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Abstract
Minimizing the setup costs caused by color changes is one of the main concerns for paint shop scheduling in the automotive
industry. Yet, finding an optimized color sequence is a very challenging task, as a large number of exterior systems for car
manufacturing need to be painted in a variety of different colors. Therefore, there is a strong need for efficient automated
scheduling solutions in this area. Previously, exact and metaheuristic approaches for creating efficient paint shop schedules in
the automotive supply industry have been proposed and evaluated on a publicly available set of real-life benchmark instances.
However, optimal solutions are still unknown for many of the benchmark instances, and there is still a potential of reducing
color change costs for large instances. In this paper, we propose a novel large neighborhood search approach for the paint
shop scheduling problem. We introduce innovative exact and heuristic solution methods that are utilized within the large
neighborhood search and show that our approach leads to improved results for large real-life problem instances compared
to existing techniques. Furthermore, we provide previously unknown upper bounds for 14 benchmark instances using the
proposed method.

Keywords Paint shop scheduling · Large neighborhood search · Local search

1 Introduction

Modern-day paint shops of the automotive supply industry
need to paint a large number of exterior systems every day.
As manual planning approaches often cannot cope with the
growing demands of car manufacturers that are raised by the
recent trend toward full automation, automated scheduling
techniques are becoming more and more important.

When finding optimized paint shop schedules, one of the
main goals is to minimize the color changes that appear in
the production sequence. Since the painting equipment has
to be cleaned after each color change, any change leads to a
loss of valuable resources and can further cause problematic
delays. Minimizing the required color changes is not an easy
task on its own, as very large numbers of different colors and
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products have to be considered in practical scheduling sce-
narios. However, several constraints that restrict technically
feasible color sequences make it even more challenging to
automatically create efficient schedules in practice.

In the literature, several publications have investigated
the minimization of color changes in automotive schedul-
ing problems (e.g. Spieckermann et al. (2004); Solnon et al.
(2008); Prandtstetter and Raidl (2008)). Nonetheless, most
of the previous publications consider problems that appear
in car manufacturing, which although similar, include very
different constraints and objectives than the ones that occur
in paint shops of the automotive supply industry.

Recently, we have introduced a paint shop schedul-
ing problem (PSSP) from the automotive supply industry
together with a set of 24 real-life problem instances in Win-
ter et al. (2019). Furthermore, we have investigated exact
approaches based on constraint programming for the PSSP
and provided aNP-hardness proofWinter andMusliu (2021);
Winter et al. (2020). Experimental results with the practical
benchmark instances revealed that exact approaches could
prove several optimal results for small- to medium-sized
instances; however, optimal solutions formany large real-life
instances are still unknown. The empirical evaluation further
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showed that a simulated annealing approach together with
a construction heuristic from Winter et al. (2019) can suc-
cessfully produce feasible solutions for all real-life instances
within one hour. However, the number of required color
changes in the produced solutions was still very high for
most of the instances, resulting in schedules that have a large
potential for further cost improvements in practice.

In this work, we propose for the first time a large neigh-
borhood search approach to efficiently solve large problem
instances of the PSSP. To efficiently generate large neigh-
borhood moves, we analyze a new sub-problem of the
PSSP which we call the Paint Shop Color Change Prob-
lem (PSCCP). Furthermore, we investigate how optimized
solutions to the PSCCP can be used to efficiently improve
candidate solutions to the PSSP and propose a constraint pro-
gramming model as well as an innovative heuristic approach
to efficiently find optimized solutions to the PSCCP. The
introduced solution techniques are especially effective in
reducing the color cost objective of the PSSP instances, as
the complex constraints regarding materials and production
devices that appear in the original PSSP do not have to be
considered while solving corresponding PSCCP instances.

Additionally,wepropose a novel constructionheuristic for
the PSSP which also utilizes solution methods to the PSCCP
to produce high-quality initial solutions that can serve as a
starting point for local search and hence improve solutions
for large-scale real-life instances.

The following list summarizes the main contributions and
newly developed algorithms that we propose in this paper:

– To efficiently solve large instances of the PSSP, we iden-
tify the PSCCP as an important sub-problem of the PSSP
that we utilize to minimize the required color changes in
paint shop schedules.

– We provide a constraint programming model as well as
an innovative heuristic approach that can be used to effi-
ciently solve the PSCCP

– Using the solution methods for the PSCCP, we propose
a novel large neighborhood search operator that incorpo-
rates the introduced solution methods to tackle real-life
instances of the PSSP.

– We propose an innovative construction heuristic for the
PSSP which is able to speed up the solution process for
very large-scale instances.

– We systematically evaluate our methods using bench-
mark instances from the literature and show that the
proposedmethods can improve state-of-the-art results for
many real-life planning scenarios.

– We provide 14 previously unknown upper bounds for
real-life benchmark instances of the PSSP.

The remainder of this paper is organized as follows: In
Sect. 2, we provide an overview of related literature for

the PSSP and other problems that consider color change
minimization in paint shops of the automotive industry.
Afterward, in Sect. 3 we provide a detailed description of
the PSCCP and further introduce heuristic and exact solu-
tion methods in Sect. 4. In Sect. 5, we describe how instances
of the PSCCP can be generated from candidate solutions to
the PSSP and further show how solutions to the PSCCP can
be used to minimize costs for instances of the PSSP within
the framework of large neighborhood search. In Sect. 6,
we propose a novel construction heuristic for the PSSP to
quickly generate initial solutions for local search.We provide
an overview of conducted computational results in Sect. 7,
before we finally give concluding remarks at the end of the
paper.

2 Literature review

In this paper, we propose an innovative large neighborhood
search operator for the PSSP which appears in paint shops of
the automotive supply industry and has been recently intro-
duced in Winter et al. (2019). In addition to a set of 24
real-life-based benchmark instances, a local search method
based on simulated annealing and a construction heuristic
have further been proposed in Winter et al. (2019). The
simulated annealing-based metaheuristic method uses swap-
, insertion- and deletion neighborhood operators that are
used to iteratively improve candidate solutions. Experiments
showed that this approach was able to produce feasible solu-
tions for all of the 24 benchmark instances within reasonable
run-time.

In Winter and Musliu (2021), the decision variant of
the PSSP has been proven to be NP-complete and an
exact approach based on constraint programming (CP) has
been proposed. Using state-of-the-art CP solvers, the exact
approach could be successfully used to find optimal solu-
tions for 7 of the smaller-sized benchmark instances of the
PSSP. The CP approach was later improved in Winter et al.
(2020) with the introduction of a string edit distance global
constraint, which could be used to efficiently model parts of
the objective function of the PSSP leading to much faster
optimality proofs for the smaller instances. However, exper-
iments further showed that the exact approach is not able
to produce solutions for instances 11–24, and therefore, the
simulated annealing-based approach currently represents the
state-of-the-art solution method for larger instances. Due to
its unique objective function and challenging constraints to
the best of our knowledge, no other solution methods for the
PSSP that are able to provide high-quality solutions to large
real-life instances have been proposed in the recent literature.

In this paper, we introduce an innovative large neighbor-
hood search operator that can be utilized to minimize color
changes in the solution schedule. The operator essentially
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solves a sub-problem of the PSSP which we call the PSCCP.
The main goal of this problem is to assign colors to the pro-
duction sequence in the paint shop in such a way that the
number of required color changes isminimized and due dates
are fulfilled.

A color change sequencing problem that is similar to the
PSCCP has been studied under the name of the paint shop
problem (PSP) in the literature Epping et al. (2004). One can
view the PSCCPwhichwe investigate in this paper later on in
Sect. 3 as an extension of the PSP that additionally includes
due date constraints. However, as the PSP does not consider
due date violations, solution methods for the PSP can in gen-
eral not be used to find feasible solutions for instances of the
PSCCP.

The PSP essentially asks to find an optimal assignment
of a given set of colored letters to a predetermined word
in such a way that color changes are minimized. In Epping
et al. (2004), the authors provide a dynamic programming
algorithm that can solve the PSP in polynomial time if the
number of letters and colors is bounded and show that the
decision variant of the problem is NP-complete otherwise.
A local search approach using a swap neighborhood and an
exact method based on linear programming for the PSP has
been proposed in Meunier and Neveu (2012). The authors
randomly generate 15 benchmark instances to experimen-
tally evaluate their methods. They conclude that the local
search approach overall produced better results than the lin-
ear programming approach in their experiments.

In Spieckermann et al. (2004), a sequential ordering
problem that appears in car manufacturing paint shops is
investigated. This variant aims tominimize the color changes
in the production sequence. However, this ordering problem
deals with efficient utilization of selectivity banks in which
multiple cars are grouped together in banks and therefore
imposes substantially different constraints than the problems
studied in this paper.

Another problem that originates from the automotive
industry and includes theminimization of color changes in its
objective function is called the car sequencing problem Sol-
non et al. (2008). This problem is, however, very different
from the problems studied in this paper due to its considera-
tion of capacity and color batch size constraints. An extensive
overview of solutionmethods for the car sequencing problem
which includes exact- as well as heuristic methods is given
in Solnon et al. (2008).

