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(October 07, 2008; Revised June 1, 2010)

Abstract

In this paper we consider the linear symmetric cone programming (SCP). At a Karush-
Kuhn-Tucker (KKT) point of SCP, we present the important equivalent conditions for the
nonsingularity of Clarke’s generalized Jacobian of the KKT nonsmooth system, such as
primal and dual constraint nondegeneracy, the strong regularity, and the nonsingularity of
the B-subdifferential of the KKT system. This affirmatively answers an open question by
Chan and Sun [SIAM J. Optim. 19 (2008), pp. 370-396].
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1 Introduction

Consider the linear symmetric cone programming (SCP for short) as follows:

min 〈c, x〉

s.t. A(x) = b, (1)

x ∈ K,

where c ∈ V, V := (J , 〈·, ·〉, ◦) is a n-dimensional Euclidean Jordan algebra (see Section 2),
K is the symmetric cone in V, A : V → R

m is a linear operator, and b ∈ R
m. The SCP

provides a simple, natural, and unified framework for various existing optimization problems,
which includes the linear programming (LP), the second-order cone programming (SOCP), the
semidefinite programming (SDP) problems, and has wide applications in engineering, economics,
management science, and other fields.
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Let A∗ : R
m → V be the adjoint operator of A. Then, the dual of the SCP problem (1) is

given by

max bT y

s.t. A∗(y) + s = c, (2)

s ∈ K.

Thus, the KKT conditions of the SCP problem (1) and its dual (2) become the following:







A(x) = b,

A∗(y) + s = c,

x ∈ K, s ∈ K, 〈x, s〉 = 0.
(3)

We call (x̄, ȳ, s̄) ∈ V × R
m × V a KKT point if it satisfies the KKT conditions (3). Note that

(x̄, ȳ, s̄) is a KKT point if and only if it is a solution to the KKT (nonsmooth) system:

H(x, y, s) :=





c −A∗(y) − s

A(x) − b

x − (x − s)+



 = 0, (x, y, s) ∈ V × R
m × V, (4)

where (·)+ is the metric projection onto K. (The above equivalence can be traced back to
Eaves [1] in the setting of complementarity problems; and in the special case of SCP, see also
Gowda et. al [2]). It is well-known that nonsingularity of Clarke’s generalized Jacobian of the
KKT system, which is also called BD-regularity introduced by Pang and Qi [3], is not only
one of the fundamental characterizations for sensitivity and stability analysis of optimization
problems but also plays an important role in the design of algorithms, see [4] and the references
therein. For sensitivity and stability analysis of optimization problems, see [5] and the references
therein. This paper deals with the nonsingularity of Clarke’s generalized Jacobian of the KKT
system (4) in the setting of SCP. In particular, we consider its connection to another important
concept, nondegeneracy (primal and dual nondegeneracy and weak nondegeneracy), which has
been extensively studied in the settings of SDP and SOCP, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13]
and even developed in the general setting of optimization problems over arbitrary convex cones
[14, 15, 16]. For instance, Pataki [14] introduced the notions of primal and dual nondegeneracy of
convex optimization problems in conic form and showed that at a primal-dual optimal solution,
primal (dual) nondegeneracy implies the uniqueness of the dual (primal) optimal solution (this
is also independently established by Shapiro and Fan [17]) and the reverse implication holds
only under strict complementarity; Pataki and Tunçel [15] proved that the primal and dual
nondegeneracy, and strict complementarity are all generic properties. (The results mentioned
above generalize the corresponding results of Alizadeh-Haeberly-Overton [6] from the setting of
SDP.) Moreover, Yildirim [13] introduced the notion of weak primal and dual nondegeneracy
in the SDP context, and then developed it in the general conic form and showed that the
weak primal (dual) nondegeneracy is necessary and sufficient for the existence of a unique dual
(primal) optimal solution [16]. Recently, in the SDP context, Chan and Sun [8] firstly showed
that at a KKT point, nonsingularity of Clarke’s generalized Jacobian of the KKT system is
equivalent to the nonsingularity of its B-subdifferential and some other important conditions
such as the primal and dual constraint nondegeneracy, and the strong regularity. In the same
paper, Chan and Sun asked whether the corresponding results for SDP can be extended to SCP.

In this paper we answer the above question in the affirmative. To do so, we develop a new
technique which serves as a fundamental tool for our analysis in this paper. More precisely, we
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provide a decomposition result of Euclidean Jordan algebras, and establish a triangular repre-
sentation of the Jacobian of Löwner operators. Then, we present the triangular representation
of Clarke’s generalized Jacobian of the projection operator onto symmetric cone K and give an
explicit formula for the tangent cone of K. This helps us prove the equivalence at a KKT point
of the nonsingularity of Clarke’s generalized Jacobian of the KKT system (4), the nonsingularity
of its B-subdifferential, the primal and dual constraint nondegeneracy, and the strong regularity.

As we were sharing the results and the earlier drafts of this paper with some colleagues§, we
learned that Wang [18] independently obtained, around the same time, essentially the same main
result. Her approach is based on the connection between the Lyapunov transformation (operator)
and its matrix representation with respect to the orthonormal basis of V. The technique used in
our proof below is established on the exact expression for Clarke’s generalized Jacobian of ΠK

and a decomposition result of Euclidean Jordan algebras (see Section 2) based on a generalized
weighted partial trace operator which may have other applications. We also expose the intimate
connections among the main result, Robinson’s notion of constraint nondegeneracy and the
geometric notions of nondegeneracy (see Bonnans and Shapiro [5], Pataki [14]) in general convex
optimization problems in conic form (see Section 3).

This paper is organized as follows. In Section 2, we briefly describe some fundamental
concepts and the decomposition results on Euclidean Jordan algebras. We give the triangu-
lar representations of the Jacobian of Löwner operators and Clarke’s generalized Jacobian of
projection operator onto symmetric cone. Then, we present the tangent cone and some of its
properties used in our analysis. In Section 3, we show our main equivalence result.

2 Preliminaries

2.1 Euclidean Jordan algebras

We review some necessary results on Euclidean Jordan algebras details of which can be found
in Koecher’s lecture notes [19] and the monograph by Faraut and Korányi [20].

Let J be a n-dimensional vector space over R and (x, s) 7→ x ◦ s : J × J → J be a
bilinear mapping. We call (J , ◦) a Jordan algebra if the bilinear mapping satisfies the following
conditions:

(i) x ◦ s = s ◦ x for all x, s ∈ J ,

(ii) x ◦ (x2 ◦ s) = x2 ◦ (x ◦ s) for all x, s ∈ J ,

where x2 := x ◦ x and x ◦ s is the Jordan product of x and s. In general, there may exist
x, s, z ∈ J such that (x ◦ s) ◦ z 6= x ◦ (s ◦ z). We call an element e the identity element if
z ◦ e = e ◦ z = z for all z ∈ J . A Jordan algebra (J , ◦) with an identity element e is called a
Euclidean Jordan algebra, denoted by V := (J , 〈·, ·〉, ◦), if there is an inner product, 〈·, ·〉, such
that

〈x ◦ s, z〉 = 〈x, s ◦ z〉 for all x, s, z ∈ J .

Given a Euclidean Jordan algebra V, define the set of squares as K := {z2 : z ∈ V}. It is known
by Theorem III 2.1 in [20] that K is the symmetric cone, i.e., K is a closed, convex, homogeneous
and self-dual cone.

