Skip to main content
Log in

Shape-Preserving Interpolation and Smoothing for Options Market Implied Volatility

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The interpolation of the market implied volatility function from several observations of option prices is often required in financial practice and empirical study. However, the results from existing interpolation methods may not satisfy the property that the European call option price function is monotonically decreasing and convex with respect to the strike price. In this paper, a modified convex interpolation method (with and without smoothing) is developed to approximate the option price function while explicitly incorporating the shape restrictions. The method is optimal for minimizing the distance between the implied risk-neutral density function and a prior density function, which allows us to benefit from nonparametric methodology and empirical experience. Numerical performance shows that the method is accurate and robust. Whether or not the sample satisfies the convexity and decreasing constraints, the method always works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Duffie, D.: Dynamic Asset Pricing Theory. Princeton University Press, Princeton (1996)

    Google Scholar 

  2. Andersen, L., Brotherton-Ratcliffe, R.: The equity option volatility smile: an implicit finite difference approach. J. Comput. Finance 1, 5–38 (1998)

    Google Scholar 

  3. Rubinstein, M.: Implied binomial tree. J. Finance 49, 771–818 (1994)

    Article  Google Scholar 

  4. Derman, E., Kani, I., Chriss, N.: Implied trinominal trees of the volatility smile. J. Deriv. 3, 7–22 (1996)

    Article  Google Scholar 

  5. Derman, E., Kani, I.: Stochastic implied trees: Arbitrage pricing with stochastic term and strike structure of volatility. Int. J. Theor. Appl. Finance 1, 61–100 (1998)

    Article  MATH  Google Scholar 

  6. Britten-Jones, M., Neuberger, A.: Option prices, implied prices processes, and stochastic volatility. J. Finance 55, 839–866 (2000)

    Article  Google Scholar 

  7. Andersen, L., Andreasen, J.: Jump-diffusion process: Volatility smile fitting and numerical methods for option pricing. Working Paper, General Re Financial Products (2000)

  8. Jackwerth, J.C., Rubinstein, M.: Recovering probability distributions from contemporary security prices. J. Finance 51, 1611–1631 (1996)

    Article  Google Scholar 

  9. Wang, Y., Yin, H., Qi, L.: No-arbitrage interpolation of the option price function and its reformulation. J. Optim. Theory Appl. 120, 627–649 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ait-Sahalia, Y., Duarte, J.: Nonparametric option pricing under shape restrictions. J. Econom. 116, 9–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bondarenko, O.: Estimation of risk-neutral densities using positive convolution approximation. J. Econom. 116, 85–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Shimko, D.: Bounds of probability. RISK Magazine, April, pp. 33–37 (1993)

  13. Powell, M.J.D.: Approximation Theory and Application. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  14. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  15. Irivine, L.D., Marin, S.P., Smith, P.W.: Constrained interpolation and smoothing. Constr. Approx. 2, 129–151 (1986)

    Article  MathSciNet  Google Scholar 

  16. Elfving, T., Andersson, L.-E.: An algorithm for computing constrained smoothing spline functions. Numer. Math. 52, 583–595 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dontchev, A.L., Qi, H.D., Qi, L.: Quadratic convergence of Newton’s method for convex interpolation and smoothing. Constr. Approx. 19, 123–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dontchev, A.L., Qi, H.D., Qi, L., Yin, H.: A Newton method for shape-preserving spline interpolation. SIAM J. Optim. 13, 588–602 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Qi, L., Yin, H.: A strongly semismooth integral function and its applications. Comput. Optim. Appl. 25, 223–246 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hastie, T.J., Tibshirani, R.J.: Generalized Additive Models. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  21. Qi, L., Shapiro, A., Ling, C.: Differentiability and semismoothness properties of integral functions and their applications. Math. Program. 102, 223–248 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dontchev, A.L., Kalchev, B.D.: Duality and well-posedness in convex interpolation. Numer. Funct. Anal. Optim. 10, 637–687 (1989)

    Article  MathSciNet  Google Scholar 

  23. Pang, J.-S., Qi, L.: A globally convergent Newton method for convex SC 1 minimization problems. J. Optim. Theory Appl. 85, 633–648 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Andersson, L.-E., Elfving, T.: An algorithm for constrained interpolation. SIAM J. Sci. Stat. Comput. 8, 1012–1025 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hull, J., Suo, W.: A methodology for assessing model risk and its application to the implied volatility function model. J. Financ. Quant. Anal. 37, 297–318 (2002)

    Article  Google Scholar 

  26. Andreasen, J.: Implied modeling: stable implementation, hedging, and duality. Working Paper, University of Aarhus (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yin.

Additional information

H. Yin’s research was supported by FRG of Minnesota State University Mankato and Chinese NSF Grants 10671203, 70531040, and 70621001.

L. Qi’s work was supported by the Hong Kong Research Grant Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Wang, Y. & Qi, L. Shape-Preserving Interpolation and Smoothing for Options Market Implied Volatility. J Optim Theory Appl 142, 243–266 (2009). https://doi.org/10.1007/s10957-009-9541-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-009-9541-4

Keywords

Navigation