As the minimization objectives of the PSSCP and the
PSSP aim to reduce the setup costs during production bymin-
imizing color changes in the schedule, both problems can be
compared to machine scheduling problems with sequence-
dependent setup costs. Machine scheduling problems that
consider the minimization of setup costs between consecu-
tively scheduled jobs have been thoroughly studied in the
past. Comprehensive surveys on the topic can be found in

Allahverdi et al. (1999, 2008); Allahverdi (2015), and real-
life applications in the automotive industry continue to be
the topic of intensive study. For example, recently a paral-
lel machine scheduling problem considering setup times that
originates from the automotive industry was tackled using
iterative job splitting heuristics in Lee et al. (2021). Further-
more, another recent scheduling application fromautomobile
component manufacturing that considers setup costs was
investigated in Van and Hop (2021), where the authors pro-
pose a genetic algorithm as a solution method.

Note that both mentioned machine scheduling applica-
tions are given as an input a predetermined set of jobs that
need to be scheduled on multiple parallel machines, which is
a common property of machine scheduling problems with
setup times. However, an instance of the PSSP and the
PSCCP does not provide jobs, but rather defines a set of
demands that need to be fulfilled. Therefore, finding an effi-
cient production sequence, in this case, includes an additional
complex decision-making process regarding the selection of
carrier devices and associated color assignments. This causes
the problems investigated in this paper to be substantially
different from traditional machine scheduling problems with
setup costs.

3 The paint shop color change problem

In this section, we describe the PSCCP, which appears
as a sub-problem within the PSSP. Later in Sect. 5, we
will give a full specification of the PSSP and describe how
solutionmethods to the PSCCP can be utilizedwithin a large-
neighborhood search approach for the PSSP.

In the automotive supply industry, a very large number of
synthetic materials that are demanded by car manufacturers
need to be painted each day in highly automated paint shops.
Therefore, sets of multiple raw material pieces are put on
custom-made carrier devices which are moving on a cyclic
conveyor belt system through the paint shops of the automo-
tive supply industry. The loaded carriers then automatically
move to the painting cabinswhere painting robots apply paint
to the carried items.

The main aim of the PSCCP is to find an optimized color-
ing of a carrier production sequence. Thus, a predetermined
sequence of different carrier device types that are used to
transport materials in the paint shop is given as input to the
problem. In the paint shop, the materials that are transported
on a single carrier have to be painted using one unique color,
and therefore, the aim of the PSCCP is to assign a single color
to each individual carrier in such a way that the number of
color changes in the production sequence is minimized.

A feasible coloring sequence has to ensure that all color
demands are fulfilled, where color demands are given as part
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Fig. 1 Illustration of a simple instance for the PSCCP together with
two example solutions

of the input in terms of carrier type quantities. To model a
notion of time, the given carrier sequence which is part of
the input is further grouped into several scheduling periods,
which are referred to as rounds since in industrial paint shops
of the automotive supply industry carriers are usuallymoving
on a cyclic conveyor belt system. In practice, processing of a
single round is done within a fixed amount of time depending
on the size of the paint shop, even though each round may
schedule a different number of carriers. All color demands
which are given as part of a problem instance set a due date
(which is specified in terms of rounds) that needs to be ful-
filled.

As an example, consider a simple instance of the PSCCP
which is illustrated at the top of Fig. 1.

The carrier sequence that is presented in Fig. 1 contains
three consecutive rounds called R1, R2, and R3, where the
end of each round is visualized by tick marks. The letter in
each of the cells denotes the carrier type in the sequence so
that within the first round R1 a sequence of four carriers is
scheduled: C,B,C,B.

In addition to the predetermined carrier sequence for each
scheduling round, an instance of the PSCCP also defines
color demands which are illustrated at the very top of Fig. 1.
We can see that for this example two carriers of type A, as
well as two carriers of type B, need to be painted using a
white color, whereas one carrier of type A and two carriers
of type B need to be painted in a dark gray color and so on.
Note that each color demand usually also has a due date in
terms of a scheduling round. For reasons of simplicity in the
illustrated example, all color demands are due until the end of
the round R3 and therefore in this case a solution is feasible
as long as all color demands are scheduled in the sequence.

The bottom of Fig. 1 further illustrates two feasible solu-
tions to the example instance. Solution 1 has been assigned
using a naive approach where each carrier has been colored
greedily from left to right and causes 10 color changes in total.
Solution 2 on the other hand shows an improved solution

that causes only four color changes. Note that the schedule
actually contains a total of 12 carriers, whereas only 11 car-
riers are required to be painted. However, this is still a valid
instance of the problem, as in such a case one of the carriers
may be painted arbitrarily to minimize the overall number
of color changes. A scenario like in this example where the
number of carriers appearing in the production sequence is
larger than the total number of demanded carriers can also
occur in practice as technical requirements of the paint shop
conveyor belt systems might not allow ejecting all unneces-
sary carrier devices at once between rounds.

In the following, we provide a formal definition of PSCCP,
where we make use of the Iverson bracket notation1 for rea-
sons of simplicity.

3.1 Input parameters

An instance of the PSCCP specifies several parameters
including a predetermined production sequence, information
about carrier types, colors, and demands. In the following,
we describe all parameters in detail:

A set of carrier types T is given as part of the input, which
includes all the different types of carrier devices that appear
in the production sequence.

The set of colorsC specifies all colors that can be assigned
to the carriers in the schedule.

The demands for an instance are given as a set D that
consists of 4-tuples, where each tuple defines the demand
quantity ad , d ∈ D, the carrier type of the demand ud , d ∈
D, the demanded color vd , d ∈ D and the demand’s due
date wd , d ∈ D. For example, consider a demand d1 where
ad1 = 10, ud1 = t1, vd1 = c1, and wd = 5. Then, this
demand d1 would require 10 carrier devices of type t1 in the
schedule to be painted using color c1 until at latest round 5
(note that the due date is given in terms of paint shop rounds).

Ahistory color h is given as part of the inputwhich denotes
the last color used in theprevious production schedule (before
the production sequence of the instance). The previous sched-
ule is not part of the current problem; however, the color
assigned to the first carrier of the solution sequence might
cause a color change regarding the history color.

The number of scheduling rounds n, (R = {1, . . . , n})
denotes the number of rounds that are processed in the given
production sequence. For each of these rounds, the num-
ber of scheduled carriers is given by a parameter sr , r ∈ R.
Finally, the detailed predetermined production sequence for
the instance is determined by a list consisting of the sched-
uled carrier type sequence for each round (li, j ,∀i ∈ R, j ∈
{1, . . . , si }).

The full list of formal input parameters is summarized in
Table 1.

1 [P] = 1, if P = true and [P] = 0 if P = f alse.
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Table 1 The input parameters of the PSCCP

Set of carrier types: T

Set of colors: C

Set of demands: D

Quantity of demand: ad ∈ N>0,∀d ∈ D

Carrier type of demand: ud ∈ T ,∀d ∈ D

Color of demand: vd ∈ C,∀d ∈ D

Due date of demand: wd ∈ N>0,∀d ∈ D

History Color: h ∈ C

Number of scheduling rounds: n (R = {1, . . . , n})
Number of carriers per round: sr ∈ N>0,∀r ∈ R

List of scheduled carriers: li, j ∈ T ,

∀i ∈ R, j ∈ {1, . . . , si }

3.2 Decision variables

The set of decision variables for the PSCCP decide which
color should be used for each scheduled carrier position in
the production sequence:
Scheduled color in round i and position j

xi, j ∈ C,∀i ∈ R, j ∈ {1, . . . , si } (1)

3.3 Hard constraints

In feasible solutions to the PSCCP, all color demands need
to be fulfilled in time:

∑

d∈D
ad ≤

∑

i∈{1,...,wd }

∑

j∈{1,...,si }
[xi, j = vd ∧ li, j = ud ]

∀d ∈ D (2)

3.4 Objective function

The objective function builds a sumof all color changes in the
production sequence including round overlapping changes,
and a possible change from the last color used in the history
schedule (history color):

minimize [h �= x1,1] +
∑

i∈R

∑

j∈{1,...,si−1}
[xi, j �= xi, j+1],

+
∑

i∈{1,...,r−1}
[xi,si �= xi+1,1] (3)

3.5 Complexity analysis

If we consider instances of the PSCCP with only a single
round in the sequence (i.e., the due date constraint is not vio-
lated as long as all demands are fulfilled at any time in the
sequence) and further ignore the history color of the prob-

lem, the PSCCP is equivalent to another problem from the
literature Epping et al. (2004) called the paint shop problem
(PSP). Thus, the PSCCP is a generalization of the PSP. As
the decision variant of the PSP has been shown to be NP-
complete in Epping et al. (2004) as long as the number of
colors and different types in the sequence are not bounded,
we can argue that the decision variant of the PSCCP also is
NP-hard under the same assumptions, as we can solve the
PSP with the PSCCP by simply creating an instance for the
PSCCP with a single round in the sequence and no due date
constraints.

4 Solutionmethods

In this section, we propose two solution approaches to
the PSCCP: an innovative heuristic approach and an exact
approach based on constraint modeling.

4.1 A heuristic solution approach for the PSCCP

The main idea behind this heuristic approach is to greed-
ily determine the coloring of a single carrier in the given
sequence one step at a time and thereby constructing a solu-
tion. To find out which carrier should be colored next during
each iteration of the algorithm, the heuristic essentially eval-
uates all possible single color assignments on the current
partially colored carrier sequence.

Figure 2 illustrates the main execution steps of the con-
struction heuristic we propose for the PSCCP.