For z ∈ V, the degree of z denoted by deg(z) is the smallest positive integer k such that the
set {e, z, z2, · · · , zk} is linearly dependent. The rank of V is defined as max{deg(z) : z ∈ V}. In

§We thank Defeng Sun for pointing out the reference [18] and Liwei Zhang for sending us Wang’s PhD thesis.
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this paper, r will denote the rank of the underlying Euclidean Jordan algebra. An element q ∈ V
is an idempotent if q2 = q 6= 0, which is also called primitive if it cannot be written as a sum
of two idempotents. A complete system of orthogonal idempotents is a finite set {q1, q2, · · · , qk}
of idempotents where qi ◦ qj = 0 for all i 6= j, and q1 + q2 + · · · + qk = e. A Jordan frame is a
complete system of orthogonal primitive idempotents in V. Note that the number of elements
in every Jordan frame is r.

We state below the spectral decomposition theorem for the elements in a Euclidean Jordan
algebra.

Theorem 2.1 (Spectral Decomposition Type II (Theorem III.1.2, [20])) Let V be a Euclidean
Jordan algebra with rank r. Then for z ∈ V there exist a Jordan frame {q1, q2, · · · , qr} and real
numbers λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z) such that

z = λ1(z)q1 + λ2(z)q2 + · · · + λr(z)qr. (5)

The numbers λi(z) (i ∈ {1, 2, · · · , r}) are the eigenvalues of z. We call (5) the spectral decom-
position (or the spectral expansion) of z.

Observe that the Jordan frame {q1, q2, · · · , qr} in (5) depends on z. We do not write this
dependence explicitly for the simplicity of notation (the same for {e1, e2, · · · , er̄} below). Let
C(z) be the set consisting of all Jordan frames in the spectral decomposition of z. Let the
spectrum σ(z) be the set of all eigenvalues of z. Then σ(z) = {µ1(z), µ2(z), · · · , µr̄(z)} and for
each µi(z) ∈ σ(z), denoting Ni(z) := {j : λj(z) = µi(z)} we obtain that ei =

∑

j∈Ni(z) qj and ei

is idempotent but may not be primitive. By Theorem III.1.1 in [20], {e1, e2, · · · , er̄} is a unique
complete system of orthogonal idempotents such that

z = µ1(z)e1 + · · · + µk(z)er̄.

Let g : R → R be a real-valued function. Define the vector-valued function G : V → V as

G(z) :=

r∑

i=1

g(λi(z))qi = g(λ1(z))q1 + g(λ2(z))q2 + · · · + g(λr(z))qr, (6)

which is a Löwner operator. In particular, letting t+ := max{0, t}, t− := min{0, t} (t ∈ R), we
respectively define

ΠK(z) := z+ :=
r∑

i=1

(λi(z))+qi, z− :=
r∑

i=1

(λi(z))−qi.

In words, z+ is the metric projection of z onto K, and z− is the metric projection of z onto
−K, where the norm is defined by ‖z‖ :=

√

〈z, z〉. Note that z ∈ K (z ∈ int(K)) if and only if
λi(z) ≥ 0 (λi(z) > 0) ∀i ∈ {1, 2, · · · , r}, where int(K) denotes the interior of K. It is easy to
verify that

z+ ∈ K, − z− ∈ K, z = z+ + z−. (7)

Next, we recall the Peirce decomposition on the space V = (J , 〈·, ·〉, ◦). Let q ∈ V be a
nonzero idempotent. Then V is the orthogonal direct sum of J(q, 0), J(q, 1

2) and J(q, 1), where

J(q, ε) := {x ∈ V : q ◦ x = εx}, ε ∈

{

0,
1

2
, 1

}

.

4



This is called the Peirce decomposition of V with respect to the nonzero idempotent q. Fix a
Jordan frame {q1, q2, · · · , qr}. Defining the following subspaces for i, j ∈ {1, 2, · · · , r},

Jii := {x ∈ V : x ◦ qi = x} and Jij :=

{

x ∈ V : x ◦ qi =
1

2
x = x ◦ qj

}

, i 6= j,

we have the Peirce decomposition theorem as follows.

Theorem 2.2 (Theorem IV.2.1, [20]) Let {q1, q2, · · · , qr} be a given Jordan frame in a Eu-
clidean Jordan algebra V of rank r. Then V is the orthogonal direct sum of spaces Jij (i ≤ j).
Furthermore,

(i) Jij ◦ Jij ⊆ Jii + Jjj;

(ii) Jij ◦ Jjk ⊆ Jik, if i 6= k;

(iii) Jij ◦ Jkl = {0}, if {i, j} ∩ {k, l} = Ø.

Based on Theorems 2.1 and 2.2, we will introduce a decomposition result for the space V with
respect to a point z ∈ V. First, we need the following two important operators. For each z ∈ V,
we define the Lyapunov transformation L(z) : V → V by L(z)x = z ◦ x for all x ∈ V, which is
a symmetric self-adjoint operator in the sense that 〈L(z)x, s〉 = 〈x,L(z)s〉 for all x, s ∈ V. The
operator Q(z) := 2L2(z)−L(z2) is called the quadratic representation of z. We say two elements
x, s ∈ V operator commute if L(x)L(s) = L(s)L(x). By Lemma X.2.2 in [20], two elements x, s

operator commute if and only if they share a common Jordan frame. In the matrix algebra of
Hermitian matrices, this corresponds to two matrices admitting a simultaneous diagonalization
with respect to an orthogonal basis.

In what follows, let z =
∑r

i=1 λi(z)qi with λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z) and define

α := {i : λi(z) > 0}, β := {i : λi(z) = 0} and γ := {i : λi(z) < 0}. (8)

For the Jordan frame {q1, q2, · · · , qr} and i, j ∈ {1, 2, · · · , r}, let Pij be the orthogonal projection
operator onto the subspace Jij . Then, by Theorem 2.2, we have

Pjj = Q(qj) and Pij = 4L(qi)L(qj) = 4L(qj)L(qi) = Pji, i 6= j, i, j ∈ {1, 2, · · · , r}, (9)

and the orthogonal projection operators {Pij : i, j ∈ {1, 2, · · · , r}} form a complete system, i.e.,
they satisfy

Pij = P ∗
ij , P 2

ij = Pij , PijPkl = 0 if {i, j} 6= {k, l},
∑

1≤i≤j≤r

Pij = I, (10)

where P ∗
ij is the adjoint operator of Pij and I is the identity operator. For a more detailed

exposition, see [19, 25]. By (10), defining six projection operators as

Pαα :=
∑

i≤j,i∈α,j∈α

Pij , Pαβ :=
∑

i≤j,i∈α,j∈β

Pij, Pαγ :=
∑

i≤j,i∈α,j∈γ

Pij ,

Pββ :=
∑

i≤j,i∈β,j∈β

Pij , Pβγ :=
∑

i≤j,i∈β,j∈γ

Pij , Pγγ :=
∑

i≤j,i∈γ,j∈γ

Pij , (11)

we obtain that the above six projection operators are orthogonal and form a complete system,
too. Likewise, we specify the following six subspaces as

Jαα :=
⊕

i≤j,i∈α,j∈α

Jij , Jαβ :=
⊕

i≤j,i∈α,j∈β

Jij, Jαγ :=
⊕

i≤j,i∈α,j∈γ

Jij ,

Jββ :=
⊕

i≤j,i∈β,j∈β

Jij , Jβγ :=
⊕

i≤j,i∈β,j∈γ

Jij , Jγγ :=
⊕

i≤j,i∈γ,j∈γ

Jij . (12)
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Since Jij = PijV, the above subspaces are well-defined and it is easy to see that

Jαα = PααV, Jαβ = PαβV, Jαγ = PαγV, Jββ = PββV, Jβγ = PβγV, Jγγ = PγγV. (13)

Summarizing the above construction, we have the following decomposition result, which is useful
in the subsequent analysis.

