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Abstract

In this paper we consider the linear symmetric cone programming (SCP). At a Karush-
Kuhn-Tucker (KKT) point of SCP, we present the important equivalent conditions for the
nonsingularity of Clarke’s generalized Jacobian of the KKT nonsmooth system, such as
primal and dual constraint nondegeneracy, the strong regularity, and the nonsingularity of
the B-subdifferential of the KKT system. This affirmatively answers an open question by
Chan and Sun [SIAM J. Optim. 19 (2008), pp. 370-396].
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1 Introduction

Consider the linear symmetric cone programming (SCP for short) as follows:

min (¢, x)
s.t. A(x) = b, (1)
z e K,
where ¢ € V, V = (J,(:,-),0) is a n-dimensional Euclidean Jordan algebra (see Section 2),

K is the symmetric cone in V, A : ¥V — R™ is a linear operator, and b € R™. The SCP
provides a simple, natural, and unified framework for various existing optimization problems,
which includes the linear programming (LP), the second-order cone programming (SOCP), the
semidefinite programming (SDP) problems, and has wide applications in engineering, economics,
management science, and other fields.
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Let A* : R™ — V be the adjoint operator of A. Then, the dual of the SCP problem (1) is
given by

bT

max y
s.t. A*(y) +s =c, (2)
se K.

Thus, the KKT conditions of the SCP problem (1) and its dual (2) become the following:

A(x) = b,
A*(y) + s =c, (3)
x e K,se€ K, (x,s) =0.

We call (z,79,5) € V x R™ x V a KKT point if it satisfies the KKT conditions (3). Note that
(Z,7,35) is a KKT point if and only if it is a solution to the KKT (nonsmooth) system:

c—A*(y) — s
H(z,y,s):= A(x) —b =0, (z,y,5) €V xR™xV, (4)
x—(x—s)t

where (-)4 is the metric projection onto K. (The above equivalence can be traced back to
Eaves [1] in the setting of complementarity problems; and in the special case of SCP, see also
Gowda et. al [2]). It is well-known that nonsingularity of Clarke’s generalized Jacobian of the
KKT system, which is also called BD-regularity introduced by Pang and Qi [3], is not only
one of the fundamental characterizations for sensitivity and stability analysis of optimization
problems but also plays an important role in the design of algorithms, see [4] and the references
therein. For sensitivity and stability analysis of optimization problems, see [5] and the references
therein. This paper deals with the nonsingularity of Clarke’s generalized Jacobian of the KKT
system (4) in the setting of SCP. In particular, we consider its connection to another important
concept, nondegeneracy (primal and dual nondegeneracy and weak nondegeneracy), which has
been extensively studied in the settings of SDP and SOCP, see, e.g., [6, 7, 8, 9, 10, 11, 12, 13]
and even developed in the general setting of optimization problems over arbitrary convex cones
[14, 15, 16]. For instance, Pataki [14] introduced the notions of primal and dual nondegeneracy of
convex optimization problems in conic form and showed that at a primal-dual optimal solution,
primal (dual) nondegeneracy implies the uniqueness of the dual (primal) optimal solution (this
is also independently established by Shapiro and Fan [17]) and the reverse implication holds
only under strict complementarity; Pataki and Tungel [15] proved that the primal and dual
nondegeneracy, and strict complementarity are all generic properties. (The results mentioned
above generalize the corresponding results of Alizadeh-Haeberly-Overton [6] from the setting of
SDP.) Moreover, Yildirim [13] introduced the notion of weak primal and dual nondegeneracy
in the SDP context, and then developed it in the general conic form and showed that the
weak primal (dual) nondegeneracy is necessary and sufficient for the existence of a unique dual
(primal) optimal solution [16]. Recently, in the SDP context, Chan and Sun [8] firstly showed
that at a KKT point, nonsingularity of Clarke’s generalized Jacobian of the KKT system is
equivalent to the nonsingularity of its B-subdifferential and some other important conditions
such as the primal and dual constraint nondegeneracy, and the strong regularity. In the same
paper, Chan and Sun asked whether the corresponding results for SDP can be extended to SCP.