At first, the algorithm starts with a fully uncolored produc-
tion sequence and creates an ordered list of all color demands
ordered by their due dates. As long as this list is not empty,
the algorithm then iteratively processes a series of execution
steps. These steps essentially go over all demands still con-
tained in the list and calculate howmuch itwould cost to color
a single carrier in the production sequence to fulfill the associ-
ated demand. The single carrier color assignment that causes
the lowest cost increase with the current state of the produc-
tion sequence is selected and applied to the partial solution.
Afterward, the quantity of the demand affected by this color
assignment is updated and in case the demand quantity is
lowered to zero, the demand is completely removed from the
demand list.

Algorithm 1 provides pseudo-code to describe the pro-
posed construction heuristic algorithm in further detail.

The function PSCCPHeuristic is the main entry point of
the heuristic and takes in addition to the instance param-
eters a single positive integer parameter which is called
demandLookAhead. In a first step, the list of all demands
is sorted by their due dates. If there are multiple demands
with the same due date, rare colors (which are determined
by the total requested quantity for a color over all demands)
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Fig. 2 Main execution steps of the heuristic solution method for the
PSCCP

are selected first. The idea here is that rare colors are poten-
tially harder to group in the schedule and therefore should be
scheduled earlier on.

After all demands have been ordered, the algorithm then
enters its main loop that continuously applies single color
assignments to the carrier sequence until all demands are
fulfilled. Within the loop, the heuristic goes over the next
demandLookAhead demands that are not already fulfilled
by the current partially colored schedule. For each of these
demands, the costs caused for any possible single color
assignment that can potentially fulfill the demand are cal-
culated. Eventually, in each iteration the algorithm performs
the single color assignment that causes the lowest costs (Ties
are broken by selecting the best cost assignment that was
encountered first).

Algorithm 1: PSCCP Heuristic
fn GetBestColorPosition (demand d)

bestCost = −1
best Pos = null
seq = reversed carrier sequence starting from wd
for posi tion in seq do

Color posi tion with vd
cost = Evaluate costs for current sequence
Uncolor posi tion
if bestCost == −1 or cost < bestCost then

bestCost = cost
best Pos = posi tion

return 〈bestCost, best Pos〉
fn PSCCPHeuristic (demandLookAhead)

un f ul f illedDemands = sort demands by due round
while |un f ul f illedDemands| > 0 do

counter = 0
best Demand = null
bestCost = ∞
best Posi tion = null
for d in un f ul f illedDemands do

if counter == demandLookAhead then
break

〈cost, posi tion〉 = Get BestColor Posi tion(d)

if bestCost > cost then
bestCost = cost
best Posi tion = posi tion
best Demand = d

counter = counter + 1

if best Demand == null then
break

Apply color to best Posi tion
Update un f ul f illedDemands

for posi tion in Sequence do
Apply color of previously colored position

For some instances, it can be the case that some carriers
remain uncolored even after all demands have been fulfilled.
This situation can occur in some real-life instances, for exam-
ple when additional carriers are required in the schedule to
fulfillminimumcarrier capacity requirements. In such a case,
the heuristic simply goes over the sequence and tries to color
those remaining uncolored carriers based onwhat colors have
been assigned to neighboring carriers to keep the number of
color changes as low as possible.

Although theheuristic canfindcandidate solutions quickly
even for large instances (for realistic instances with 100 or
more demands the demandLookAhead parameter can be
lowered if necessary), in general it does not guarantee to find
a feasible solution as due round constraint violations might
occur in the resulting schedule.
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4.2 An exact approach for the PSCCP

To approach the PSCCPwith state-of-the-art exact constraint
programming (CP) and mixed-integer programming (MIP)
solvers, we propose to model the problem with the use of the
high-level constraint modeling language MiniZinc Nether-
cote et al. (2007). This allows us to implement the problem
definition from Sect. 3 in a declarative way and utilize the
model with state-of-the-art CP and MIP solvers as an exact
solution approach to the PSCCP.

In our constraint model, we define all the input parameters
from Table 1 using integer value ids in the ranges from 1 to
|T | for the carrier types, from 1 to |C | for the colors, and
from 1 to |D| for the demands. We use an additional input
s = max {sr |r ∈ R}, that is set to themaximum round length.
The value s is used to define the input carrier sequence as a
two-dimensional integer array of dimensions |R| × s. Each
position to the array is either set to the scheduled carrier id,
or to 0 if the position is unused.

We model the decision variables from Eq. (1) using a
two-dimensional integer array and set the variable domain
to {0, . . . , c}, where 0 will be used to mark unused positions.

The due date constraint from Eq. (2) is modeled with the
use of a counting predicate that counts all occurrences of
the associated color and carrier type combination for each
relevant due date in the schedule. The resulting value is then
constrained to be greater than or equal to the required quantity
until the due date.

Another constraint sets all unused positions in the decision
variable array to 0.

Finally, the solution objective uses counting predicates to
model the conditional sums from Eq. (3).

Listing 1 displays the detailed MiniZinc model for the
PSCCP. For details on the syntax of the MiniZinc language,
please refer to a recent version of the MiniZinc Handbook2.

% INPUT
% carrier types
int: t;
set of int: T = 1..t;

% colors
int: c;
set of int: C = 1..c;

% history color
int: h;

% rounds to schedule
int: r;

2 https://www.minizinc.org/.

set of int: R = 1..r;

% carrier sequence
int: s;
set of int: S = 1..s;
array[R,S] of 0..t: carriers;
array[R] of S: s_r;

% carrier demands
int: num_demands;
set of int: D = 1.. num_demands;
array[D] of int: d_t;
array[D] of int: d_c;
array[D] of int: d_qty;
array[D] of int: d_r;

% VARIABLES
array[R, S] of var 0..c: x;

% CONSTRAINTS
% All demands must be satisfied

in time
constraint forall(d in D where
d_r[d] <= r) (
d_qty[d]
<=
count(i in 1..d_r[d], j in
1..s_r[i])(x[i,j] = d_c[d]
/\ carriers[i,j] = d_t[d])

);

% set unused positions to zero
constraint forall(i in R, j in
s_r[i]+1..s) (
x[i,j] = 0

);

% OBJECTIVE
solve minimize bool2int(h !=
x[1 ,1]) +
count(i in 1..r, j in
1..s_r[i]-1)(x[i,j] !=
x[i,j+1]) +

count(i in 1..r-1)(x[i,s_r[i]]
!= x[i+1 ,1]);

Listing 1 MiniZinc model code for the PSCCP
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Fig. 3 A simple paint shop schedule, which illustrates a candidate solu-
tion to the PSSP

5 A large neighborhood search approach for
the paint shop scheduling problem

In this section, we propose an innovative large neighbor-
hood search operator for the PSSP that utilizes the solution
methods for the PSCCP that have been introduced in the
previous section. First, we provide a short recap of the prob-
lem description as well as the main objective goals of the
PSSP in Sect. 5.1 and provide the full formal specification
in Sect. 5.2. Afterward, we describe how solutions to the
PSCCP can be utilized to improve candidate schedules for
the PSSP in Sect. 5.3. Later, in Sects. 5.4 and 5.5, we intro-
duce the large neighborhood search operator and describe
how it can be used to improve local search for the PSSP.

5.1 The paint shop scheduling problem

The PSSP is a practical problem that appears in paint shops
of the automotive supply industry, which we have previously
introduced together with a metaheuristic solution approach
inWinter et al. (2019). The problem appears in real-life paint
shops of the automotive supply industry,where a large variety
of different products need to be painted. Products that should
be painted in similar colors are grouped into configurations,
where each configuration is then placed on a carrier device.
Therefore, the main goal of the problem is to determine effi-
cient configurations as well as an optimal carrier production
sequence.

Figure 3 visualizes a candidate solution schedule to the
PSSP.

Similar to the examples for the PSCCP shown in previous
sections, the carrier sequence shown in Fig. 3 is structured
into scheduling rounds R1–R3, which are referred to as
rounds in the PSSP. Figure 3 presents the carrier sequence
of each round as a column of the solution table. In con-
trast to the PSCCP, for the PSSP the carrier sequence is
not predetermined. Thus, solution methods need to produce
an optimized carrier sequence and assign configurations to
the carriers. In Fig. 3, carrier configurations are illustrated
as numbers next to the letters, so that for example the first
carrier in round 1 uses configuration number 1 of a type A

A

2 ×
C

2 ×
B

6 ×
A

3 ×
C

2 ×

A A A B B A A C B B C C C B B

R1 R2 R3

A A A B B A A C B B C C C B B

R1 R2 R3

Fig. 4 Visualization of a simple PSCCP instance that would be associ-
ated with the candidate schedule for the PSSP as it is shown in Fig. 3

carrier, and the third carrier in round 2 uses configuration
number 2 of a type C carrier. We can view the PSCCP as a
sub-problem that appears within the PSSP, as once a carrier
sequence has been determined, we can solve an associated
instance of the PSCCP to find an optimized coloring for the
associated carrier sequence. Figure 4 visualizes a solution
to the PSCCP instance that corresponds to the PSSP exam-
ple schedule shown in Fig. 3. We can see in this figure that
the carrier type sequence of the PSCCP example instance
is equal to the sequence used in the associated PSSP exam-
ple. However, the configuration numbers are omitted for the
PSCCP instance as carrier configurations do not need to be
considered for the PSCCP.

5.2 Formal specification of the PSSP

In this section, we further provide the full problem specifi-
cation of the PSSP.