Theorem 2.3 Let V = (J , 〈·, ·〉, ◦) be a Euclidean Jordan algebra with rank r. For z ∈ V, let
z =

∑r
i=1 λi(z)qi with λ1(z) ≥ λ2(z) ≥ · · · ≥ λr(z). Suppose that the index sets α, β, γ are given

by (8). Then V is the orthogonal direct sum of six subspaces

V = Jαα ⊕ Jαβ ⊕ Jαγ ⊕ Jββ ⊕ Jβγ ⊕ Jγγ ,

where Jαα, Jαβ , Jαγ , Jββ , Jβγ , Jγγ are specified by (12). Moreover, these six subspaces are uniquely
determined by the three elements:

∑

i∈α qi,
∑

i∈β qi and
∑

i∈γ qi, which are invariant under dif-
ferent choices of the Jordan frames in C(z).

Furthermore, (Jαα, 〈·, ·〉, ◦), (Jββ , 〈·, ·〉, ◦) and (Jγγ , 〈·, ·〉, ◦) form Euclidean Jordan algebras
with rank |α|, |β| and |γ| and identity elements

∑

i∈α qi,
∑

i∈β qi and
∑

i∈γ qi, respectively.

Proof. By the assumptions and (9) and (12), direct calculation yields

Pαα =
∑

i<j,i∈α,j∈α

Pij +
∑

i∈α

Pii

=
∑

i<j,i∈α,j∈α

4L(qi)L(qj) +
∑

i∈α

(2L(qi)L(qi) − L(qi))

=
∑

i6=j,i∈α,j∈α

2L(qi)L(qj) +
∑

i∈α

2L(qi)L(qi) −
∑

i∈α

L(qi)

=
∑

i∈α,j∈α

2L(qi)L(qj) − L

(
∑

i∈α

qi

)

= 2L

(
∑

i∈α

qi

)

L




∑

j∈α

qj



− L





(
∑

i∈α

qi

)2




= Q

(
∑

i∈α

qi

)

. (14)

In the same way, we have

Pββ = Q




∑

i∈β

qi



 , Pγγ = Q




∑

i∈γ

qi



 . (15)

On the other hand, it is easy to see that

Pαβ =
∑

i∈α,j∈β

4L(qi)L(qj)

= 4L

(
∑

i∈α

qi

)

L




∑

j∈β

qj



 . (16)
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Similarly, we have

Pαγ = 4L

(
∑

i∈α

qi

)

L




∑

j∈γ

qj



 , Pβγ = 4L




∑

i∈β

qi



L




∑

j∈γ

qj



 . (17)

From the argument after Theorem 2.1, we obtain that
∑

i∈α qi,
∑

i∈β qi and
∑

i∈γ qi are uniquely
determined by z, which are invariant under different choices of the Jordan frames in C(z). Thus,
the first part of the theorem follows from Theorem 2.2 and (12) and (13). Note that, by (14)
and (15) or by Lemma 20 in [2], it follows that

Jαα = J

(
∑

i∈α

qi, 1

)

, Jββ = J




∑

i∈β

qi, 1



 , Jγγ = J




∑

i∈γ

qi, 1



 . (18)

Then, by Theorem 2.2 and (18), we can verify the second part by direct calculation. �

As a direct consequence of the above theorem, we easily have the following.

Proposition 2.4 Every w ∈ V can be expressed as

w = wαα + wαβ + wαγ + wββ + wβγ + wγγ , (19)

where wαα ∈ Jαα, wαβ ∈ Jαβ , wαγ ∈ Jαγ , wββ ∈ Jββ , wβγ ∈ Jβγ , wγγ ∈ Jγγ .

As in the proof of Theorem 2.3, we can obtain that triples (Jαα

⊕
Jαβ

⊕
Jββ , 〈·, ·〉, ◦),

(Jββ

⊕
Jβγ

⊕
Jγγ , 〈·, ·〉, ◦) and (Jαα

⊕
Jαγ

⊕
Jγγ , 〈·, ·〉, ◦) form Euclidean Jordan algebras with

rank |α∪β|, |β∪γ| and |α∪γ| and identity elements
∑

i∈α∪β qi,
∑

i∈β∪γ qi and
∑

i∈α∪γ qi, respec-

tively. In what follows, let K |α|, K |β|, K |γ|, K |α∪β|, K |β∪γ| and K |α∪γ| respectively be the corre-
sponding symmetric cones in Euclidean Jordan algebras (Jαα, 〈·, ·〉, ◦) , (Jββ , 〈·, ·〉, ◦), (Jγγ , 〈·, ·〉, ◦),
(Jαα

⊕
Jαβ

⊕
Jββ , 〈·, ·〉, ◦), (Jββ

⊕
Jβγ

⊕
Jγγ , 〈·, ·〉, ◦) and (Jαα

⊕
Jαγ

⊕
Jγγ , 〈·, ·〉, ◦).

2.2 Generalized Jacobian

In this subsection, we give a triangular representation of the Jacobian of Löwner operator, and
Clarke’s generalized Jacobian of metric projection operator ΠK . The latter plays a role in
establishing some basic concepts such as the tangent cone and lineality space of K at z+. Here,
we assume that the reader is familiar with the concepts of (strong) semismoothness, and refer
to [21, 22, 23] for details.

Suppose that the scalar function g is differentiable on R. Let λ := (λ1, λ2, · · · , λr)
T ∈ R

r.
Recall that the first divided difference g[1](λ) of g at λ is the r × r symmetric matrix, where the
ij-th entry is given by

[λi, λj ]g :=







g(λi)−g(λj)
λi−λj

if λi 6= λj,

g′(λi) if λi = λj.

We define the corresponding triangle part Tri(g[1](λ)) of g[1](λ) as

(Tri(g[1](λ)))ij :=

{

(g[1](λ))ij if i ≤ j,

0 if i > j.
(20)
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By (11), define a triangular operator as P := (Pij) with i ≤ j where Pij is the projection
operator onto the subspace Jij . Then, we may define a generalized, weighted partial trace ⊙ of
an ordered pair of operators of Tri(g[1](λ)) and P as a new operator:

Tri(g[1](λ)) ⊙ P :=
∑

1≤i≤j≤r

[τi, τj ]gPij . (21)

This is a generalization of the partial trace operator in the sense that if the operator Tri(g[1](λ))
is representable by a 0, 1 matrix then Tri(g[1](λ)) ⊙ P becomes a partial trace of P . For the
notion of partial trace, see, e.g., [24].

Based on Theorem 3.2 of [25] and Theorem 2.8 of [26], we directly obtain the following
Jacobian properties of the Löwner operator G(·).

Theorem 2.5 Let z =
∑r

j=1 λj(z)qj . Then, G(·) is (continuously) differentiable at z if and
only if for each j ∈ {1, 2, · · · , r}, g is (continuously) differentiable at λj(z). In this case, the
Jacobian ∇G(z) is given by

∇G(z) = Tri(g[1](λ(z))) ⊙ P =
∑

1≤i≤j≤r

[λi(z), λj(z)]gPij . (22)

We call (22) the triangular representation of the Jacobian ∇G(z).

Recently, Sun and Sun [25] showed that the metric projection ΠK onto symmetric cones is
strongly semismooth everywhere. Employing a matrix representation approach, Kong, Tunçel
and Xiu [27] presented an exact expression for Clarke’s generalized Jacobian of ΠK , which is
linked to rank-one matrices. Based on the work mentioned above and Theorem 2.3, we will
formulate a triangular representation for Clarke’s generalized Jacobian of ΠK .