In this paper we answer the above question in the affirmative. To do so, we develop a new
technique which serves as a fundamental tool for our analysis in this paper. More precisely, we



provide a decomposition result of Euclidean Jordan algebras, and establish a triangular repre-
sentation of the Jacobian of Lowner operators. Then, we present the triangular representation
of Clarke’s generalized Jacobian of the projection operator onto symmetric cone K and give an
explicit formula for the tangent cone of K. This helps us prove the equivalence at a KKT point
of the nonsingularity of Clarke’s generalized Jacobian of the KKT system (4), the nonsingularity
of its B-subdifferential, the primal and dual constraint nondegeneracy, and the strong regularity.

As we were sharing the results and the earlier drafts of this paper with some colleagues’, we
learned that Wang [18] independently obtained, around the same time, essentially the same main
result. Her approach is based on the connection between the Lyapunov transformation (operator)
and its matrix representation with respect to the orthonormal basis of V. The technique used in
our proof below is established on the exact expression for Clarke’s generalized Jacobian of IIg
and a decomposition result of Euclidean Jordan algebras (see Section 2) based on a generalized
weighted partial trace operator which may have other applications. We also expose the intimate
connections among the main result, Robinson’s notion of constraint nondegeneracy and the
geometric notions of nondegeneracy (see Bonnans and Shapiro [5], Pataki [14]) in general convex
optimization problems in conic form (see Section 3).

This paper is organized as follows. In Section 2, we briefly describe some fundamental
concepts and the decomposition results on Euclidean Jordan algebras. We give the triangu-
lar representations of the Jacobian of Lowner operators and Clarke’s generalized Jacobian of
projection operator onto symmetric cone. Then, we present the tangent cone and some of its
properties used in our analysis. In Section 3, we show our main equivalence result.

2 Preliminaries

2.1 Euclidean Jordan algebras

We review some necessary results on Euclidean Jordan algebras details of which can be found
in Koecher’s lecture notes [19] and the monograph by Faraut and Koranyi [20].

Let J be a n-dimensional vector space over R and (z,s) — zos: J X J — J be a
bilinear mapping. We call (7, 0) a Jordan algebra if the bilinear mapping satisfies the following
conditions:

(i) zos=sox forallz,se J,

(i) xo(2?20s) =220 (vos) forall z,s € J,

where 22 := z oz and x o s is the Jordan product of x and s. In general, there may exist

x,8,2 € J such that (x 0s)oz # xo(soz). We call an element e the identity element if
zoe=ecoz =z forall z€ J. A Jordan algebra (7,0) with an identity element e is called a
Euclidean Jordan algebra, denoted by V := (7, (-,+), o), if there is an inner product, (-,-), such
that

(xos,z) =(x,s0z) forall z,s,z€ J.

Given a Euclidean Jordan algebra V, define the set of squares as K := {2? : z € V}. It is known
by Theorem III 2.1 in [20] that K is the symmetric cone, i.e., K is a closed, convex, homogeneous
and self-dual cone.

For z € V, the degree of z denoted by deg(z) is the smallest positive integer k such that the
set {e, z,22,---,2F} is linearly dependent. The rank of V is defined as max{deg(z) : z € V}. In

$We thank Defeng Sun for pointing out the reference [18] and Liwei Zhang for sending us Wang’s PhD thesis.



this paper, r will denote the rank of the underlying Euclidean Jordan algebra. An element g € V
is an idempotent if ¢> = q # 0, which is also called primitive if it cannot be written as a sum
of two idempotents. A complete system of orthogonal idempotents is a finite set {q1,q2, -, qr}
of idempotents where ¢; 0o q; = 0 for all i # j, and ¢1 +q2 +--- + qx = e. A Jordan frame is a
complete system of orthogonal primitive idempotents in V. Note that the number of elements
in every Jordan frame is r.

We state below the spectral decomposition theorem for the elements in a Euclidean Jordan
algebra.