Note that some of the instance parameters of the PSSP
(like e.g. colors, carrier types, rounds, demands) are iden-
tical or similar to the input parameters of the PSCCP and
therefore use the same identifiers. These parameters indeed
model exactly the same objects from the practical real-life
application in paint shops of the automotive supply industry.
However, an instance of the PSSP is still substantially dif-
ferent from an instance of the PSCCP and cannot be directly
used as an input to solution methods for the PSCCP. Thus, in
the following the input parameters are defined from scratch
without reusing the definitions from Sect. 3. Later on, in
Sect. 5.3 we describe in detail how instances of the PSSP can
be translated to associated instances of the PSCCP.

For further information on background and solutionmeth-
ods to the PSSP, please refer to Winter et al. (2019); Winter
and Musliu (2021).

5.2.1 Input parameters

The following parameters describe instances of the PSSP:
Set of carrier types: T
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Set of colors: C
Set of materials: M
Set of carrier configurations: K
A carrier configuration is always associated with a single
carrier type and provides information about the materials
that are placed on this carrier.
Number of rounds to schedule: n
Set of all rounds to schedule: R = {1, . . . , n}
Maximum number of carrier slots per round: s
Set of carrier slots per round: S = {1, . . . , s}
Minimum number of carriers that have to be scheduled in
each round: q
Number of available carriers of type t in round r :

ar ,t ,∀r ∈ R, t ∈ T
The number of available carriers are input parameters
because in practice some carriers will be scheduled for clean-
ing and maintenance from time to time (independently of the
production schedule).
Set of demands:

D ⊆ {(a,m, r , c)|a ∈ N>0,m ∈ M, r ∈ N>0, c ∈ C}

Each demand will ask for a number a of materialsm in color
c that have to be scheduled until round r . The set of demands
maycontain optional demands that are dueuntil future rounds
lying outside the scheduling horizon.
Number of pieces of material type m that can be placed on
configuration k: uk,m,∀k ∈ K ,m ∈ M
Carrier type of each carrier configuration:

vk ∈ T ,∀k ∈ K

Number of carriers scheduled in the round previous to the
scheduling horizon (history round): p
Carrier type of the scheduled carrier at position i of the his-
tory round: pti ∈ T ,∀i ∈ {1, . . . , p}
Used color at position i of the history round: pci ∈ C,∀i ∈
{1, . . . , p}
Set of forbidden carrier type sequences. All elements in
F define forbidden carrier type sequences of length two
that may not appear anywhere in the schedule: F ⊂
{(t1, t2)|t1, t2 ∈ T , t1 �= t2}
Minimum block length for carrier type t :

bmin
t ,∀t ∈ T

Whenever a carrier of type t is scheduled, the same carrier
type has to be used for the next consecutive carriers until
the given minimum block length is reached. (For example let
bmin
t1 = 3 and the previously scheduled carrier type sequence
be 〈t3, t3, t2, t1〉, then to satisfy the minimum block length at
least the next two carriers in the sequence have to be t1).
Maximum block length for carrier type t :

bmax
t ,∀t ∈ T

The number of carriers that have to be painted in a different
color before a switch from color c1 to color c2 becomes legal
in the scheduled sequence:

oc1,c2 ∈ N,∀c1, c2 ∈ C
For example, let ov,w = 3 for colors v and w. Then, the
color sequences 〈v,w〉 and 〈v, y, w〉 would be illegal, while
the color sequence 〈v, y, y, y, w〉 would be legal (assuming
that y �= v and y �= w).
Function that assigns color transition costs for all pairs of
colors:

fc : {C × C} → N

5.2.2 Decision variables

The following decision variables are defined for the paint
shop scheduling problem:
The carrier configuration scheduled in round i (i = 0 refers
to the history round) and position j :3

xi, j ∈ K ∪ {ε},∀i ∈ {0, . . . , n}, j ∈ S

x0, j1 = λ (where vλ = pt j1),∀ j1 ∈ {1, . . . , p}
x0, j2 = ε,∀ j ∈ {p + 1, . . . , s}

If the value ε is assigned, the position is empty and no carrier
will be scheduled at the position.
The color that is used in round i at position j :

ci, j ∈ C ∪ {ε},∀i ∈ {0, . . . , n}, j ∈ S

c0, j1 = pc j1 ,∀ j1 ∈ {1, . . . , p}
c0, j2 = ε,∀ j ∈ {p + 1, . . . , s}

If the value ε is assigned, the position is empty and will not
be painted.

5.2.3 Helper variables for hard constraints

To formulate the problem’s hard constraints, the following
helper variables and functions are defined:
The number of carriers that are scheduled in round i : pi ∈
{0, . . . , s},∀i ∈ {0, . . . , n}
p0 refers to the number of carriers scheduled in the history
round.
The total number of carriers scheduled in the entire schedule,
excluding the history round:

pt ∈ {0, . . . , n · s}

3 The input parameters do not specify any information about the
configurations used in the history round. For simplicity, we fix the cor-
responding decision variables for the history round to any configuration
λ that is compatible with the used carrier type in the history round.
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Sequence coordinate helper function:

fs(i, j) = p +
∑

r∈{2...i}
pr−1 + j

This helper function converts the two-indexed scheduling
coordinates (round and position within rounds) into a one-
indexed scheduling coordinate. For example, let exactly 100
carriers be scheduled in round 1, then f2(2, 3) will be set to
the value 103.
The carrier configuration that is scheduled at the one-indexed
position coordinate i :

seqxi ∈ K ∪ {ε},∀i ∈ {1, . . . , p + n · s}

The color that is scheduled at the one-indexed position coor-
dinate i :

seqci ∈ C ∪ {ε},∀i ∈ {1, . . . , p + n · s}

5.2.4 Hard constraints

1. Unplanned carrier positions should always be scheduled
last in a round:

(xi, j = ε) ⇒ (xi, j+1 = ε),

∀i ∈ R, j ∈ {1, . . . , s − 1} (4)

2. Any scheduled carrier position must also assign a color,
and any unscheduled position must not assign a color:

(xi, j �= ε) ⇔ (ci, j �= ε),∀i ∈ R, j ∈ S (5)

3. Force the correct number of scheduled carriers to the
associated helper variables:

p0 = p

pr = |{ j ∈ {1, . . . , s}|xr , j �= ε}|,∀r ∈ R

pt =
∑

r∈R

pr (6)

4. Bind the values of the decision variables to the associated
one indexed sequence helper variables:

seqx j = x0, j ∧ seqc j = pc j ,∀ j ∈ {1, . . . , p}
xi, j �= ε ⇒
(seqx( fs (i, j)) = xi, j ∧ seqc( fs (i, j)) = ci, j ),

∀i ∈ R, j ∈ S

(k > p + pt) ⇔ seqxk = ε,

∀k ∈ {p + 1, . . . , p + n · s} (7)

5. All demands must be satisfied in time (overproduction is
allowed):

∑

{(da ,dm ,dr ,dc)∈D| dm=m∧dr<=r∧dc=c}
da ≤

∑

{i∈{1,...,r}, j∈{1,...,s}|ci, j=c}
u(xi, j ),m

∀r ∈ R,m ∈ M, c ∈ C (8)

6. Carrier availabilities must be respected in each round (X
here refers to the set of all xi, j variables):

|{xi, j ∈ X |i = r ∧ v(xi, j ) = t}| ≤ ar ,t ,∀r ∈ R, t ∈ T(9)

7. The minimum round capacity must be fulfilled in each
round:

pr >= q,∀r ∈ R (10)

8. Forbidden carrier type sequences must not appear in the
schedule:

v(seqxi ) �= t1 ∨ v(seqxi+1) �= t2,

∀(t1, t2) ∈ F, i ∈ {p, . . . , (p + n · s − 1)} (11)

9. Minimum carrier block length restrictions must be ful-
filled:

(v(seqxi ) �= t ∧ v(seqxi+1) = t)

⇒
∧

j∈{2,...,bmin
t }

(v(seqxi+ j ) = t),

∀t ∈ T , i ∈ {1, . . . , (p + n · s − bmin
t − 1)} (12)

¬(v(seqx
p+n·s−bmin

t +1
) �= t ∧ v(seqx

p+n·s−bmin
t +2

) = t)

∀t ∈ T (13)

10. Maximum carrier block length restrictions must be ful-
filled:

∨

j∈{0,...,bmax
t }

(v(seqx(i+ j)) �= t),

∀t ∈ T , i ∈ {1, . . . , (p + n · s − bmax
t )} (14)

11. No forbidden color sequences should occur in the sched-
ule:

(seqci = c1) ⇒
∧

j∈{1,...,o(c1,c2)}
(seqc(i+ j) �= c2),

∀c1, c2 ∈ C, i ∈ {1, . . . , (p + n · s − o(c1,c2))}
(15)
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5.2.5 Helper variables and constraints for the objective
function

To formulate the problem’s minimization function, the fol-
lowing helper variables are defined:
The number of color change costs occurring in round r of
the schedule: ccr ,∀r ∈ R
The number of required carrier type changes between round
r and r + 1:

scr ,∀r ∈ {0, . . . , n − 1}

The number of carriers that will not be changed after round
r and reused in round r + 1: skr ,∀r ∈ {0, . . . , n − 1}
Edge helper variables:

er ,k,l ∈ {0, 1},∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S

Edge variables that are set to true whenever a carrier from
round r at position k is reused in round r + 1 at position l.