Let z :=
∑r

i=1 λi(z)qi and the index sets α, β, γ be given by (8). We recall a set of matrices
Λt(z) from [27]. For a given integer t ∈ {0, 1, · · · , |β|}, we define a set of r × r matrices Λt(z) by

Λt(z) :=












E|α|×|α| E|α|×|β| Γ|α|×|γ|

ET
|α|×|β| Λ0 0|β|×|γ|

ΓT
|α|×|γ| 0|γ|×|β| 0|γ|×|γ|




 : Λ0 =

(
E Λ00

ΛT
00 0

)

,Λ00 ∈ Λ(t, |β|)







, (23)

where E|α|×|α| and E|α|×|β| are the all ones matrix, Γ|α|×|γ| is a given matrix by the ij-entry

Γij = λi(z)
λi(z)−λj(z) (i ∈ α, j ∈ γ), and Λ(t, |β|) is a set of t × (|β| − t) matrices (θij)t×(|β|−t) (the

rows are indexed by |α|+ 1, |α|+ 2, · · · , |α|+ t, and the columns are indexed by |α|+ t + 1, |α|+
t + 2, · · · , |α| + |β|) specified by

Λ(t, |β|) :=
{

(θij)t×(|β|−t) ∈ [0, 1]t×(|β|−t) : θij satisfy (a) and (b) below
}

(a) θi,|α|+t+1 ≥ θi,|α|+t+2 ≥ · · · ≥ θi,|α|+|β| (i ∈ {|α| + 1, |α| + 2, · · · , |α| + t}) ,

θ|α|+1,j ≥ θ|α|+2,j ≥ · · · ≥ θ|α|+t,j (j ∈ {|α| + t + 1, |α| + t + 2, · · · , |α| + |β|});

(b)
(

1
θij

− 1
)

t×(|β|−t)
is a matrix of rank at most one.

Based on the above set of matrices, we define a set of (upper) triangular matrices Ut(z) as

Ut(z) :=







U : Uij = 0(i > j), U + UT − Diag{1, · · · , 1
︸ ︷︷ ︸

|α|+t

, 0, · · · , 0} ∈ Λt(z)







. (24)
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As in (11) and (12), we block partition the triangular matrix U ∈ Ut(z) into three triangular
submatrices Uαα, Uββ , Uγγ and three other submatrices Uαβ , Uαγ , Uβγ . That is,

U :=





Uαα Uαβ Uαγ

Uββ Uβγ

Uγγ



 . (25)

We rewrite the corresponding triangular operator as

P :=





Pαα Pαβ Pαγ

Pββ Pβγ

Pγγ



 .

Similarly, we define the following generalized, weighted partial trace ⊙ of ordered pairs of oper-
ators as:

Uαα ⊙ Pαα :=
∑

i≤j,i,j∈α

UijPij , Uαβ ⊙ Pαβ :=
∑

i∈α,j∈β

UijPij , Uαγ ⊙ Pαγ :=
∑

i∈α,j∈γ

UijPij,

Uββ ⊙ Pββ :=
∑

i≤j,i,j∈β

UijPij, Uβγ ⊙ Pβγ :=
∑

i∈β,j∈γ

UijPij , Uγγ ⊙ Pγγ :=
∑

i≤j,i,j∈γ

UijPij ,

U ⊙ P := Uαα ⊙ Pαα + Uαβ ⊙ Pαβ + Uαγ ⊙ Pαγ + Uββ ⊙ Pββ + Uβγ ⊙ Pβγ + Uγγ ⊙ Pγγ

=
∑

1≤i≤j≤r

UijPij . (26)

As a natural continuation of Proposition 2.5 and Theorem 3.1 of [27], we are ready to give
the formula for Clarke’s generalized Jacobian of ΠK at z, which states the interesting connection
between ∂BΠK(z) (respectively, ∂ΠK(z)) and ∂BΠK|β|(0) (respectively, ∂ΠK|β|(0)). In the case
of S

n, it reduces to Proposition 2.2 of [12].

Proposition 2.6 Let z =
∑r

i=1 λi(z)qi and the index sets α, β, γ be given by (8). The B-
subdifferential of ΠK(·) at z is given by

∂BΠK(z) = Pαα + Pαβ + Uαγ ⊙ Pαγ + ∂BΠK|β|(0).

Furthermore, Clarke’s generalized Jacobian of ΠK(·) at z is

∂ΠK(z) = conv {∂BΠK(z)} = Pαα + Pαβ + Uαγ ⊙ Pαγ + ∂ΠK|β|(0).

It is known from Proposition 3.3 of [25] that ΠK is strongly semismooth on V. For any
d ∈ V, let dij := Pijd, and

Uαγ ⊙ dαγ := [Uαγ ⊙ Pαγ ]d =
∑

i∈α,j∈γ

Uijdij .

Noting that

Π′
K|β|(dββ ; d) = lim

t↓0

ΠK|β|(dββ + td) − ΠK|β|(dββ)

t
= ΠK|β|(dββ), (27)

we will give the directional derivative of ΠK at z along the direction d, which reduces to a
well-known result of Sun and Sun [28] in the setting of S

n.
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Proposition 2.7 Let z =
∑r

i=1 λi(z)qi and the index sets α, β, γ be given by (8). Then the
directional derivative of ΠK at z along the direction d is specified by

Π′
K(z; d) = dαα + dαβ + Uαγ ⊙ dαγ + ΠK|β|(dββ), (28)

where Uαγ is given by (24) and (25).

Proof. By assumption and Proposition 2.4, for any given z ∈ V, let d = dαα + dαβ + dαγ +
dββ + dβγ + dγγ . Let DΠ

K|β|
be the set of the points where ΠK|β| is differentiable. Since ΠK is

strongly semismooth, Π′
K(z; ·) is well-defined on V.

In order to prove (28), we first consider the case of dββ ∈ DΠ
K|β|

with different eigenvalues

λi(dββ) in subalgebra Jββ. From the definition of strong semismoothness, it follows that for
every V ∈ ∂BΠK(z + td) with positive scalar t → 0,

ΠK(z + td) − ΠK(z) − V (td) = O(‖td‖2).

Thus, we have

lim
t↓0

ΠK(z + td) − ΠK(z)

t
− lim

t↓0
V d = 0,

or equivalently,

Π′
K(z; d) = lim

t↓0
V d. (29)

On the other hand, let z + td =
∑r

i=1 λi(z + td)qi(z + td) with λ1(z + td) ≥ λ2(z + td) ≥ · · · ≥
λr(z + td). Note that limt↓0 λ(z + td) = λ(z). As in (9) and (11), we define

P ′
jj = Q(qj(z + td)) and P ′

ij = 4L(qi(z + td))L(qj(z + td)), i 6= j, i, j ∈ {1, 2, · · · , r}, (30)

and six projection operators as

P ′
αα :=

∑

i≤j,i∈α,j∈α

P ′
ij , P ′

αβ :=
∑

i≤j,i∈α,j∈β

P ′
ij, P ′

αγ :=
∑

i≤j,i∈α,j∈γ

P ′
ij ,

P ′
ββ :=

∑

i≤j,i∈β,j∈β

P ′
ij , P ′

βγ :=
∑

i≤j,i∈β,j∈γ

P ′
ij , P ′

γγ :=
∑

i≤j,i∈γ,j∈γ

P ′
ij . (31)