Theorem 2.1 (Spectral Decomposition Type II (Theorem II1.1.2, [20])) Let V be a Euclidean
Jordan algebra with rank r. Then for z € V there exist a Jordan frame {q1,q2, -, q,} and real
numbers A1 (z) > Aa(z) > -+ > N\p(2) such that

Z = )\1(2)% + )\2(2)(]2 +---+ )‘T’(Z)QT- (5)

The numbers \i(z) (i € {1,2,---,7}) are the eigenvalues of z. We call (5) the spectral decom-
position (or the spectral expansion) of z.

Observe that the Jordan frame {q1,q2, - -,q,} in (5) depends on z. We do not write this
dependence explicitly for the simplicity of notation (the same for {ej,es, -, e} below). Let
C(z) be the set consisting of all Jordan frames in the spectral decomposition of z. Let the
spectrum o(z) be the set of all eigenvalues of z. Then o(z) = {u1(z), p2(2), -+, urs(2)} and for
each p;(2) € o(z), denoting N;(z) := {j : Aj(2) = pi(2)} we obtain that e; =3y, ¢j and ¢;
is idempotent but may not be primitive. By Theorem III.1.1 in [20], {e1, €2, -, er} is a unique
complete system of orthogonal idempotents such that

z=p(z)er + -+ pr(z)er

Let g : R — R be a real-valued function. Define the vector-valued function G : V — V as
G(z) == g\i(2)ai = g (2)qr + 9(h2(2))a2 + -+ + g(Ar(2)) (6)
i=1

which is a Léwner operator. In particular, letting ¢4 := max{0,¢}, t_ := min{0,¢} (¢t € R), we
respectively define

T T

Mg (2) =21 = Y (Ni(2) 1, 2- =Y (Mi(2)-ai-

i=1 i=1

In words, z4 is the metric projection of z onto K, and z_ is the metric projection of z onto
—K, where the norm is defined by ||z|| := /(z, z). Note that z € K (z € int(K)) if and only if
Ai(2) >0 (Ni(2) > 0) Vi € {1,2,---,r}, where int(K) denotes the interior of K. It is easy to
verify that

2y €K, —z2_ €K, z=z4+2_. (7)

4



This is called the Peirce decomposition of V with respect to the nonzero idempotent ¢q. Fix a
Jordan frame {q1, g2, -, ¢, }. Defining the following subspaces for i,j € {1,2,---,7},

1
Ji={xeV:zog =2} and J;;:= {er:moqizix:xoqj}, i # 7],

we have the Peirce decomposition theorem as follows.

Theorem 2.2 (Theorem IV.2.1, [20]) Let {q1,q2, - ,qr} be a given Jordan frame in a FEu-
clidean Jordan algebra V of rank r. Then V is the orthogonal direct sum of spaces J;; (i < j).
Furthermore,

(1) JijoJij C Jii + Jjj;

(ZZ) JijOij g Jika Zf Z;’ék,

(iii)  Jijo Ju = {0}, if {i,j}n{k,1} = 0.

Based on Theorems 2.1 and 2.2, we will introduce a decomposition result for the space V with
respect to a point z € V. First, we need the following two important operators. For each z € V,
we define the Lyapunov transformation L£(z) : V — V by L(z)x = z oz for all x € V, which is
a symmetric self-adjoint operator in the sense that (L(z)z,s) = (x, L(z)s) for all z,s € V. The
operator Q(z) := 2L£2(z)— L(2?) is called the quadratic representation of z. We say two elements
x,s € V operator commute if L(x)L(s) = L(s)L(x). By Lemma X.2.2 in [20], two elements z, s
operator commute if and only if they share a common Jordan frame. In the matrix algebra of

Hermitian matrices, this corresponds to two matrices admitting a simultaneous diagonalization
with respect to an orthogonal basis.