The following hard constraints are used to assign values
to the helper variables:

1. Sum up the color change costs per round in the associ-
ated helper variables. The value includes a potential color
change cost that occurs between the last position of the
previous round and the first position of the target round
(We assume here that if the value ε is assigned to any
parameter of fc, the function will return 0):

ccr =
∑

j∈{1,...,s−1}
fc(cr , j , cr , j+1) +

∑

{ j∈{pr−1}}
fc(cr−1, j , cr ,1),∀r ∈ R (16)

2. The number of necessary carrier changes between two
given rounds is calculated with the helper variables skr
that determine how many carriers can be kept after each
round.

scr = pr − skr + pr+1 − skr ,∀r ∈ {0, . . . , n − 1} (17)

3. The skr variables are assignedby summingup thenumber
of associated edge variables that are set to 1. Note that
each edge variable set to 1 will represent a carrier that is
kept between two consecutive rounds:

skr =
∑

k,l∈S
er ,k,l ,∀r ∈ {0, . . . , n − 1} (18)

4. The following constraints enforce that edges between car-
riers of consecutive rounds (carriers connected by an edge

will be reused) are only allowed if the carrier types at both
positions are equal and not set to ε:

(er ,k,l = 0) ⇐ (xr ,k = ε ∨ xr+1,l = ε),

∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S (19)

(er ,k,l = 1) ⇒ (v(xr ,k ) = v(xr+1,l )),

∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S (20)

5. The following constraint forbids crossings between
selected edges of two consecutive rounds. These cross-
ings have to be forbidden to enforce the correct order of
kept carriers.:

(er,k,l = 1) ⇒
⎛

⎝
∧

m∈{1,...,k−1},n∈{l,...,s}
(er,m,n = 0) ∧

∧

m∈{k,...,s},n∈{1,...,l−1}
(er,m,n = 0)

⎞

⎠

∀r ∈ {0, . . . , n − 1}, k ∈ S, l ∈ S (21)

5.2.6 Objective function

The objective function aims to minimize the number of car-
rier changes (sc) and color change costs (cc). The sums
are squared since it is preferable to distribute the required
changes over the scheduling horizon and to avoid peaks of
many changes within a single round.

minimize
∑

r∈{0,...,n−1}
sc2r +

∑

r∈R

cc2r (22)

5.3 Utilizing the PSCCP to improve PSSP solutions

In the following, we describe how solution methods to the
PSCCP can be utilized to improve given candidate solu-
tions to the PSSPwithout changing the predetermined carrier
sequence. This technique has the benefit that the number
of required color changes in the production sequence can
be improved without the need to consider the complex con-
straints of the PSSP that are related to the creation of feasible
carrier type sequences. For this purpose, we take any can-
didate solution to the PSSP and create an instance for the
PSCCP by simply removing the color assignments from all
carriers in the sequence. We further generate demands for
the PSCCP instance by looking at each individual carrier
and by analyzing which paint shop demands are fulfilled by
this carrier. The due round of the earliest demand that is pro-
cessed by each individual carrier serves as the due round of
the associated color demand in the PSCCP instance. Sim-
ilarly, a solution to the generated PSCCP instance can be
applied to the original candidate solution of the PSSP by
applying the produced color sequence to the predetermined
carrier sequence.
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R1 R2 R3 . . .

1 a a a . . .

2 a a a . . .

3 a a a . . .

4 a a a . . .

5 a a a . . .
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C3
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A A A B B A A C B B C C C B B

R1 R2 R3

Fig. 5 An example PSCCP solution is mapped to the paint shop sched-
ule for the original PSSP solution from Fig. 3

Note that in the original PSSP each carrier type actually
can be used in a number of different configurations. Selecting
a configuration can affect which and howmany product types
are placed on the carrier. When we create a PSCCP instance,
we may ignore these configurations as long as we fulfill all
the color demands, since we can safely remap the previously
used configurations to the associated carrier type color pairs
of the PSCCP solution later when we apply it to the PSSP
schedule. Figure 5 illustrates this process by displaying a
solution to the PSCCP example that was previously shown
in Fig. 4 as well as a remapping to the PSSP schedule that is
originally shown in Fig. 3.

The top of Fig. 5 visualizes the solution to the PSCCP,
whereas the bottom shows the application of the solution to
the PSSP schedule. Note that carrier types (which are repre-
sented by letters) have not changed compared to the original
schedule shown in Fig. 3. However, a carrier of type A with
configuration number 2 (A2) that was previously scheduled
in R1 at position 3 now is scheduled at position 1 of R2.
Furthermore, position 3 in R1 now schedules a type A car-
rier using configuration number 1 (A1). The reason why the
configuration numbers need to change in this example is that
the demands for the associated PSSP instance require a white
carrier of configuration A2 and a light gray carrier of con-
figuration A1. This remapping of the configurations can be
easily done algorithmically by going over all changed car-
rier positions and reassigning the configurations to fulfill any
missing demands of the PSSP with an earliest demands first
strategy.

Up to now, we have seen that the PSCCP solutionmethods
cannot directly change the configurations used in the cor-
responding PSSP schedule, but only indirectly affect their
positioning in the schedule. However, if we pass additional
information about the configurations (i.e., what product types
are associated with each configuration) to an instance of
the PSCCP and specify the demands in a way to request
product types instead of carrier types, we could give the solu-

tion methods more possibilities to fulfill the demands by not
only reassigning colors but also reassigning configurations
in the carrier type sequence. We initially experimented with
extended variants of the PSCCP that support the reassign-
ment of configurations, but these variants turned out to be
impractical for most benchmark instances with exact meth-
ods due to the largely increased size of the search space.
However, we could successfully adapt the heuristic approach
to support a reassignment of configurations without a notable
loss in performance and therefore implemented this variant
for our experimental evaluation of the PSCCP heuristic. The
procedure shown in Algorithm 1 is still used with the only
difference that when a position is evaluated to be colored for
a given demand, the heuristic tries to assign the best config-
uration (i.e., the one which produces the most pieces for the
demand) to this position. After execution has finished, the
assigned colors and configurations are then transferred back
to the PSSP solution.

5.4 A large neighborhood search operator for the
PSSP

We now describe how the state-of-the-art metaheuristic tech-
nique for the PSSP which we previously proposed in Winter
et al. (2019) can utilize solution methods for the PSCCP
to improve candidate schedules during local search. There-
fore, we propose a large neighborhood search (LNS) operator
�LN S for the PSSP that takes a candidate solution, solves the
corresponding PSCCP problem to find an optimal coloring
for the schedule, and then applies the optimal coloring to the
PSSP candidate solution. Although �LN S cannot be used to
solve the complete PSSP problem, as it is unable to con-
duct any changes on the carrier sequence, it can effectively
improve color change costs of the given schedule.

To implement �LN S , we can directly use the solution
methodswe proposed in Sects. 4.2 and 4.1. However, in prac-
tice we need an additional time limit parameter that causes
the operator to stop if solving the associated PSCCP takes
too long. In the case of an exact solver, we can still use any
intermediate solution when the time is running out, whereas
for the heuristic approach we simply exit the main loop early
and apply colors of adjacent positions for uncolored positions
in case of a timeout.

In initial experiments with �LN S , we discovered that for
many of the realistically sized instances of the PSSP the oper-
ator usually ran out of time before any improvement could be
achieved. The main reason for this is that the corresponding
PSCCP (which is an NP-hard sub-problem on its own) has a
search space that is too large to be effectively used within a
local search neighborhood for the original PSSP.

Therefore, we further propose another LNS operator
�LN S∗ that destroys only parts of the colored carrier
sequence and therefore reduces the search space for the asso-
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Fig. 6 Example how �LNS∗ can reduce the number of color changes
by rearranging small color blocks in the overall sequence

ciated PSCCP. The main idea behind�LN S∗ is to leave large
areas in the sequence that use only a single color intact, as
they do not cause any color changes. In consequence, only
color assignments from the remaining areas will be reas-
signed during the application of �LN S∗. Thus, many color
assignments are predetermined in the corresponding PSCCP
instances and usually only a small number of carriers need
to be colored which speeds up the solution process of the
�LN S∗. The intuition behind �LN S∗ is further illustrated in
Fig. 6.

At the top of the figure, we see a sequence that uses six
different colors. The carriers colored in shades of gray are
already arranged into “color blocks” of length 3, whereas
the carriers using different pattern colors (horizontal stripes,
dots, and vertical stripes) are not yet well arranged. The idea
behind �LN S∗ is to remove only small color block assign-
ments from the sequence (which in this example are the
pattern colors), while leaving larger color block assignments
intact (which in this example are the gray colors). This is
visualized in the middle of Fig. 6.

Finally, solving the corresponding PSCCP instance in this
example only needs to reassign four colors and can actually
find an improved solution that reduces the number of required
color changes in total (the corresponding sequence is illus-
trated at the bottom of Fig. 6).

In addition to a time limit, we introduce a second param-
eter k ∈ N>0 for the operator �LN S∗ to configure which
areas of the sequence should have their colors reassigned.
The parameter works in a way that any consecutive block of
carriers that use a single color with a length that is greater
than or equal to k will be left intact. In the example shown in
Fig. 6 k is set to k = 3 as single color blocks of consecutive
carriers with length ≥ 3 are not reassigned.

