sets in ω such that d1 < d2 < . . . < dk′

(k′ ≤ k). Consider now a feasible non-denominated subschedule S defined on
job sets J1,J2, . . . ,Jl−1 (l−1 < k′). By definition, we have that the completion

12

time of subschedule S is (i)
∑l−1
i=1 p

(1)
i on M1; and (ii) dl−1 on M2. Consider

now the extension of S to a subschedule on the extended set that includes also
Jl. In such an extension, job Jlj ∈ Jl is a nominee to be assigned to the set
E only if max{

∑l
i=1 p

(1)
i , dl−1} + p

(2)
lj ≤ dl. Let N(l) be the set of all jobs of

type l that are nominees to be assigned to the set E. If N(l) = ∅, then we
have no feasible solution with all job types in ω being JIT. Otherwise, based on
Lemma 4, we have that it is optimal to assign to the set E job with the smallest
processing time on M1 among all jobs in N(l). Based on this observation and
the above analysis, we can use Algorithm 2 below to solve the F2||

∑
Jj∈E wj

problem with respect to the combined parameter #d+ #p(1).

Theorem 3. Algorithm 2 solves the F2||
∑
Jj∈JIT wj problem in O(n2k) time,

where k = #d ·#p(1). Thus, the problem is fixed-parameter tractable when pa-
rameterized by combining the number #d of different due dates with the number
#p(1) of different processing times on the first machine.

Proof. The fact that Algorithm 2 solves the F2||
∑
Jj∈E wj problem follows from

the discussion that precedes the algorithm description. Step 1 assigns jobs to
the different job sets (types) and requires a linear time. In Step 2 we construct a
set Ω which includes all possible subsets of job types having different due dates;
this step requires O(2k) time (as |Ω| = O(2k)). In Step 3, for each ω ∈ Ω, our
algorithm finds the best feasible schedule (if such exists) out of all schedules
where all job sets in ω are JIT job sets. The fact that |Ω| = O(2k) and that the
most time consuming operation within Step 3 is Step 3.2, which requires O(n)
time, completes our proof.

4.2 FPT for the Two-Machine Case wrt. #d+#w

In this subsection we present an algorithm, following a similar approach to that
used in subsection 4.1, which is a fixed-parameter algorithm for the case where
we combine the two parameters #d and #w. Here we say that two jobs Ji and
Jj are of the same type if both di = dj and wi = wj . Let k be the number of
different job types (k ≤ #d ·#w).

Given an instance for the F2||
∑
Jj∈E wj problem, we partition the set J

into subsets of job types J1,J2, . . . ,Jk, where all jobs in Ji (i = 1, . . . , k) have
the same due date, di, and the same weight, wi. Now, let Jij be the jth job in
Ji. Given a job schedule, we say that job set (type) Ji is a JIT job set if one of
jobs in Ji is scheduled in a JIT mode. Accordingly, a subset of job sets (types)
is considered to be a feasible subset of job sets if there exists a feasible schedule
which includes a single job of each of these sets in the set of JIT jobs (i.e., the
set E).

Now, let Ω be a set that includes all possible (feasible or not) subsets of job
types having different due dates. Note that (i) the sets of all feasible subsets of
job types is a subset of Ω; and (ii) | Ω |= O(2k). Consider a specific subset of
job sets ω ∈ Ω. Below we explain how we can determine, in polynomial time,

13

Algorithm 2: A fixed-parameter algorithm for the F2||
∑
Jj∈E wj problem

wrt. #d+#p(1).
Initialization:

Set Opt = 0, d0 = 0, and E∗ = ∅.
Step 1:

Partition the set J into subsets of job types J1,J2, . . . ,Jk, where all jobs

in Ji have the same due date, di, and the same processing time on M1,

p
(1)
i .

Step 2:

Construct a set Ω, which includes all possible subsets of job types having

different due dates.

Step 3:

while Ω 6= ∅ do
Step 3.1:

Select a specific set ω ∈ Ω. Set Ω = Ω \ ω.
Let k′ be the number of job sets in ω.