By Theorem 2.5 and the argument after it, we have

V = U ′
αα ⊙ P ′

αα + U ′
αβ ⊙ P ′

αβ + U ′
αγ ⊙ P ′

αγ + U ′
ββ ⊙ P ′

ββ + U ′
βγ ⊙ P ′

βγ + U ′
γγ ⊙ P ′

γγ ,

where U ′
αα, U ′

αβ , U ′
αγ , U ′

ββ , U ′
βγ , U ′

γγ are the submatrices with U ′
ij = [λi(z+ td), λj(z+ td)]g where

g = (·)+. Then

V d = U ′
αα ⊙ P ′

ααd + U ′
αβ ⊙ P ′

αβd + U ′
αγ ⊙ P ′

αγd + U ′
ββ ⊙ P ′

ββd + U ′
βγ ⊙ P ′

βγd + U ′
γγ ⊙ P ′

γγd,

and U ′
ββ ⊙ P ′

ββd =
∑

i≤j,i∈β,j∈β[λi(z + td), λj(z + td)]gP
′
ij . By Proposition 3.2 in [25], λ(·)

is strongly semismooth and λi(z + td) = λi(z) + λ′
i(z; td) + O(t2). By Theorem 4.4.8 of [29],

λ′
i(z; td) = λi(tdββ) for i ∈ β. Then we obtain λi(z + td) = λi(z)+λi(tdββ)+O(t2) = tλi(dββ)+

O(t2) for i ∈ β. Since dββ ∈ DΠ
K|β|

with different eigenvalues of dββ in the sub-algebra of Jββ ,

we denote its eigenvalues by λi−|α|(dββ) for i ∈ β. Then, we easily deduce that for i, j ∈ β

lim
t↓0

[λi(z + td), λj(z + td)]g = lim
t↓0

(λi(z + td))+ − (λj(z + td))+
λi(z + td) − λj(z + td)

= [λi−|α|(dββ), λj−|α|(dββ)]g.
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Therefore, we obtain

lim
t↓0

V d = dαα + dαβ + Uαγ ⊙ dαγ + ∇ΠK|β|(dββ)d,

and ∇ΠK|β|(dββ)d = Π′
K|β|(dββ ; d). This together with (27) prove (28).

In the general case of d, applying Lemma 2.2 of [23], we immediately obtain the desired
conclusion by the continuity of Π′

K(z; ·). �

2.3 The Tangent Cone

Employing the previous results and techniques, we now focus on some of the important sets
used in describing optimality conditions, such as the tangent cone of K at z+. Let TC(x) and
NC(x) respectively denote the tangent and normal cones to a set C at a point x ∈ C (see, for
instance, Chapter 6 of [30]). If C is convex, they coincide with the corresponding objects in
convex analysis [31] and NC(x) = −[TC(x)]∗.

It is well-known that the tangent cone of the symmetric cone K at z+, TK(z+), can be
characterized as

TK(z+) =
{
w ∈ V : w = Π′

K(z+;w)
}

, (32)

where z =
∑r

i=1 λi(z)qi and the index sets α, β, γ are given by (8). Observe that (Ut(z+))ij = 1
for i ∈ α, j ∈ γ and λi(z+) = 0 for i ∈ β ∪ γ. From Proposition 2.7, we obtain that

Π′
K(z+;w) = wαα + wαβ + wαγ + ΠK|β∪γ|(wββ + wβγ + wγγ). (33)

Therefore, by (32) and (33), we have

TK(z+) =
{

w ∈ V : wββ + wβγ + wγγ ∈ K |β∪γ|
}

= {w ∈ V : wββ + wβγ + wγγ ∈ K} . (34)

Thus,

NK(z+) = {w ∈ V : w = wββ + wβγ + wγγ ∈ (−K)} .

Let lin(TK(z+)) denote the lineality space of TK(z+), i.e., the largest linear space contained in
TK(z+). Then, we obtain that

lin(TK(z+)) = {w ∈ V : wββ + wβγ + wγγ = 0}

= {w ∈ V : wββ = wβγ = wγγ = 0} . (35)

Define the critical cone of K at z as C(z;K) := TK(z+)∩ z⊥− where z⊥− := {w ∈ V : 〈w, z−〉 = 0}.
Clearly, from the fact that −z− ∈ Jγγ ∩ K by (7), we obtain that

z⊥− = {w ∈ V : 〈wββ + wβγ + wγγ , z−〉 = 0}. (36)

Therefore, we derive

C(z;K)

= {w ∈ V : wββ + wβγ + wγγ ∈ K,−z− ∈ K, 〈wββ + wβγ + wγγ ,−z−〉 = 0}

= {w ∈ V : wββ + wβγ + wγγ ∈ K,−z− ∈ K, (wββ + wβγ + wγγ) ◦ (−z−) = 0}

= {w ∈ V : wββ ∈ K,wβγ = 0, wγγ = 0}, (37)
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where the first equality holds by −z− ∈ Jγγ∩K, (34) and (36); the second by Proposition 6 of [2];
the last one is a straightforward calculation using Theorem 2.2. Moreover, letting aff(C(z;K))
denote the affine hull of C(z;K), we have

aff(C(z;K)) = {w ∈ V : wβγ = 0, wγγ = 0}. (38)

Summarizing the above arguments, we obtain the following topological result related to K.

Proposition 2.8 Let V = (J , 〈·, ·〉, ◦) be a Euclidean Jordan algebra with rank r. Let z =
∑r

i=1 λi(z)qi and the index sets α, β, γ be given by (8). Then, we have the following

TK(z+) = {w ∈ V : wββ + wβγ + wγγ ∈ K} ,

lin(TK(z+)) = {w ∈ V : wββ = wβγ = wγγ = 0} ,

C(z;K) = {w ∈ V : wββ ∈ K,wβγ = 0, wγγ = 0},

aff(C(z;K)) = {w ∈ V : wβγ = 0, wγγ = 0}.

We end this section by presenting the connection between TK(z+) and the smallest face of
K containing z+. Recall that we say a convex cone F ⊆ K is a face of K if w, v ∈ K, w + v ∈ F

imply w, v ∈ F. Let F be a face of K, then the complementary face of F is specified by

F∆ := {w ∈ K : 〈w, x〉 = 0 ∀x ∈ F}.

Let x̄ be an arbitrary relative interior point of F . It is well-known that

F∆ = {w ∈ K : 〈w, x̄〉 = 0}.

Let face(z+) be the smallest face of K containing z+ ∈ K. From the argument following Theorem
2.1, we obtain

face(z+) = {w ∈ V : w = wαα ∈ K}.

Thus, we have
face(z+)∆ = {w ∈ V : w = wββ + wβγ + wγγ ∈ K},

and
[face(z+)∆]⊥ = {w ∈ V : wββ + wβγ + wγγ = 0}.

Therefore, by Proposition 2.8, we actually proved the following.

Proposition 2.9 Let V = (J , 〈·, ·〉, ◦) be a Euclidean Jordan algebra with rank r. For every
x ∈ K, we have

lin(TK(x)) = [face(x)∆]⊥.

3 The Main Result

We will prove our main result which establishes various equivalent conditions for the nonsingu-
larity of Clarke’s generalized Jacobian of the KKT system (4) at a KKT point. We begin with
the following notations.

Let x̄ ∈ V be an optimal solution to the SCP problem (1) and define

M(x̄) := {(y, s) ∈ R
m × V : (x̄, y, s) satisfies the KKT conditions (3)}.
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Let (ȳ, s̄) ∈ M(x̄) and z̄ := x̄− s̄. From Proposition 6 of [2] and the fact that x̄ ∈ K, s̄ ∈ K and
〈x̄, s̄〉 = 0, we obtain that x̄ = z̄+, s̄ = −z̄− = (−z̄)+. Without loss of generality, we assume
that z̄ =

∑r
i=1 λiqi with λ1 ≥ λ2 ≥ · · · ≥ λr and define

α := {i : λi > 0}, β := {i : λi = 0} and γ := {i : λi < 0}.