5.5 Integrating the LNS operator into local search
for the PSSP

The previously introduced simulated annealing approach
uses three local search neighborhoods to solve the PSSP:
carrier insertion, carrier removal, and carrier swap. These
existing neighborhoods consider the insertion, removal, or
swapping of carriers in the schedule and can affect either sin-
gle carriers or blocks of consecutive carriers. To incorporate
the�LN S∗ operator into the local search approach, we use an
additional parameter α ∈ [0, 1]which defines the probability
to call the LNS operator instead of a standard neighborhood
move during a local search iteration. Furthermore, we only
call the �LN S∗ operator if the current solution has no hard
constraint violations as the LNS operator can only improve
the color change objective.

Figure 7 illustrates how the LNS operator is called within
a local search iteration.

The candidate solution produced by the application of the
LNS operator is accepted by local search (i.e., the result will
be used as the current solution for the next search iteration)
if the costs of the candidate solution are either improved,
or the result leads to a new minimum color change cost.
The latter is the case if a new upper bound for color change
costs has been achieved by LNS, but overall solution costs
are not improved (e.g., because a hard constraint has been
violated). If this is the case, the LNS result is still used for the
next search iteration and local search may try to improve the
overall best-known solution from this point within a limited
number of iterations (which is determined by an additional
parameter β). If no overall best cost solution can be achieved
within β iterations, local search resets its current solution
back to the priorly known best solution. The rationale behind
this fallback and the β parameter is to accept low color cost
solutions that include some hard constraint violations (e.g.,
unfulfilled demands) to give local search a chance to repair
these violations quickly and thereby to potentially find a new
best solution.

Algorithm 2 presents the pseudo-code with further details
on how the LNS operator is called during local search.

6 A novel construction heuristic for the PSSP

Previously, we proposed a construction heuristic (CH) for the
PSSP in Winter et al. (2019). Experimental results showed
that the use of a construction heuristic was important to pro-
duce feasible solutions for large problem instances within
reasonable run-time. In this section, we propose a novel con-
struction heuristic (CH*) that utilizes the solution methods
for the PSCCP to color partially uncolored schedules during
the creation of an initial schedule.
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Fig. 7 Main execution steps during a local search iteration for the pro-
posed PSSP algorithm that utilizes the LNS operator

Algorithm 2: Incorporating �LN S∗ within local search

lnsRepair I terationCounter = 0
while main local search loop do

if
current Solution.V iolations == 0∧random.Next() ≤ α

then
lnsSolution = perform �LNS∗(k)
if lnsSolution.Cost < best Solution.Cost then

current Solution = lnsSolution
best Solution = current Solution

else
if lnsSolution.Cost < current Solution.Cost then

current Solution = lnsSolution
else

colorChgCount =
CountColorChanges(lnsSolution)

if colorChgCount < bestColorChgCount then
current Solution = lnsSolution
lnsRepair I terationCounter = β

bestColorChgCount =
min {colorChgCount, bestColorChgCount}

else
perform standard local search iteration

if current Solution.Cost < best Solution.Cost then
best Solution = current Solution
lnsRepair I terationCounter = 0

if lnsRepair I terationCounter > 0 then
lnsRepair I terationCounter =
lnsRepair I terationCounter − 1
if lnsRepair I terationCounter == 0 then

current Solution = best Solution

To explain the details about CH*, we first need to men-
tion that besides the minimization of the color changes in
the schedule, a solution to the PSSP should also minimize
the necessary carrier sequence changes between each pair
of consecutive rounds in the schedule. Without going further
into the details of the complex objective function of the PSSP,
it is sufficient to know that the main aim is to keep the carrier
type sequence of consecutive rounds as similar as possible.
Furthermore, note that there is a history carrier sequence that
is part of the input in any instance to the PSSP. This history
round denotes the carrier sequence that was processed last
before the current schedule. Therefore, the first round of the
solution schedule should use a carrier sequence that is as
similar as possible to the given history carrier sequence.

The existing construction heuristic CH creates an initial
schedule by trying to first estimate an even distribution of the
carrier demands over all scheduling roundswithout determin-
ing the detailed carrier sequences. In a second step, CH looks
at each of the rounds individually and tries to find a feasible
colored carrier sequence. At the same time, CH also aims at
keeping the number of color changes as well as carrier type
changes from the previous round as low as possible.
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The pseudo-code inAlgorithm 3 presents the details about
the novel construction heuristic CH* that we propose in this
paper.

Algorithm 3: A novel construction heuristic for the
PSSP
fn CreateInitialSchedule

1. copy history sequence to all rounds
2. Solve PSCCP problem to find coloring
while ∃unfulfilled demands ∨ carrier limits reached do

3. insert new carrier in all rounds
4. Solve PSCCP problem to find coloring

return colored schedule

The main idea behind CH* is to first copy the uncolored
carrier type sequence of the given history round to all rounds
in the schedule, essentially keeping the number of carrier
changes between each of the sequences at 0. In a second step,
the construction heuristic solves an associated instance of the
PSCCP to find an optimized coloring to the candidate sched-
ule. After this coloring has been determined, there might still
be remaining unfulfilled demands as not all required carrier
types are necessarily included in the copied history sequence.
If this is the case, the heuristic iteratively tries to insert a new
carrier into each round of the schedule to handle remaining
unfulfilled demands and again solves a partial instance of the
PSCCP, where any colors that have been previously assigned
are fixed. The process is repeated until either no new carriers
can be inserted due to resource limits or if all demands are
fulfilled. Figure 8 illustrates the main steps of the construc-
tion heuristic.

The rationale behind CH* is to keep the number of carrier
changes between the rounds as low as possible by copying
the history round, while at the same time the number of color
changes is minimized by solving corresponding instances
of the PSCCP. CH* does not guarantee to produce a feasi-
ble schedule (note that the existing heuristic CH also does
not guarantee this); however, it is able to provide an initial
schedule that is usually very low in costs compared to initial
schedules produced by CH.

Algorithm 3 and Fig 8 describe and illustrate themain pro-
cessing steps and the core idea of the construction heuristic
for the PSSP that we propose in this paper. Additionally, we
included in our implementation of the construction heuris-
tic a consideration of minimum- and maximum-consecutive
carrier block constraint violations when generating the ini-
tial carrier sequence. These constraints affect feasible carrier
sequences such that numbers of consecutively scheduled
carriers of the same type are restricted. We simply try to
fix potential constraint violations by going over the carrier
sequence and insert or remove single carriers. This is done
twice in our implementation of CH*: First after the history
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Fig. 8 Illustration of the main processing steps of the proposed con-
struction heuristic (CH*). Steps 3 and 4 are repeated until all demands
are fulfilled or no more carriers can be inserted due to resource limits

round has been copied, and a second time before returning
the initial schedule. Please refer to Winter et al. (2019) for
details about the minimum- and maximum-consecutive car-
rier block constraints.
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7 Empirical evaluation

In this section, we provide an extensive experimental evalua-
tion of the large neighborhood search operator and construc-
tion heuristic we propose in this paper. First, we describe
the setup and computational environment we have used to
conduct our benchmark experiments in Sect. 7.1. Afterward,
we elaborate on how parameters for the heuristic algorithms
have been selected using state-of-the-art automated parame-
ter tuning software in Sect. 7.2. Finally, the results of all our
experiments are presented and discussed in Sect. 7.3.

7.1 Experimental environment

To evaluate the performance of the proposed LNS opera-
tor �LN S∗ and the novel construction heuristic CH* for the
PSSP, we extended the code for the simulated annealing-
based metaheuristic approach from Winter et al. (2019)
(we chose the variant that was able to find solutions for
all benchmark instances) to implement these methods. All
experiments discussed in this section were performed using
the 24 publicly available benchmark instances from the lit-
erature.4 Instances 1–12 are very small to medium-size and
instances 13–24 contain very la

rge real-life paint shop scheduling scenarios.
Table 2 summarizes the size parameters for the 24 bench-

mark instances, where every row contains parameters for a
single instance.

Columns 2 and 3 include information about the total num-
ber of rounds (Rounds) as well as the maximum capacity of
carriers per round (Round Capacity), whereas Columns 4–
6 display the total number of colors (Colors), carrier types
(Carrier Types), and demands (Demands) that are specified
by the instances. Finally, Column 7 indicates whether forbid-
den carrier and color sequence hard constraints are imposed
by the instance.

Note that instances 1–12 are considered to be small
instances, as the round capacity as well as the number of
colors, carrier types, and demands are much smaller than for
instances 13–24.Many of these small instances could be pre-
viously solved to optimality using exact methods in Winter
and Musliu (2021); Winter et al. (2020). Instances 13–24 on
the other hand represent real-life scheduling scenarios from
a large-scale industrial paint shop; therefore, they all use the
same round capacity, colors, and carrier types. As the param-
eters of these instances lead to a very large search space, none
of these instances could be efficiently tackled using existing
exact methods, but the simulated annealing approach could
provide practical solutions in a reasonable time. As some
of the benchmark instances to the PSSP define hard con-
straints that impose forbidden color sequences, we adapted

4 https://www.dbai.tuwien.ac.at/staff/winter/.

our implementation of thePSCCPheuristic (seeAlgorithm1)
to include violations to this constraint in its cost evaluation
function (i.e., the best color position is the one which intro-
duces the lowest number of forbidden color violations, ties
are broken by color change costs). Furthermore, we used a
performance efficient implementation of the cost evaluation
function that utilizes incremental evaluation (i.e., only areas
in the schedule that have been modified since the last evalu-
ation call will be reevaluated).