Renumber job sets in ω such that d1 < d2 < . . . < dk′ .

Set V (ω) = 0 and E(ω) = ∅.
Step 3.2:

Set P1 = 0

for i = 1 to k′ do
Set P1 = P1 + p

(1)
i .

Set N(i) = {Jij ∈ Ji | max{P1, di−1}+ p
(2)
ij ≤ di}.

If N(i) = ∅ return to Step 3.

Set j∗ = arg max{wij |Jij ∈ N(i)}.
Set E(ω) = E(ω)

⋃
{Jij∗}; and V (ω) = V (ω) + wij∗ .

Step 3.3:

if V (ω) > Opt then
Set Opt = V (ω) and E∗ = E(ω).

Goto Step 2.
Output:

The optimal set of on-time jobs is E∗. Schedule jobs in E∗ on M1 one

after the other with no delays, and on M2 during the time interval

(dj − p(2)j , dj].

14

the best feasible schedule (if such exists) out of all the feasible schedules sharing
the common property that all job sets in ω are JIT job sets.

Given a set ω, we renumber job types in ω such that d1 < d2 < . . . < dk′

(k′ ≤ k). Consider now a feasible non-denominated subschedule S defined on job
sets J1,J2, . . . ,Jl−1 (l−1 < k′). By definition, we have that (i) the completion
time of the subschedule S on M2 is at time dl−1; and (ii) the total weight of
the JIT jobs in S is

∑l−1
i=1 wi. Now, let P (1)(S) be the completion time of the

subschedule S on M1, and consider the extension of S to a subschedule on the
extended set of job types that includes also Jl. In such an extension, job Jlj ∈ Jl
is a nominee to be assigned to the set E only if max{P (1)(S)+p

(1)
lj , dl−1}+p

(2)
lj ≤

dl. Let N(l) be the set of all jobs of type l that are nominees to be assigned to
the set E. If N(l) = ∅, then we have no feasible solution with all job sets in ω
being JIT. Otherwise, based on Lemma 4, it follows that it is optimal to assign
to the set E job with the smallest processing time on M1 among all jobs in
N(l). Based on this observation and the above analysis, we present Algorithm 3
to solve the F2||

∑
Jj∈E wj problem with respect to the combined parameter

#d+#w.

Theorem 4. Algorithm 3 solves the F2||
∑
Jj∈JIT wj problem in O(n2k) time,

where k = d#d · #w. Thus, the problem is fixed-parameter tractable when pa-
rameterized by combining the number #d of different due dates with the number
#w of different weights.

Proof. The fact that Algorithm 3 solves the F2||
∑
Jj∈E wj problem follows the

discussion that precedes the algorithm description. Step 1 assigns jobs to the
different job sets and requires a linear time. In Step 2 we construct a set Ω
that includes all possible subsets of job types having different due dates; this
step requires O(2k) time. In Step 3, for each ω ∈ Ω, our algorithm finds the
best feasible schedule (if such exists) out of all schedules where all job sets in ω
are JIT job sets. The fact that |Ω| = O(2k) and that the most time consuming
operation within Step 3 is Step 3.2, which requires O(n) time, completes our
proof.

5 Three-Machines JIT Flow-Shop wrt. Combined
Parameters

In Section 4 we prove that the two-machine problem is FPT with respect to
both #d+#p(1) and #d+#w. Next we show that these two cases become W[1]-
hard when we consider JIT flow-shop scheduling on three machines. Specifically,
the parameterized intractability of the F3||

∑
Jj∈E wj problem with respect to

#d+#p(1) will be proven using the following lemma.

Lemma 5. The F3||
∑
Jj∈E wj problem with unit processing times on the M1

reduces to the F2||
∑
Jj∈E wj problem.