For simplicity, let α, β, γ, respectively, replace α, β, γ (no confusion should arise). In this case,
we obtain

x̄ = z̄+ =
∑

i∈α

λiqi, s̄ = −z̄− = (−z̄)+ =
∑

i∈γ

(−λi)qi. (39)

Then, by Proposition 2.8, we easily obtain the following:

lin(TK(x̄)) = lin(TK(z̄+)) = {w ∈ V : wββ = wβγ = wγγ = 0} , (40)

lin(TK(s̄)) = lin(TK((−z̄)+)) = {w ∈ V : wαα = wαβ = wββ = 0} , (41)

and

aff(C(z̄;K)) = {w ∈ V : wβγ = 0, wγγ = 0}. (42)

Let Ker(A) denote the Kernel (null space) of the linear operator A. Then, we obtain

aff(C(z̄;K)) ∩ Ker(A) = {w ∈ V : A(w) = 0, wβγ = 0, wγγ = 0}. (43)

Next, we consider an important concept, strong regularity, which was introduced by Robinson
[32] for generalized equations. Employing the properties of the normal cone, the KKT system
(4) can be rewritten as the following generalized equation:

0 ∈





c −A∗(y) − s

A(x) − b

x



+





NV(x)
NRm(y)
NK(s)



 . (44)

The following strong regularity condition for (44) is adopted from [32].

Definition 3.1 We say that a KKT point (x̄, ȳ, s̄) ∈ V ×R
m ×V is a strongly regular solution

of the generalized equation (44) if there respectively exist neighborhoods B and ℵ of the origin 0
in V×R

m×V and the point (x̄, ȳ, s̄) such that for every ζ ∈ B, the following generalized equation

ζ ∈





c −A∗(y) − s

A(x) − b

x



+





NV(x)
NRm(y)
NK(s)





has a unique solution in ℵ, denoted by sℵ(ζ), and the mapping sℵ : B → ℵ is Lipschitz continuous.

Note that the strong regularity for SDP (or nonlinear SDP) is closely related to another
concept called the strong second order sufficient condition, see [8, 12] for details and references
therein. Motivated by the works mentioned above, we establish the strong second order sufficient
condition for the SCP problem (1) based on the following linear-quadratic function.

Definition 3.2 Let z =
∑r

i=1 λi(z)qi and the index sets α, β, γ be given by (8). Further let
z† :=

∑

i∈α∪γ
1

λi(z)qi. We define the linear-quadratic function Υz : V × V → R by

Υz(v,w) := 〈v,Q(w)z†〉, (v,w) ∈ V × V,

which is linear in the first argument v and quadratic in the second argument w.
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Here, we call z† the Moore-Penrose pseudo-inverse of z (and adopt the same notation) since
in the context of S

n it is the Moore-Penrose pseudo-inverse of a symmetric matrix. By the
definition of operator Q and the associativity of the inner product, we know that

Υz(v,w) = 〈v, 2w ◦ (w ◦ z†) − w2 ◦ z†〉

= 2〈v ◦ w, z† ◦ w〉 − 〈v ◦ z†, w2〉.

Clearly, when v ◦ z† = 0, it yields

Υz(v,w) = 2〈v ◦ w, z† ◦ w〉 = 2〈v,w ◦ (z† ◦ w)〉.

For instance, if (y, s) ∈ M(x̄), then s ◦ x̄† = 0 by the argument in the second paragraph of this
section. In what follows, we only apply the above definition in the cases of (y, s) ∈ M(x̄) and

Υx̄(s,w) = 2〈s ◦ w, x̄† ◦ w〉,

which becomes Definition 2.1 of [12] in the context of S
n.

Thus, we can give the strong second order sufficient condition for the SCP problem (1).

Definition 3.3 Let x̄ be an optimal solution to the SCP problem (1). We say that the strong
second order sufficient condition (SSOSC) holds at x̄ if

sup
(y,s)∈M(x̄)

{Υx̄(s,w)} > 0, ∀ 0 6= w ∈
⋂

(y,s)∈M(x̄),z=x̄−s

{aff(C(z;K)) ∩ Ker(A)} . (45)

The following result gives a useful and simple characterization of SSOSC when M(x̄) is a
singleton, i.e., M(x̄) = {(ȳ, s̄)}.

Proposition 3.4 Let x̄ be an optimal solution to the SCP problem (1). Assume that M(x̄) =
{(ȳ, s̄)}. Let x̄ and s̄ have the spectral decompositions as in (39). Then the SSOSC (45) holds
at x̄ if and only if the following condition holds

[A(w) = 0, wαγ = 0, wβγ = 0, wγγ = 0 ⇒ w = 0, ] ∀w ∈ V. (46)

Proof. Let z̄ := x̄ − s̄ :=
∑r

i=1 λiqi with λ1 ≥ λ2 ≥ · · · ≥ λr and the index sets α, β, γ be given
by (8). Note that Proposition 2.4 implies that any w ∈ V can be expressed as

w = wαα + wαβ + wαγ + wββ + wβγ + wγγ ,

where wαα ∈ Jαα, wαβ ∈ Jαβ , wαγ ∈ Jαγ , wββ ∈ Jββ, wβγ ∈ Jβγ , wγγ ∈ Jγγ . By the assumptions,
we have x̄ = z̄+ =

∑

i∈α λiqi and s̄ = (−z̄)+ =
∑

i∈γ(−λi)qi. Since M(x̄) = {(ȳ, s̄)}, by the
argument after Definition 3.2 and (43), it is not hard to see that (45) is equivalent to the following

〈s̄ ◦ w, x̄† ◦ w〉 > 0, ∀ w 6= 0 such that A(w) = 0, wβγ = 0, wγγ = 0.

Clearly, s̄ = s̄γγ ∈ Jγγ and x̄† =
∑

i∈α
1
λi

qi ∈ Jαα. Letting wβγ = wγγ = 0, by Theorem 2.2,
direct calculation yields

x̄† ◦ w = x̄† ◦ (wαα + wαβ + wαγ + wββ + wβγ + wγγ)

= x̄† ◦ (wαα + wαβ) + x̄† ◦ wαγ

= x̄† ◦ (wαα + wαβ) +
1

2

∑

i∈α,j∈γ

1

λi
wij ,
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and

s̄ ◦ w = s̄ ◦ (wαα + wαβ + wαγ + wββ + wβγ + wγγ)

= s̄γγ ◦ wαγ

=
1

2

∑

i∈α,j∈γ

(−λj)wij .

Therefore, Theorem 2.2 implies that

〈x̄† ◦ w, s̄ ◦ w〉

=

〈

x̄† ◦ (wαα + wαβ),
1

2

∑

i∈α,j∈γ

(−λj)wij

〉

+

〈

1

2

∑

i∈α,j∈γ

1

λi

wij ,
1

2

∑

i∈α,j∈γ

(−λj)wij

〉

=
1

4

∑

i∈α,j∈γ

(
−λj

λi

)

‖wij‖
2.

Thus, the SSOSC holds at x̄ if and only if the following implication is true

A(w) = 0, w 6= 0, wβγ = 0, wγγ = 0 ⇒ wαγ 6= 0, ∀w ∈ V.

This is equivalent to the desired conclusion. �

From the above proof we also obtain that, for any w with wβγ = wγγ = 0,

Υx̄(s̄, w) =
1

2

∑

i∈α,j∈γ

(
−λj

λi

)

‖wij‖
2. (47)

Continuing the line of thought started with Proposition 3.4, we present a connection between
the SSOSC and another important concept of constraint nondegeneracy defined below. Notice
that a related concept of nondegeneracy goes back at least to Robinson [33, 34] for a general
abstract problem, and the primal and dual nondegeneracy was extensively considered in the
SDP context [6, 7, 5, 8, 9, 11, 12], where Bonnans and Shapiro [7] also studied constraint
nondegeneracy for general optimization problems. It has been used in [5, 15, 35, 36] for sensitivity
and stability analysis in optimization and variational inequalities. Here, our definition comes
from Robinson’s terminology [34, 33].