In what follows, let z = > 7| \i(2)q; with A\1(2) > A2(2) > -+ > A\.(2) and define
a:={i:N(z) >0}, B:={i:N(2) =0} and v:={i: \i(z) < 0}. (8)

For the Jordan frame {qi1,¢2,---,¢-} and ¢,j € {1,2,---,r}, let P;; be the orthogonal projection
operator onto the subspace J;;. Then, by Theorem 2.2, we have

and the orthogonal projection operators {F;; : 4,7 € {1,2,---,r}} form a complete system, i.e.,
they satisfy
Py =P, P} =Py, PiPu=0if {i,j} #{k1}, > P;=T, (10)
1<i<j<r

where Pj; is the adjoint operator of P;; and Z is the identity operator. For a more detailed

exposition, see [19, 25]. By (10), defining six projection operators as

Poo = Z Pij7 Paﬁ = Z Pij7 Pom/ = Z Pija

i<ji€a,jea i<ji€a,jep i<ji€a,jey
Psg:= Y Py, Bsy:= ) Py Pyi= ) Py (11)
i<j,i€0,j€p i<jiep,jey i<ji€v.j€

we obtain that the above six projection operators are orthogonal and form a complete system,
too. Likewise, we specify the following six subspaces as

Joa = EB Jij,  Jag = @ Jij,  Jay = @ Jij,

i<ji€a,jEa i<j,i€a,jE€P i<ji€a,jE€Y
Jgg = @ Jij, Jgy = EB Jij,  Jyy = EB Jij. (12)
i<j,i€B,j€P i<j,i€B,5€Y i<j,i€7,j €Y

5



Since J;; = P;;V, the above subspaces are well-defined and it is easy to see that
Jaa = PaaVs Jag = PagV, Jay = PoyV, Jgg = PsgV, Jg, = PV, Jyy =Py V. (13)

Summarizing the above construction, we have the following decomposition result, which is useful
in the subsequent analysis.

Theorem 2.3 Let V = (7, (-,-),0) be a Euclidean Jordan algebra with rank r. For z € V, let
2= 11 Ni(2)g with A\1(z) > Aa(2) > -+ > A\p(2). Suppose that the index sets a, 3,7 are given
by (8). ThenV is the orthogonal direct sum of six subspaces

V= Jaa ® Jag ® Jay © Jgg © Jgy B Jyy,

where Jaa, Jag, Javy, I3, Iy, Jyy are specified by (12). Moreover, these siz subspaces are uniquely
determined by the three elements: Y ..., Gi, Zieﬁ q; and zi@/ q;, which are invariant under dif-
ferent choices of the Jordan frames in C(z).

Furthermore, (Jaa, (-,-),0), (Jgg,(-s-),0) and (Jyy,(-,-),0) form Euclidean Jordan algebras
with rank |, |8 and |y| and identity elements ) ;. Gi, Zieﬁ g; and Zi@ g;, respectively.

Proof. By the assumptions and (9) and (12), direct calculation yields
Paa = Y, Py+) P
1<j,l€q,jEQ 1€Q

= Z - AL(@)L(g) + Z (2L(qi) L) — L(a:))
= Z 2L(q:i)L(q5) + Z 2L(q:)L(qi) — Z L(q;)

1#£j i€, jEQ 1€Ea I€Ea

= ) 2L(@)L(g) - L (Z Qi>

tEQ,jEQ 1€a

_ 2£<Zqi)£ Sy | -z (Zqif

i€a JEa 1€EQ
= Q (Z Qi> : (14)
1€a

In the same way, we have

Pyp=0(> a|, Pr=2(> al- (15)

1€0 1€y
On the other hand, it is easy to see that

Pog = > 4L(@)L(q)

i€a,jER

i (Z%)ﬁ ). (16)

i€a JjeB



Similarly, we have

Pm:zw(Zqi)ﬁ qu , Py, =4L Zqi L qu . (17)

1steY JEY 1€l JEY

From the argument after Theorem 2.1, we obtain that >, ¢i, Y ;¢ 5¢i and zi@/ @; are uniquely
determined by z, which are invariant under different choices of the Jordan frames in C(z). Thus,
the first part of the theorem follows from Theorem 2.2 and (12) and (13). Note that, by (14)
and (15) or by Lemma 20 in [2], it follows that

Joaa =J <Z qis 1) 5 Jﬁﬁ =J ZQZ71 ) J“/“/ =J quv . (18)

1€a el 1€y
Then, by Theorem 2.2 and (18), we can verify the second part by direct calculation. O

As a direct consequence of the above theorem, we easily have the following.
Proposition 2.4 Fvery w € V can be expressed as
W = Waa + W + Wary + WeE + Way + Wy, (19)

where Waa € Jaa, Wag € Jags Wary € Jary, Wag € Jgg, Way € Jgy, Wyy € Jymy.