15

Algorithm 3: A fixed-parameter algorithm for the F2||
∑
Jj∈E wj problem

wrt. #d+ #w.
Initialization:

Set Opt = 0, d0 = 0, and E∗ = ∅.
Step 1:

Partition the set J into subsets of job types J1,J2, . . . ,Jk, where all jobs

in Ji have the same due date, di, and the same weight, wi.

Step 2:

Construct a set Ω, which includes all possible subsets of job types having

different due dates.

Step 3:

while Ω 6= ∅ do
Step 3.1:

Select a specific set ω ∈ Ω. Set Ω = Ω \ ω.
Let k′ be the number of job sets in ω.

Renumber job sets in ω such that d1 < d2 < . . . < dk′ .

Set V (ω) = 0 and E(ω) = ∅.
Step 3.2:

Set P1 = 0

for i = 1 to k′ do
Set N(i) = {Jij ∈ Ji | max{P1 + p

(1)
ij , di−1}+ p

(2)
ij ≤ di}.

If N(i) = ∅ return to Step 3.

Set j∗ = arg min{p(1)ij |Jij ∈ N(i)}.
Set E(ω) = E(ω)

⋃
{Jij∗}; P1 = P1 + Jij∗ ; and

V (ω) = V (ω) + wij∗ .
Step 3.3:

if V (ω) > Opt then
Set Opt = V (ω) and E∗ = E(ω).

Goto Step 2.
Output:

The optimal set of on-time jobs is E∗. Schedule jobs in E∗ on M1 one

after the other with no delays, and on M2 during the time interval

(dj − p(2)j , dj].

16

Proof. Given an instance I = {n, p(1)j , p
(2)
j , wj , dj} for the F2||

∑
Jj∈E wj prob-

lem, we construct the following instance Ī = {n̄, p̄(1)j , p̄
(2)
j , p̄

(3)
j , w̄j , d̄j} for the

F3||
∑
Jj∈E wj problem. We set n̄ = n. Moreover, for j = 1, . . . , n̄, we set (i)

p̄
(1)
j = 1; (ii) p̄(2)j = p

(1)
j ; (iii) p̄(3)j = p

(2)
j ; (iv) w̄j = wj ; and (v) d̄j = dj + 1.

Then, it follows that that there exists a feasible schedule for the constructed
instance of the F3||

∑
j∈E wj problem with all jobs in the set E being sched-

uled in a JIT mode; iff the same set of jobs is a feasible set of jobs for the
corresponding instance of the F2||

∑
Jj∈E wj problem.

We conclude the following, based on Theorem 1 and on Lemma 5.

Theorem 5. The F3||
∑
Jj∈E wj problem is W[1]-hard when parameterized by

#d+#p(1) even if all jobs have unit processing times on M3.

The next theorem shows that the F3||
∑
Jj∈E wj problem is W[1]-hard as

well when we combine #d and #w.

Theorem 6. The F3||
∑
Jj∈E wj problem is W[1]-hard when parameterized by

#d+#w.

Proof. We prove that the F3||
∑
Jj∈E wj problem is W[1]-hard with respect to

#d+#w by providing a polynomial reduction from the kSUM problem (see
Definition 4). Given an instance of kSUM we construct an instance for the
decision version of the F3||

∑
Jj∈E wj problem as follows. The set J includes

n = kh+ 2 jobs. The first kh jobs are the union of k sets J1,J2, . . . ,Jk, where
each set Ji (i ∈ {1, . . . , k}) includes h jobs. Let Jij be the jth job in the set
Ji. Moreover, for any job Jij , let dij , wij , p

(1)
ij , and p(2)ij , be the due date, the

weight, and the processing times on machines M1 and M2, respectively.
For any job Jij , we set (i) dij = kT + i + 1, where T =

∑
xi∈X xi; (ii)

wij = T ; (iii) p(1)ij = xj ; (iv) p
(2)
ij = T − xj ; and (v) p(3)ij = 1. For job Jkh+1, we

set (i) dkh+1 = B+2; (ii) wkh+1 = k2(T+1)2; (iii) p(1)kh+1 = p
(3)
kh+1 = 1; and (iv)

p
(2)
kh+1 = B. For job Jkh+2, we set (i) dkh+2 = 2kT +2; (ii) wkh+2 = k2(T + 1)2;