Definition 3.5 We say that the primal constraint nondegeneracy holds at a feasible solution
x̄ ∈ V to the SCP problem (1) if

[
A
I

]

V +

[
{0}

lin(TK(x̄))

]

=

(
R

m

V

)

, (48)

or equivalently

A lin(TK(x̄)) = R
m. (49)

Similarly, we say that the dual constraint nondegeneracy holds at a feasible solution (ȳ, s̄) ∈
R

m × V to the dual problem (2) if
[
A∗ I
0 I

](
R

m

V

)

+

[
{0}

lin(TK(s̄))

]

=

(
V
V

)

, (50)

or equivalently

A∗
R

m + lin(TK(s̄)) = V. (51)
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Note that the above definition coincides with the definition of primal and dual nondegeneracy
by Pataki [14] in the setting of SDP, also see the reference [5] for details.

Proposition 3.6 Let x̄ be an optimal solution to the SCP problem (1). Assume that M(x̄) =
{(ȳ, s̄)}. Then the SSOSC (45) holds at x̄ if and only if the dual constraint nondegeneracy
condition (51) holds at (ȳ, s̄).

Proof. As in the proof of Proposition 3.4, letting z̄ := x̄−s̄ :=
∑r

i=1 λiqi with λ1 ≥ λ2 ≥ · · · ≥ λr

and α, β, γ be defined by (8), we have x̄ = z̄+ =
∑

i∈α λiqi and s̄ = (−z̄)+ =
∑

i∈γ(−λi)qi. By
Proposition 2.4, any w ∈ V can be expressed as

w = wαα + wαβ + wαγ + wββ + wβγ + wγγ ,

where wαα ∈ Jαα, wαβ ∈ Jαβ , wαγ ∈ Jαγ , wββ ∈ Jββ, wβγ ∈ Jβγ , wγγ ∈ Jγγ . Note that, since
M(x̄) = {(ȳ, s̄)}, Proposition 3.4 means that the SSOSC (45) holds at x̄ if and only if (46)
holds. In order to prove the theorem, we only need to show that (46) holds if and only if the
dual constraint nondegeneracy condition (51) holds at (ȳ, s̄).

First, suppose that (46) holds but the dual constraint nondegeneracy condition (51) does
not hold at (ȳ, s̄). Then,

(A∗
R

m)⊥ ∩ (lin(TK(s̄)))⊥ 6= {0}.

Pick any arbitrary 0 6= w̃ ∈ (A∗
R

m)⊥ ∩ (lin(TK(s̄)))⊥. Clearly,

〈w̃,A∗(y)〉 = 0, ∀y ∈ R
m, (52)

〈w̃, s〉 = 0, ∀s ∈ lin(TK(s̄)). (53)

Note that 〈w̃,A∗(y)〉 = 〈A(w̃), y〉. Then, (52) implies A(w̃) = 0. Let

w̃ = w̃αα + w̃αβ + w̃αγ + w̃ββ + w̃βγ + w̃γγ ,

s = sαα + sαβ + sαγ + sββ + sβγ + sγγ .

Thus, by (41) and (53), we have w̃αγ + w̃βγ + w̃γγ = 0, which, together with (46) and A(w̃) = 0,
yields w̃ = 0. This is a contradiction. Hence, the dual constraint nondegeneracy condition (51)
holds at (ȳ, s̄).

Conversely, suppose that the dual constraint nondegeneracy condition (51) holds at (ȳ, s̄).
Then, for any w ∈ V with A(w) = 0 and wαγ + wβγ + wγγ = 0, there exist y ∈ R

m and
s ∈ lin(TK(s̄)) such that w = A∗(y) + s. Then, we obtain

〈w,w〉 = 〈w,A∗(y) + s〉

= 〈A(w), y〉 + 〈w, s〉

= 0,

where the last equality follows from the facts A(w) = 0, and wαγ + wβγ + wγγ = 0 and sαα +
sαβ + sββ = 0 because s ∈ lin(TK(s̄)). Therefore, w = 0 as desired. The proof is completed. �

Likewise, for the dual SCP problem (2), we can establish a similar statement, which is omitted
here for brevity. We remark that in the setting of S

n, the above result becomes Proposition 3.8
of [8].

Before giving our main result, we need two lemmas which demonstrate the link between the
constraint nondegeneracy and the nonsingularity of Clarke’s generalized Jacobian of H at a KKT
point (x̄, ȳ, s̄) ∈ V × R

m × V. We first show that the primal and dual constraint nondegeneracy
conditions are sufficient for the nonsingularity of any W ∈ ∂H(x̄, ȳ, s̄).
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Lemma 3.7 Let (x̄, ȳ, s̄) ∈ V × R
m × V be a KKT point satisfying the KKT conditions (3)

and H be the function given by (4). Suppose that the primal constraint nondegeneracy condition
(49) holds at x̄ and the dual constraint nondegeneracy condition (51) holds at (ȳ, s̄). Then, every
element in ∂H(x̄, ȳ, s̄) is nonsingular.

Proof. From Proposition 4.50 of [5] or Theorem 3.5 of [14], we obtain that the primal constraint
nondegeneracy condition implies that M(x̄) = {(ȳ, s̄)}. Thus, it follows from Proposition 3.6
that the SSOSC holds at x̄. That is,

Υx̄(s̄, w) > 0, ∀ 0 6= w ∈ aff(C(z̄;K)) ∩ Ker(A), (54)

where z̄ := x̄ − s̄ :=
∑r

i=1 λiqi with λ1 ≥ λ2 ≥ · · · ≥ λr and α, β, γ be defined by (8). Then
x̄ =

∑

i∈α λiqi, s̄ =
∑

i∈γ(−λi)qi. Choose any W ∈ ∂H(x̄, ȳ, s̄). We only need to show that W

is nonsingular. It is obvious that W has the form

W =





0 −A∗ −I
A 0 0

I − V 0 V



 ,

where V ∈ ∂ΠK(z̄) is the given element related to W . Suppose that (x, y, s) ∈ V × R
m × V is

any vector such that W (x, y, s) = 0, i.e.,

−A∗(y) − s = 0, (55)

A(x) = 0, (56)

(I − V )x + V s = 0. (57)

By Proposition 2.4, we can set

x = xαα + xαβ + xαγ + xββ + xβγ + xγγ ,

s = sαα + sαβ + sαγ + sββ + sβγ + sγγ ,

where xαα, sαα ∈ Jαα, xαβ , sαβ ∈ Jαβ , xαγ , sαγ ∈ Jαγ , xββ, sββ ∈ Jββ , xβγ , sβγ ∈ Jβγ , xγγ , sγγ ∈
Jγγ . By Proposition 2.6, we have

V x = xαα + xαβ +
∑

i∈α,j∈γ

λi

λi − λj

xij + VK|β|xββ , (58)

where VK|β| ∈ ∂ΠK|β|(0) is the element related to V . From (57), we obtain that

xβγ + xγγ = 0, (59)

sαα + sαβ = 0, (60)

(I − VK|β|)xββ + VK|β|sββ = 0, (61)
∑

i∈α,j∈γ

(
−λj

λi − λj
xij +

λi

λi − λj
sij

)

= 0. (62)

By (61), we have

xββ = VK|β|xββ − VK|β|sββ, (63)

and

0 = 〈xββ , (I − VK|β|)xββ + VK|β|sββ〉 = 〈xββ, (I − VK|β|)ββxββ〉 + 〈xββ, VK|β|sββ〉 .
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Noting that I − VK|β| is positive semidefinite on the subspace Jββ, we obtain