As in the proof of Theorem 2.3, we can obtain that triples (Joo @ Jog @ J3s. (-, ), 0),
(Js8 DB I3y B Ty, (-, ), 0) and (Jaa B Jay B Jyy, (-, +), 0) form Euclidean Jordan algebras with
rank |aU /], |[3Uy| and |aU~y| and identity elements ;e 5 Gis Dicguy @ @0d D e iy Gir TESPEC-
tively. In what follows, let Kol K18l K1l KleUBl - K18 and K19 respectively be the corre-
sponding symmetric cones in Euclidean Jordan algebras (Jaa, (-, ), 0) , (Jgg, (-, )5 ©)s (Jyvys (5 7),©)s

(Jaoc @ Jogp @ I8 ('7 ’>7 o), (Jﬁﬁ @ Jﬁ“{ @ Jyys ('7 '>7 o) and (Jaa @ Jay @ J’Y’Y’ {-:),0).

2.2 Generalized Jacobian

In this subsection, we give a triangular representation of the Jacobian of Lowner operator, and
Clarke’s generalized Jacobian of metric projection operator Ilx. The latter plays a role in
establishing some basic concepts such as the tangent cone and lineality space of K at z,. Here,
we assume that the reader is familiar with the concepts of (strong) semismoothness, and refer
to [21, 22, 23] for details.

Suppose that the scalar function g is differentiable on R. Let A := (A1, Ag,---, )T € R,
Recall that the first divided difference g“]()\) of g at X is the r X r symmetric matrix, where the
ij-th entry is given by

9Q)=9N)  5p N £ ).
Ni—X; if Ai # Aj,

[Ais Ajlg = ’
g'()\i) if /\2 = )\j.

We define the corresponding triangle part Tri(gl (X)) of gl(\) as

A, if @< g,
(Tri(g!M(\))i5 :{ 7 W = (20)

0 if > j.



By (11), define a triangular operator as P := (P;;) with ¢ < j where Pj; is the projection
operator onto the subspace J;;. Then, we may define a generalized, weighted partial trace © of
an ordered pair of operators of Tri(gl!(\)) and P as a new operator:

T \) o P = > [n7Py. (21)

1<i<j<r

This is a generalization of the partial trace operator in the sense that if the operator Tri(gl* (1))
is representable by a 0,1 matrix then Tri(¢'/(\)) ® P becomes a partial trace of P. For the
notion of partial trace, see, e.g., [24].

Based on Theorem 3.2 of [25] and Theorem 2.8 of [26], we directly obtain the following
Jacobian properties of the Lowner operator G(-).

Theorem 2.5 Let z = Y %_  \j(z)q;. Then, G(:) is (continuously) differentiable at z if and
only if for each j € {1,2,---,r}, g is (continuously) differentiable at \;(z). In this case, the
Jacobian VG(z) is given by

VG(z) = Tri(gM (M) 0 P = Y [Ni(2), A (2)]g Py (22)

1<i<j<r
We call (22) the triangular representation of the Jacobian VG(z).

Recently, Sun and Sun [25] showed that the metric projection IIx onto symmetric cones is
strongly semismooth everywhere. Employing a matrix representation approach, Kong, Tuncel
and Xiu [27] presented an exact expression for Clarke’s generalized Jacobian of IIx, which is
linked to rank-one matrices. Based on the work mentioned above and Theorem 2.3, we will
formulate a triangular representation for Clarke’s generalized Jacobian of Tlg.