(iii) p(1)kh+2 = kT − B; (iv) p(2)kh+2 = kT ; and (v) p(3)kh+2 = 1. In our decision
version of the Fm||

∑
Jj∈E wj problem we ask whether there is a feasible schedule

(partition) with
∑
Jj∈E wj ≥ kT + 2k2(T + 1)2. This finishes the description of

the polynomial-time reduction (a tabular representation of jobs created by the
reduction is given in Table 3).

Notice that, since all jobs in Ji (i = 1, . . . , k) share the same due date of
kT + i+ 1, it follows that, in any feasible schedule, at most one of them can be
scheduled in a JIT mode. Therefore, we have that

|E| ≤ k + 2. (7)

Let us begin by proving that, if we have a yes-instance for the kSUM, then
there exists a feasible schedule for the constructed instance of the F3||

∑
Jj∈E wj

17

p(1) p(2) p(3) w d
J11 x1 T − x1 1 T kT + 2
...

...
...

...
...

...
J1h xh T − xh 1 T kT + 2
...

...
...

...
...

...
Jk1 x1 T − x1 1 T kT + k + 1
...

...
...

...
...

...
Jkh xh T − xh 1 T kT + k + 1
Jkh+1 1 B 1 k2(T + 1)2 B + 2
Jkh+2 kT −B kT 1 k2(T + 1)2 2kT + 2

Table 3: jobs created in the reduction described in the proof of Theorem 6.

problem with
∑
Jj∈E wj ≥ kT + 2k2(T + 1)2. The fact that we have a yes-

instance to kSUM implies that there exists a subset of k elements,
S = {x[1], x[2], . . . , x[k]} ⊆ X, such that

∑k
j=1 x[j] = B, where [j] is the in-

dex of the jth element in S.
We construct the following schedule for the constructed instance of our

scheduling problem. We set E = {J1[1], J2[2], . . . , Jk[k]}∪{Jkh+1}∪{Jkh+2} and
T = J \E. Moreover, we maintain the same processing order on the entire set
of machines; specifically, σ1 = σ2 = σ3 = {Jkh+1, J1[1], J2[2], . . . , Jk[k], Jkh+2}.
Following this processing order, we schedule job Jkh+1 during the time interval
(0, 1] on M1; during the time interval (1, B + 1] on M2; and during the time
interval (B+1, B+2] onM3. Then, for i = 1, . . . , k, we schedule job Ji[i] during
the time interval (1 +

∑i−1
j=1 x[j], 1 +

∑i
j=1 x[j]] on M1; during the time interval

(B+1+(i−1)T −
∑i−1
j=1 x[j], B+1+ iT −

∑i
j=1 x[j]] onM2; and during the time

interval (kT + i, kT + i + 1] on M3. Finally, we schedule job Jkh+2 during the
time interval (B + 1, kT + 1] on M1; during the time interval (kT + 1, 2kT + 1]
on M2; and during the time interval (2kT + 1, 2kT + 2] on M3. The constructed
schedule is illustrated in Figure 2.

We next prove that the constructed schedule is feasible (with all jobs in the
set E being scheduled in a JIT mode). To this end, we shall prove that (a) there
is no overlap between processing operations on each one of the three machines;
and (b) there is no overlap between processing operations of each of jobs on the
different machines.

Let us first prove (a). The fact that job J1[1] starts its processing on M1

right after the completion of job Jkh+1 at time 1; that job Ji+1[i+1] starts its
processing on M1 right after the completion of job Ji[i] at time 1 +

∑i
j=1 x[j]

for i = 1, . . . , k − 1; and that job Jkh+2 starts its processing on M1 right after
the completion of job Jk[k] at time 1 +

∑k
j=1 x[k] = 1 + B, implies that there

is no overlap of processing operations on M1. The fact that job J1[1] starts its
processing onM2 right after the completion of job Jkh+1 at time B+1; that job
Ji+1[i+1] starts its processing onM2 right after the completion of job Ji[i] at time

18

Figure 2: An optimal schedule for a reduced instance, as described in Theorem 6,
for k = 3.