〈xββ , VK|β|sββ〉 = −〈xββ, (I − VK|β|)xββ〉 ≤ 0. (64)

Similarly,

〈VK|β|sββ, sββ〉 ≥ 0. (65)

By (63),

〈xββ, sββ〉 = 〈VK|β|xββ, sββ〉 − 〈VK|β|sββ, sββ〉 . (66)

This together with (64) and (65) yields that

〈xββ, sββ〉 ≤ 0. (67)

Therefore, we have

〈x, s〉 = 〈xαγ , sαγ〉 + 〈xββ, sββ〉

≤ 〈xαγ , sαγ〉

=
∑

i∈α,j∈γ

λj

λi

‖xij‖
2

= −2Υx̄(s̄, x),

where the first equality holds by (59) and (60), the second equality follows from sij =
λj

λi
xij for

i ∈ α, j ∈ γ by (62), the third equality holds by (47), and the first inequality holds by (67). This
together with (54) and (59) yields x = 0. Thus, from (55) and (57), we obtain that

sαα + sαβ + sαγ = 0, A∗(y) + s = 0. (68)

Note that the constraint nondegeneracy condition (48) means that there exist v ∈ V and w ∈
lin(TK(x̄)) such that

A(v) = y and v + w = s.

Thus, this together with (54) and wββ + wβγ + wγγ = 0 yields

〈y, y〉 + 〈s, s〉 = 〈y,A(v)〉 + 〈s, v + w〉

= 〈A∗(y), v〉 + 〈s, v〉 + 〈s,w〉

= 〈A∗(y) + s, v〉 + 〈s,w〉

= 0.

Therefore, s = 0 and y = 0. Hence, the desired conclusion follows. �

Note that W ∈ ∂BH(x̄, ȳ, s̄) if and only if there is a V ∈ ∂BΠK(z̄) such that

W =





0 −A∗ −I
A 0 0

I − V 0 V



 . (69)

By Proposition 2.6, 0, Pββ ∈ ∂BΠK|β|(0). Let V 0 := Pαα + Pαβ + Uαγ ⊙ Pαγ and V I :=
Pαα + Pαβ + Uαγ ⊙ Pαγ + Pββ. Clearly, V 0, V I ∈ ∂BΠK(z̄). Let W 0 and W I be specified by
(69) with V being replaced by V 0 and V I , respectively. Define ex(∂BH(x̄, ȳ, s̄)) := {W 0,W I}.
Clearly, ex(∂BH(x̄, ȳ, s̄)) ⊆ ∂BH(x̄, ȳ, s̄).

We continue to show that the nonsingularity of only two elements W 0,W I in ∂BH(x̄, ȳ, s̄)
will imply both the primal and dual constraint nondegeneracy conditions.
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Lemma 3.8 Let (x̄, ȳ, s̄) ∈ V ×R
m ×V be a KKT point satisfying the KKT conditions (3) and

H be the function given by (4). Suppose that two elements {W 0,W I} of ex(∂BH(x̄, ȳ, s̄)) are
nonsingular. Then the primal constraint nondegeneracy condition (49) holds at x̄ and the dual
constraint nondegeneracy condition (51) holds at (ȳ, s̄).

Proof. We consider the following two cases:

Case 1: Assume that the primal constraint nondegeneracy condition (49) does not hold at x̄.
By Definition 3.5, (48) does not hold. Thus, we obtain

{[
A
I

]

V

}⊥

∩

[
{0}

lin(TK(x̄))

]⊥

6= {0} ∈

(
R

m

V

)

,

which means that there exists a nonzero (ŷ, ŝ) such that

(ŷ, ŝ) ∈

{[
A
I

]

V

}⊥

, (70)

and

(ŷ, ŝ) ∈

[
{0}

lin(TK(x̄))

]⊥

. (71)

By (71), for any w ∈ lin(TK(x̄)), we have 〈ŝ, w〉 = 0. Since wββ+wβγ+wγγ = 0, ŝαα+ŝαβ+ŝαγ =
0. Then, V 0ŝ = ŝαα + ŝαβ + (Uαγ ⊙ Pαγ)ŝαγ = 0. On the other hand, by (70),

〈(ŷ, ŝ), (A(w), w)〉 = 0,∀w ∈ V ⇒ A∗(ŷ) + ŝ = 0.

Letting x = 0, we obtain that for nonzero (0, ŷ, ŝ)

W 0(0, ŷ, ŝ) =





0 −A∗ −I
A 0 0

I − V 0 0 V 0



 (0, ŷ, ŝ) =





−A∗(ŷ) − ŝ

0
V 0ŝ



 = 0,

which says that W 0 is singular. This is a contradiction, and the primal constraint nondegeneracy
condition holds.

Case 2: Assume that the dual constraint nondegeneracy condition (51) does not hold at (ȳ, s̄).
We obtain

[A∗
R

m]⊥ ∩ [lin(TK(s̄))]⊥ 6= {0} ∈ V.

Similarly, there is a nonzero x̂ such that

x̂ ∈ [A∗
R

m]⊥ , (72)

and

x̂ ∈ [lin(TK(s̄))]⊥ . (73)

By (73) and (41), x̂αγ + x̂βγ + x̂γγ = 0, i.e., x̂ = x̂αα + x̂αβ + x̂ββ. Thus, we obtain that
V I x̂ = x̂αα + x̂αβ + x̂ββ = x̂, and (I − V I)x̂ = 0. On the other hand, by (72),

〈x̂,A∗(y)〉 = 0,∀y ∈ R
m ⇒ A(x̂) = 0.

Likewise, letting (y, s) = (0, 0), we obtain that for nonzero (x̂, 0, 0)

W I(x̂, 0, 0) =





0 −A∗ −I
A 0 0

I − V I 0 V I



 (x̂, 0, 0) =





0
A(x̂)

(I − V I)x̂



 = 0,

which says that W I is singular. This is also a contradiction, and the dual constraint nondegen-
eracy condition holds. �
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Now, we are in the position to prove our main result.

Theorem 3.9 Let (x̄, ȳ, s̄) ∈ V × R
m × V be a KKT point satisfying the KKT conditions (3)

and H be the function given by (4). Then, the following statements are all equivalent:

(a) Every element in ∂H(x̄, ȳ, s̄) is nonsingular.

(b) Every element in ∂BH(x̄, ȳ, s̄) is nonsingular.

(c) Both elements in ex(∂BH(x̄, ȳ, s̄)) are nonsingular.

(d) The primal constraint nondegeneracy condition (49) holds at x̄ and the dual constraint
nondegeneracy condition (51) holds at (ȳ, s̄).

(e) The function H is a locally Lipschitz homeomorphism near (x̄, ȳ, s̄).

(f) The KKT point (x̄, ȳ, s̄) is a strongly regular solution of the generalized equation (44).

In each case, x̄ is a unique primal optimal solution to SCP (1) and (ȳ, s̄) is a unique optimal
solution to its dual (2) .

Proof. It follows from Lemmas 3.7 and 3.8 that (b) ⇔ (a) ⇔ (c) ⇔ (d). Note that from the
proof of Lemma 3.4 of [8], we actually obtain that a similar result is still true in the setting
of symmetric cones. This establishes (e) ⇔ (f). Furthermore, we know from Clarke’s inverse
function theorem for Lipschitz functions [21, 37] that (b) ⇒ (e), and from [38, 39] that (e) ⇒ (b).

Furthermore, by Theorem 3.5 of [14] and the remark after Definition 3.5, if the condition (d)
holds then x̄ is a unique primal optimal solution and (ȳ, s̄) is a unique dual optimal solution.
Thus, the proof is complete, establishing the equivalence of all statements. �
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