Let z:= Y. ; \i(2)g; and the index sets a, 3,7 be given by (8). We recall a set of matrices

1=

A¢(z) from [27]. For a given integer t € {0, 1,---,|3|}, we define a set of r x r matrices A¢(z) by

Elaixjal - Elax|s Llalxiy E Ay
Ai(z) = Elaix|g) Ao Ogixiy | : Ao = ( AT 0 > Ao € AL, 18]) p 0 (23)

T
Lot Omixisl Opyixv

where Ejy|x|q| and Ejq x5 are the all ones matrix, I'|y|x| 1S @ given matrix by the ij-entry

i = #(ZA)J(Z) (i €a,j€), and A(t,|B]) is a set of ¢ x (|| — ) matrices (0;5)sx(5—t) (the
rows are indexed by |a| +1,|a| +2,- -, |a| +t, and the columns are indexed by |a| +t+ 1, |a| +

t+2,---,|a] +|0]) specified by

A(t,|8]) == {(eij)tx(w—t) e [0, 1] U8I=) 0;; satisfy (a) and (b) below}

(@) 0; o411 = Oija4tr2 = - = Ojagyip (@€ {lal +1,[af +2,---,al +1}),
Oal+1,j = Ojaj2,5 = 2 Ojaggey (0 € {lal +t+ 1 al +t+2,---, |al +[B]});
(b) (lgi — 1) is a matrix of rank at most one.
K tx(|B]—t)

Based on the above set of matrices, we define a set of (upper) triangular matrices Uz(z) as

U(2) ;== U : Uy = 0(i > j), U+U" —Diag{1,---,1,0,---,0} € Ay(2) . (24)

||+t



As in (11) and (12), we block partition the triangular matrix U € U;(z) into three triangular
submatrices Unq, Ugg, Uy and three other submatrices Uyg, Uar, Ugy. That is,

Uaa Uaﬁ Uom/
U= Uss Usy |- (25)
U’Y’Y

We rewrite the corresponding triangular operator as

Paa Pa,@ Pory
Pi= Pss Dy
P’Y'Y

Similarly, we define the following generalized, weighted partial trace @ of ordered pairs of oper-
ators as:

Usa © Poo i= Z UijPij, Usp © Pop = Z UijPij, Uay © Poy := Z Ui; Pij,

i<j,i,jE€x i€a,jER i€a,jEY
Uss © Pog:= D UyPy, Up©Psyi= Y UijPy, UpOPpyi= Y UyPy,
i<j,ijep i€ ey i<j,ijey
UGP = UaaQPaa+Uaﬁ®Paﬁ+Ua7@Pay“‘Uﬁﬁ@Pﬁﬁ‘FUﬁ—y@Pﬁry+Ufyfy®Pfyfy
= > UyPy. (26)
1<i<j<r

As a natural continuation of Proposition 2.5 and Theorem 3.1 of [27], we are ready to give
the formula for Clarke’s generalized Jacobian of IIx at z, which states the interesting connection
between Opllk(z) (respectively, Ollk (z)) and Opllx s (0) (respectively, Ol 5(0)). In the case
of S™, it reduces to Proposition 2.2 of [12].

Proposition 2.6 Let z = > ;_; \i(2)q; and the index sets «, 3, be given by (8). The B-
subdifferential of Ik (-) at z is given by

Opllk(2) = Pao + Pog+Usy © Py + 8BHK\B\ (0).
Furthermore, Clarke’s generalized Jacobian of Ik (-) at z is

Ollk (z) = conv {0BllK (2)} = Paa + Pap + Uay © Poy + 01l 15/(0).

It is known from Proposition 3.3 of [25] that Ik is strongly semismooth on V. For any
d eV, let dij :== Pj;d, and

Ua»y © dafy = [Ua'y O] Pay]d = Z Uljdlj

1EQ,JEY

Noting that

o 1II dpg +td) — 11 d
I, o (dggs d) = i 21000 700 = Wiein@op) oy (27)

t10 t

we will give the directional derivative of Ilx at z along the direction d, which reduces to a
well-known result of Sun and Sun [28] in the setting of S™.



Proposition 2.7 Let z = >, \i(2)q; and the index sets «, 3,7 be given by (8). Then the
directional derivative of Il at z along the direction d is specified by

where Uy is given by (24) and (25).