B+1+iT−
∑i
j=1 x[j] for i = 1, . . . , k−1; and that job Jkh+2 starts its processing

on M2 right after the completion of job Jk[k] at time B + 1 + kT −
∑k
j=1 x[k] =

kT + 1, implies that there is no overlap of processing operations on M2. Then,
the fact that there is no overlap between processing operations on M3 follows
from the fact that (i) the start time of J1[1] onM3 is at time kT +1 which is not
earlier than the completion time of Jkh+1 on M3 at time B+ 2 (as T > B); (ii)
job Ji+1[i+1] starts its processing on M3 right after the completion of job Ji[i]
at time Tk + i+ 1 for i = 1, . . . , k − 1; and (iii) job Jkh+2 starts its processing
on M3 at time 2kT + 1 which is later than the completion time of Jk[k] on M3

at time kT + k + 1 (as T > k).
We move on to prove (b). This claim follows from the fact that (i) the

processing of job Jkh+1 starts at Mi exactly after its completion on Mi−1 for
i = 2, 3; (ii) the processing of each of job in the set {J1[1], J2[2], . . . , Jk[k]} starts
at Mi only after the entire set is completed on Mi−1 for i = 2, 3; and (iii) the
processing of job Jkh+2 starts at Mi exactly after its completion on Mi−1 for
i = 2, 3.

The fact that the schedule is feasible and and all jobs in the set E are
completed in a JIT mode implies that

∑
Jj∈E

wj =

k∑
j=1

wj[j] + wkh+1 + wkh+2 = kT + 2k2(T + 1)2; (8)

thus, we have a yes answer for the constructed scheduling instance.
Now we prove that, if we have a no-instance for the kSUM, then a feasi-

ble schedule for the constructed instance of the F3||
∑
Jj∈E wj problem with

19

∑
Jj∈E wj ≥ kT + 2k2(T + 1)2 does not exist. By contradiction, assume that a

feasible partition (schedule) τ = E ∪ T with
∑
Jj∈E wj ≥ kT + 2k2(T + 1)2

exists. The fact that at most a single job from each Ji can be scheduled
in a JIT mode in any feasible schedule implies that the total weight of the
subset of JIT jobs among all jobs in ∪ki=1Ji is at most kT . Therefore, both
Jkh+1 and Jkh+2 are included in the set E (as otherwise, we would have that∑
Jj∈E wj ≤ kT +k2(T +1)2 < kT +2k2(T +1)2, contradicting our assumption

that
∑
Jj∈E wj ≥ kT + 2k2(T + 1)2).

Let E′ = E \ {Jkh+1, Jkh+2}. Since
∑
Jj∈E wj ≥ kT + 2k2(T + 1)2 and

{Jkh+1, Jkh+2} ∈ E, we conclude that∑
Jj∈E′

wj =
∑
Jj∈E

wj − wkh+1 − wkh+2 ≥ kT. (9)

Based on eq. (7), eq. (9), and the fact that |E′| = |E− 2|, we conclude that
|E′| = k.

The fact that Jkh+1 ∈ E implies that it has to be scheduled during the time
interval (0, 1] on M1; during the time interval (1, B + 1] on M2; and during
the time interval (B + 1, B + 2] on M3. Next we prove that all the k jobs in
E′ shall be scheduled before Jkh+2 on (i) M2 and (ii) M1. Let us first prove
(i). By contradiction, assume that one of jobs in E′ (say job Jij) is scheduled
after Jkh+2 on M2. The fact that we have to schedule Jkh+1 during the time
interval (1, B + 1] on M2 and that p(2)kh+2 = kT implies that job Jij will start
its processing on M2 not earlier than on time kT + B + 1, and thus will be
completed later than its due date on M3, contradicting its containment in E′.
Let us now prove (ii). By contradiction, assume that one of jobs in E′ (say job
Jij) is scheduled after Jkh+2 on M1. The fact that we have to schedule Jkh+1