To incorporate the forbidden color constraint in theMiniZ-
inc model (Listing 1), we initially experimented with the
deterministic finite automaton encoding we previously pro-
posed in Winter and Musliu (2021) for this constraint.
However, early experiments showed that it was more effec-
tive to not include the forbidden color constraint in the model
so that the solution time needed by the large neighborhood
search operator is reduced. If forbidden color violations are
caused by the operator, the local search process is usually able
to quickly repair any forbidden color violations. We further
used an up-to-date version of the MiniZinc software Nether-
cote et al. (2007) to solve instances of the PSCCPwith recent
versions of the CP solver chuffed Chu (2011) and the MIP
solver Gurobi (2020).

As the PSSP actually uses squared color change costs per
round in its objective function instead of a simple summa-
tion of the changes, we further incorporated such a solution
objective in both the exactmodeling approach and the heuris-
tic approach for the PSCCP by slightly changing the solution
objective to consider the squared color changes per round.
Additionally, in some instances for the PSSP the costs for
a single color change may in rare cases vary depending on
the specific pair of colors which are involved. We considered
these specific costs in the implementation of the heuristic
PSCCP approach; however, we decided to not include it in
the MiniZinc model as it drastically slowed down the model
compilation and the overall solution process in early experi-
ments.

Initial experiments further showed that the PSCCP solu-
tion process of the exact solverswas too time-intensive for the
repeated call inCH*,which caused an impractical run time of
the heuristic. Therefore, we evaluated only an implementa-
tion ofCH* that uses the PSCCPheuristic in our experiments.
The LNS operator on the other hand was still evaluated using
both the heuristic and exact solution methods for the PSCCP.

Tocompare the existing simulated annealing-based approach
as well as the existing PSSP construction heuristic with the
proposed methods in this paper, we evaluated a variety of
different configurations of the LNS operator and the novel
construction heuristic in our experiments. Table 3 gives an
overview of all the different evaluated solution methods.

Column 1 of the table displays an abbreviation that will
be used to refer to the respective method later in this section,
whereas Column 2 describes the configuration of the respec-
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Table 2 Overview of instance
size parameters for the 24
publicly available benchmark
instances for the PSSP

Instance Rounds Round capacity Colors Carrier types Demands Forbidden Seq.

I 1 7 19 6 2 2 no

I 2 7 19 7 2 0 yes

I 3 20 19 7 2 0 no

I 4 20 19 4 2 4 yes

I 5 50 19 4 3 22 no

I 6 50 19 6 2 0 yes

I 7 70 19 4 4 55 no

I 8 70 19 8 2 5 yes

I 9 100 19 6 2 39 no

I 10 100 19 6 2 35 yes

I 11 200 19 6 3 118 no

I 12 200 19 7 4 384 yes

I 13 7 480 20 46 108 no

I 14 7 480 20 46 108 yes

I 15 20 480 20 46 238 no

I 16 20 480 20 46 238 yes

I 17 50 480 20 46 1055 no

I 18 50 480 20 46 1055 yes

I 19 70 480 20 46 1743 no

I 20 70 480 20 46 1743 yes

I 21 100 480 20 46 2469 no

I 22 100 480 20 46 2469 yes

I 23 200 480 20 46 5907 no

I 24 200 480 20 46 6057 yes

tive method. All evaluated approaches use local search and
thereby randomly selected moves; therefore, we conducted
10 repeated runs for each instance and used the arithmetic
mean solution costs for our evaluations if not stated other-
wise.

All experiments were conducted on a computing cluster
with 10 identical nodes, each having 24 cores, an Intel(R)
Xeon(R) CPU E5–2650 v4 @ 2.20GHz and 252 GB RAM.

7.2 Parameter configuration

To configure the heuristic methods we propose in this paper,
we need to select a number of parameters. In a first step,
we selected reasonable defaults for each parameter based
on some manual tuning runs with a few realistically sized
instances. Afterward,we used a recent version of the state-of-
the-art automated parameter configuration software SMAC
Lindauer et al. (2017), which we used to tune the parameters.
Table 4 provides an overview of all configured parameters.

The first column of Table 4 displays the parameter name,
while the second column shows a brief description of the
parameter. Column three presents the allowed parameter
range for the tuning process, and column four displays the
default value given to SMAC. (We selected the ranges man-

ually so that they include a reasonable range near the default
value.)

The approach fromWinter et al. (2019) used twomanually
tuned parameters: The initial temperature and cooling rate
for simulated annealing (see the default values in Table 4).
To encourage a fair comparison, we decided to tune these
two parameters in a first tuning process using the simu-
lated annealing approach that uses the existing construction
heuristic (LS/C). In a second tuning process, we tuned the
parameters for the LNS method and novel construction
heuristic proposed in this paper. Therefore, we handed the
solution method that uses the novel construction heuristic
and the heuristic PSCCP solution method (LNS-H/C*) to
the second tuning process.

We executed both tuning processes with SMAC using the
following settings: Instances 1–24 were used as the training
set, and we set the cutoff time per instance to 30 minutes.
The overall tuning process was given a wall clock time limit
of 4 full days.

The tuned results for all parameters are shown in Column
5 of Table 4. We used these parameter settings for all of our
final experiments and set the runtime limit to 1 hour.
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Table 4 Overview of the configured parameters and tuning results

Parameter Description Range Default Value Tuning Result

Initial temperature The initial temperature used by simulated
annealing

[0.1, 0.5] 0.25 0.1297

Cooling rate The cooling rate used by simulated
annealing

[0.9, 0.99] 0.95 0.9462

k Configures which color assignments are
destroyed and repaired during a lns
move

{2, 5, 10, 20, 40} 5 2

α The probability to conduct a LNS operator
move in a local search iteration

[0.00001, 0.001] 0.0001 0.000044

β Configures how many iterations can be
used by local search to find a new best
result after a LNS move

{100, 200, 500, 1000, 10000} 1000 10000

Demand look ahead Configures how many demands are
considered when searching for a color
assignment in the novel construction
heuristic

{1, 20, 50, 100, 150} 50 20

Time limit Configures the time limit (in seconds) for
the PSCCP solution method within LNS

{60, 90, 120, 180} 60 120

7.3 Computational results

An overview of the final results for the 24 paint shop schedul-
ing benchmark instances is presented in Table 5.

Columns 2–10 show the relative per instance results for
each of the evaluated solvers (see Table 3 for an explana-
tion about the solver IDs). To calculate relative per instance
results, the mean solution costs (produced by 10 repeated
experimental runs) were divided by the overall best mean
solution costs per row. In other words, this means that a value
of 1 indicates an overall best mean cost result for an instance,
and values greater than 1 display the mean costs relative to
the best mean costs in our experiments.

We can see in the results shown in Table 5, that approaches
which are starting the search from a heuristically generated
solution are able to find feasible solutions for all 24 bench-
mark instances, whereas approaches that start from an empty
initial solution cannot produce solutions for instances 23 and
24 within the time limit. Furthermore, the results show that
starting from a heuristically constructed schedule leads to
better results for the larger instances 13–24. However, for the
small- to medium-sized instances 1–12, for some instances
best results were achieved by solution methods that started
from an empty initial schedule. This indicates that generating
a good solution quickly is beneficial especially for large-scale
instances, where starting from an empty schedule would be
too time-intensive.

We can see that results produced by the existing methods
are improved for all of the instances by at least one of the new
solution methods that use the novel construction heuristic
or the LNS operator. This shows the strength of the new

techniques, especially for the large instances, where many
results are improved by factors larger than 4.

If we look at the results produced with the LNS operator,
we see differences in the quality of the results depending on
the utilized PSCCP solution approach. Overall, the approach
that uses the heuristic PSCCP solution method produces the
best results for the majority of the instances; however, the
exact PSCCP solution approach using the CP solver chuffed
can reach the best results for many of the smaller instances.
The approach using the gurobi integer programming solver
for the PSCCP produces similar results and reaches the best
results for 3 of the smaller instances and the largest instance.

Table 6 presents the absolute best results for all evaluated
approaches. The displayed costs are the best costs out of the
10 repeated experimental runs for each method and instance.

The best results per roware formatted in boldface.Overall,
we can see that the best cost results show a similar outcome as
the relative mean results. However, as this table presents the
single best result out of ten repetitive runs, we can see some
outliers that do not match the best relative mean results. For
example, we can see that the traditional local search approach
is able to produce the best result for instance 8, although it
did not achieve the best score in the mean cost comparison.
Furthermore, the best bound for the largest instance in this
case is produced by the LNS-CP/C* approach, although the
best relative mean cost results were achieved using the LNS-
IP/C* approach.