during the time interval (0, 1] on M1 and that p(1)kh+2 = kT −B implies that job
Jij will complete its processing on M1 not earlier than on time kT −B+xi + 1,
and thus will be completed on M2 not earlier than on time (k + 1)T − B + 1.
Due to (i) above, this further implies that Jkh+2 will be completed on M2 not
earlier than at time (2k + 1)T − B + 1 and on M3 not earlier than at time
(2k + 1)T − B + 2 > 2kT + 2 = dkh+2, contradicting the fact that Jkh+2 is an
early job.

The fact that Jkh+2 ∈ E implies that Jkh+2 has to start not later than
on time B + 1 on M1 and not later than on time kT + 1 on M2. Based on
(i), we conclude that the start time of Jkh+2 on M2 is not earlier than at time
p
(1)
kh+1+

∑
Jij∈E′ p

(1)
ij = 1+

∑
Jij∈E′ xi. Therefore, we have that 1+

∑
Jij∈E′ xi ≤

B + 1, i.e., that
∑
Jij∈E′ xi ≤ B. Based on (i) and (ii), we also have that the

start time of Jkh+2 onM1 is not earlier than at time p(1)kh+1+max{
∑
Jij∈E′ p

(1)
ij +

p
(1)
kh+2, p

(2)
kh+1 +

∑
Jij∈E′ p

(2)
ij } = 1 + kT + max{

∑
Jij∈E′ xi−B,B−

∑
Jij∈E′ xi}.

Therefore, we have that 1+kT+max{
∑
Jij∈E′ xi−B,B−

∑
Jij∈E′ xi} ≤ kT+1,

which implies that
∑
Jij∈E′ xi = B. Thus, by setting S = {xj |Jij ∈ E′}, we can

obtain a solution for the kSUM with |S| = k and
∑
xi∈S xi = B.

20

6 Summary and Future Research
In this paper we provide a parameterized analysis of the NP-hard JIT flow-shop
scheduling problem on two and three machines. The main parameter being
studied is the number of different due dates. We prove that the problem is
intractable in the parameterized sense, even when the scheduling is done on two
machines, and belongs to XP when the scheduling is done on any fixed number
of m ≥ 2 machines.

Then, we show that, when combining the number of different due dates
with either the number of different processing times on the first machine, or
the number of different weights, the problem becomes fixed-parameter tractable
when the scheduling is done on two machines. It remains W[1]-hard, however,
when the scheduling is done on three machines (our results are summarized in
Table 1).

One immediate direction for future research is to focus on other parameters,
and to study the parameterized complexity of the JIT flow-shop problem with
respect to those parameters. Finally, one can move to other machine environ-
ments such as unrelated machines, job-shop, and open-shop.

Acknowledgments
This research was partially supported by Grant No. 2016049 from the United
States-Israel Binational Science Foundation (BSF).

References
[1] E.M. Arkin and E.L. Silverberg. Scheduling jobs with fixed start and finish

times. Discrete Applied Mathematics, 18:1–8, 1987.

[2] K.R. Baker and G.D. Scudder. Sequencing with earliness and tardiness
penalties: A review. Operations Research, 38:22–36, 1990.

[3] H.L. Bodlaender and M.R. Fellows. W[2]-hardness of precedence con-
strained k-processor scheduling. Operations Research Letters, 18(2):93–97,
1995.

[4] M.C. Carlisle and E.L. Lloyd. On the k-coloring of intervals. Discrete
Applied Mathematics, 59:225–235, 1995.

[5] O. Čepek and S.C. Sung. A quadratic time algorithm to maximize the
number of just-in-time jobs on identical parallel machines. Computers and
Operations Research, 32:3265–3271, 2005.

[6] B.C. Choi and S.J. Yoon. Maximizing the weighted number of just-in-time
jobs in flow-shop scheduling. Journal of Scheduling, 10:237–243, 2007.

21

[7] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
and M. Pilipczuk. Parameterized Algorithms. Springer, 2015.

[8] R.G. Downey and M.R. Fellows. Fixed-parameter intractability. In Proceed-
ings of the 7th Annual Structure in Complexity Theory Conference (COCO
’92), pages 36–49, 1992.

[9] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.

[10] A. Elalouf, E. Levner, and H. Tang. An improved FPTAS for maximiz-
ing the weighted number of just-in-time jobs in a two-machine flow shop
problem. Journal of Scheduling, 16(4):429–435, 2013.

[11] M.R. Fellows and C. McCartin. On the parametric complexity of schedules
to minimize tardy tasks. Theoretical Computer Science, 298(2):317–324,
2003.

[12] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 1998.

[13] R.R. Fullerton and C.S. McWatters. The production performance benefits
from JIT implementation. Journal of Operations Management, 29:81–96,
2001.

[14] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.R Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics, 3:287–326, 1979.

[15] D. Hermelin, J.M. Kubitza, D. Shabtay, N. Talmon, and G. Woeginger.
Scheduling two competing agents when one agent has significantly fewer
jobs. In Proceedings of the 10th International Symposium on Parameterized
and Exact Computation (IPEC ’15), 2015.

[16] C.T. Kovalyov, M.Y. Ng and T.C.E. Cheng. Fixed interval scheduling:
Models, applications, computational complexity and algorithms. European
Journal of Operational Research, 178:331–342, 2007.

[17] A.Y. Lann and G. Mosheiov. Fixed interval scheduling: Models, applica-
tions, computational complexity and algorithms. Computers and Opera-
tions Research, 23:765–781, 1996.

[18] M. Mnich and A. Wiese. Scheduling meets fixed-parameter tractability.
Mathematical Programming, 154(1):533–562, 2015.

[19] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
ity Press, 2006.

[20] D. Shabtay. The just-in-time scheduling problem in a flow-shop scheduling
system. European Journal of Operational Research, 216(3):521–532, 2012.

22

[21] D. Shabtay and Y. Bensoussan. Maximizing the weighted number of just-in-
time jobs in several two-machine scheduling systems. Journal of Scheduling,
15(1):39–47, 2012.

[22] D. Shabtay and G. Steiner. Scheduling to Maximize the Number of Just-In-
Time Jobs: A Survey. In Just-In-Time Systems (R.Z. Rios-Mercado, Y.A.
Rios-Solis, Eds.). Springer, 2012.

[23] R. van Bevern, M. Mnich, R. Niedermeier, and M. Weller. Interval schedul-
ing and colorful independent sets. Journal of Scheduling, 18(5):449–469,
2015.

[24] R. van Bevern, R. Niedermeier, and O. Suchý. A parameterized com-
plexity view on non-preemptively scheduling interval-constrained jobs: few
machines, small looseness, and small slack. Journal of Scheduling, pages
1–11, 2016.

[25] R.E. White and V. Prybutok. The relationship between JIT practices and
type of production system. Omega, 29:113–124, 2001.

23

	1 Introduction
	1.1 Basic Concepts in Parameterized Complexity Theory
	1.2 Problem Definition
	1.3 Related Work
	1.4 Research Objective

	2 General Properties
	3 The Complexity of JIT Flow-Shop wrt. #d
	3.1 The W[1]-Hardness of the Two-Machines Case
	3.2 An XP Algorithm for a Parameterized Number of Machines

	4 Two-Machines JIT Flow-Shop wrt. Combined Parameters
	4.1 FPT for the Two-Machine Case wrt. #d+#p(1)
	4.2 FPT for the Two-Machine Case wrt. #d+#w

	5 Three-Machines JIT Flow-Shop wrt. Combined Parameters
	6 Summary and Future Research