Figure 9 shows a comparison of all approaches that start
from an initial solution that was generated by a construction
heuristic.
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Table 5 Overview of the relative results for each of the evaluated solution methods

Instance LS/C LS/C* LS LNS-H/C* LNS-H LNS-CP/C* LNS-CP LNS-IP/C* LNS-IP

I 1 1.14 1.11 1.13 1.06 1.06 1 1.05 1.07 1.06

I 2 1.12 1.05 1.03 1.08 1.03 1 1.02 1.1 1.04

I 3 1.05 1 1.05 1 1.07 1 1.04 1 1.06

I 4 1.08 1.06 1.1 1.07 1.06 1.03 1 1.03 1.07

I 5 1.11 1 1.11 1 1.19 1 1.18 1 1.19

I 6 1.03 1 1.03 1.01 1.05 1.02 1.04 1 1.05

I 7 1.22 1.01 1.22 1.01 1.28 1 1.26 1.02 1.26

I 8 1.09 1.05 1.02 1.05 1.04 1.03 1 1.2 1.06

I 9 1.13 1.12 1.09 1.1 1.06 1.08 1 1.38 1.15

I 10 1.03 1 1.03 1.03 1.07 1.01 1.05 1.04 1.04

I 11 1.4 1.08 1.38 1.09 1.49 1 1.38 1.17 1.43

I 12 1.38 1 1.11 1.08 1.24 1.02 1.2 1.21 1.2

I 13 10.82 1.07 255.51 1 205.52 1.05 283.54 1.37 261.09

I 14 9.13 1.19 145.91 1 122.31 1.04 162.4 1.67 131.98

I 15 5.25 1.54 252.21 1 193.19 1.35 254.73 1.43 248.85

I 16 2.97 1.06 107.54 1 84.6 1.22 111.05 1.16 102.74

I 17 3.16 1.32 214.34 1 171.9 1.26 219.45 1.38 218.38

I 18 1.63 1.06 47.53 1 37.9 1.23 47.83 1.01 48.17

I 19 4.19 1.57 270.05 1 222.06 1.74 272.74 1.72 271.31

I 20 1.51 1.16 53.08 1 42.62 1.29 53.54 1.25 53.61

I 21 5.65 1.07 284.26 1 226.61 1.2 285.26 1.23 284.18

I 22 2.07 1.15 60.56 1 56.32 1.1 60.73 1.27 60.89

I 23 4.04 1.23 1 1.35 1.33

I 24 1.58 1.02 1.12 1.08 1

Fig. 9 Box plots comparing the relative mean cost results produced
by approaches that use a construction heuristic to generate an initial
solution

The figure visualizes the relative mean cost results for all
24 instances as box plots. We can see that approaches using
the novel construction heuristic overall lead to the best results
in our experiments with a median value close to 1, whereas
the existing construction heuristic has a median value at

Fig. 10 Box plots comparing the relative mean best results produced
by approaches that use the novel construction heuristic to generate an
initial solution

roughly 1.5 and in general a much wider range with some
outliers even lying above the value 8.

Figure 10 shows box plots only for approaches that use
the novel construction heuristic.

We can see that overall the approach using a large neigh-
borhood search operator that utilizes the heuristic PSCCP
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Table 6 Overview of the best results produced by the evaluated methods

Instance LS/C LS/C* LS LNS-H/C* LNS-H LNS-CP/C* LNS-CP LNS-IP/C* LNS-IP

I 1 822 808 849 802 825 795 798 834 794

I 2 889 865 876 929 880 844 847 937 871

I 3 988 961 990 961 1009 961 971 961 1007

I 4 966 956 994 956 953 930 943 974 951

I 5 574 530 577 530 600 531 599 530 598

I 6 875 845 863 850 888 853 872 849 879

I 7 1032 867 1033 856 1089 858 1056 882 1063

I 8 1496 1480 1426 1489 1437 1459 1485 1770 1434

I 9 1345 1321 1240 1332 1240 1308 1272 1561 1316

I 10 1077 1058 1088 1085 1121 1053 1111 1082 1099

I 11 4318 3346 4357 3268 4608 3030 4353 3595 4407

I 12 5238 3463 4168 3699 4463 3697 4625 4501 4476

I 13 74236 7379 1683619 6592 1406142 6815 1577682 9023 1788255

I 14 110714 10341 1710055 9374 1503198 9108 1923650 12460 1329706

I 15 153728 28385 7291013 25427 5590121 29240 7481155 32572 7332157

I 16 213003 47097 7690901 42765 5995974 51953 8005671 61039 5898146

I 17 323829 105397 21716866 68841 17103946 107991 22135745 95567 21884939

I 18 597419 315377 22684889 285572 17709696 381400 22764282 311956 22865284

I 19 497486 108953 32447139 96825 25871047 144226 32631108 130235 32544683

I 20 913110 491845 33061150 476506 26323904 609803 33287708 568279 33573545

I 21 937094 126750 48199455 135757 37984334 146352 48381085 157073 47520813

I 22 1674595 615530 49354821 535846 40215243 486698 49219231 690072 49633330

I 23 1714000 495635 357051 506831 522690

I 24 2609884 1209816 1290190 1141429 1327593

solution method produces the best results, having a median
value close to 1 and the smallest interquartile range. When
comparing the approaches using exact PSCCP solutionmeth-
ods with the approach using no LNS operator, we can see that
the LNS approach using chuffed has the lowest median, fol-
lowed by the existing local search approach which has the
second smallest interquartile range.

In Fig. 11, we can see box plots for the mean costs results
for instances 1–22, which were produced by the approaches
that start from an empty initial schedule.

Again the LNS approach that uses the heuristic PSCCP
solution method has the smallest median value, followed by
the LNS approach using the CP solver to solve the PSCCP
before the MIP-based LNS approach and the existing local
search approach. This indicates that the novel techniques can
improve results even when they are used without an initial
construction heuristic.

Table 7 displays the relative mean costs produced by the
local search together with the existing construction heuristic
approach in direct comparison with the LNS variant that uses
the heuristic PSCCP solution method together with the novel
construction heuristic. We selected these two methods for a
direct comparison as the formerwas the overall best perform-

Fig. 11 Box plots comparing the relative mean best results produced
by approaches that start from an empty initial solution

ing existing approach from the literature in our experiments,
and the latter is the overall best performing novel approach
that we propose in this paper.

The results in Table 7 show that the novel approach pro-
duced the best results for all instances in this comparison and
was even better than the existing approach in 23 out of 24
cases.
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Table 7 Direct comparison of
the relative mean cost results
produced by the overall best
existing method with the overall
best novel method proposed in
this paper

Instance LS/C LNS-H/C*

I 1 1.14 1.06

I 2 1.12 1.08

I 3 1.05 1

I 4 1.08 1.07

I 5 1.11 1

I 6 1.03 1.01

I 7 1.22 1.01

I 8 1.09 1.05

I 9 1.13 1.1

I 10 1.03 1.03

I 11 1.4 1.09

I 12 1.38 1.08

I 13 10.82 1

I 14 9.13 1

I 15 5.25 1

I 16 2.97 1

I 17 3.16 1

I 18 1.63 1

I 19 4.19 1

I 20 1.51 1

I 21 5.65 1

I 22 2.07 1

I 23 4.04 1

I 24 1.58 1.12

Finally, we compare the best upper bounds on the solution
costs for each of the 24 PSSP benchmark instances which
were produced by the novel methods proposed in this paper
with previously published upper bounds in Table 8.

Column 2 of the table displays the best upper bounds
for each instance that were achieved with the existing meta-
heuristic proposed in Winter et al. (2019) (LS), and Column
3 displays the best solutions produced with exact solution
methods for the PSSP fromWinter and Musliu (2021). Note
that the exactmethods could further prove that the best results
for instances 1–9 are optimal. The best results produced by
the solution methods proposed in this paper are shown in
Column 4. Best results per instance are formatted in bold-
face.

The results in Table 8 show that the LNS approach is able
to improve results for all 24 instances compared to the exist-
ing metaheuristic results. Furthermore, we can see that the
methods proposed in this paper are able to provide previously
unknown upper bounds for instances 11–24. Exact methods
still produce the best results for instances 1–10, but the LNS
approaches are able to reach optimal results for two of the
instances and several additional nearly optimal results for
small instances.

Table 8 Overview on the best upper bounds for all 24 PSSP benchmark
instances that were produced by existing heuristic methods, existing
exact methods, and the methods proposed in this paper

Instance LS EM LNS

I 1 806 775 794

I 2 868 842 844

I 3 990 961 961

I 4 975 918 930

I 5 593 530 530

I 6 887 842 845

I 7 1084 844 856

I 8 1834 1237 1434

I 9 1735 975 1272

I 10 1134 964 1053

I 11 5236 3030

I 12 5723 3463

I 13 116235 6592

I 14 118628 9108

I 15 172679 25427

I 16 262252 42765

I 17 421777 68841

I 18 581021 285572

I 19 555829 96825

I 20 927822 476506

I 21 917955 126750

I 22 1128716 486698

I 23 1884125 357051

I 24 2086450 1141429

8 Conclusion

In this work, we introduced a novel paint shop coloring prob-
lem (PSCCP) that appears as a sub-problem in a real-life paint
shop scheduling problem. We further proposed a heuristic
solution approach as well as an exact technique based on
constraint modeling to solve instances of the PSCCP.

Additionally, we proposed an innovative LNS operator
that can be utilized within metaheuristic approaches based
on local search for a recently introduced paint shop schedul-
ing problem (PSSP). This novel LNS operator utilizes the
proposed solution methods for the PSCCP to find optimized
color sequences, which can be used to improve candidate
schedules for the PSSP by applying the resulting colors to
PSSP solutions.

We evaluated all proposed techniques by performing a
series of experiments using a set of benchmark instances
for the PSSP from the recent literature. The results showed
that the proposed methods lead to a clear performance
improvement as results for every benchmark instance could
be improved when compared with existing metaheuristic
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approaches. The LNS operator which used the heuristic solu-
tion method for the PSCCP overall produced the best results
for the majority of the instances, followed by variants that
utilized exact methods for the PSCCP using state-of-the-
art constraint programming and mixed integer programming
solvers. Furthermore, we were able to provide previously
unknown upper bounds to 14 benchmark instances using the
novel techniques.

In future work, it could be interesting to investigate meta-
heuristic solution methods for the PSCCP.
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