Proof. By assumption and Proposition 2.4, for any given z € V, let d = doo + dag + dory +
dgg + dg + d. Let DHK\B\ be the set of the points where Il s is differentiable. Since Il is

strongly semismooth, IT(z;-) is well-defined on V.
In order to prove (28), we first consider the case of dgg € Dr, ;) with different eigenvalues

Ai(dgg) in subalgebra Jgz. From the definition of strong semismoothness, it follows that for
every V € 0pllg(z + td) with positive scalar t — 0,

Hg(z + td) — T (2) — V(td) = O(||td||?).

Thus, we have
lim g (z +td) — g (z)
t10 t

—1limVd=0,
t10
or equivalently,

! . 1
Mk (z;d) = ltllrél Vd. (29)

On the other hand, let z +td = >, ; Xi(z + td)qi(z + td) with X\i(z + td) > Xa(z + td) >
Ar(z + td). Note that lim g A(z + td) = A(z). As in (9) and (11), we define

\%
v

Pj; = Q(gj(z + td)) and P}; = AL(qi(z +td)) L(q; (2 + td)),i # j, i,5 € {1,2,--,r},  (30)

and six projection operators as

P(;O! = Z })z,y (;B = Z P7,/]7 P(;’y = Z Pz/]v

i<jicq,jea i<jica,jeB iSjica,jey
A / /A / /o /
Ppg = § : By Py = § : By Pyy= § : Bij- (31)
i<j,€6,5€06 i<jiepf,jey 14,17, €

By Theorem 2.5 and the argument after it, we have

V =Ubo © Poy+ Uy ©®Pig+ UL, © P, +Ups © Pgs+ U, © Py + U, ©F,,

where Ugo, Upg, Unys Upg, Up. U

\ are the submatrices with Uj; = [\i(z +td), \;j(z +td)], where
g = (-)4. Then

Vd=Ul, ®Pld+ U,z ©Plsd+ U, © P, d+Ujss® Pyd+Up, © Py d+ Ul © P, d,

and Uy © Pgad = 37, i icplhi(z + td), \j(z + td)]gP;. By Proposition 3.2 in [25], A(+)
is strongly semismooth and \;(z + td) = \;(2) + Ai(2;td) + O(¢?). By Theorem 4.4.8 of [29],
Ni(z;td) = \i(tdgg) for i € 3. Then we obtain \;(z +td) = \i(2) + Ai(tdgp) + O(t?) = tAi(dss) +
O(t?) for i € B. Since dgg € DHK\ﬁ\ with different eigenvalues of dgg in the sub-algebra of Jgg,
we denote its eigenvalues by \;_jq|(dgg) for i € 3. Then, we easily deduce that for i,j € 3

i iz td) = (Ni(z +td))
lﬁgui(z“d)’)‘j(z“d)]g_13?3 )\i(Z—Ftd—;—)\jj(Z—l-td) -

= P‘i—\a| (dﬁﬁ)v /\j—\a| (dﬁﬁ)]g'
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Therefore, we obtain

ltlf(r)l Vd=du, + dag +Uay © day + VI (dgﬁ)d,

and VI s(dgs)d = 11} 5/ (dgg; d). This together with (27) prove (28).

In the general case of d, applying Lemma 2.2 of [23], we immediately obtain the desired
conclusion by the continuity of IT}(z;-). O

2.3 The Tangent Cone

Employing the previous results and techniques, we now focus on some of the important sets
used in describing optimality conditions, such as the tangent cone of K at zy. Let 7¢(z) and
Nc(z) respectively denote the tangent and normal cones to a set C at a point z € C (see, for
instance, Chapter 6 of [30]). If C is convex, they coincide with the corresponding objects in
convex analysis [31] and N (z) = —[Tc(z)]*.

It is well-known that the tangent cone of the symmetric cone K at z;, Tx(z4), can be
characterized as

Ti(z4) ={weV:w=Ug(z4;w)}, (32)

where z = >"7_; \i(2)g; and the index sets «, 3,7 are given by (8). Observe that (Ui(z4));; = 1
for i € a,j € v and \j(z4) =0 for i € fU~. From Proposition 2.7, we obtain that

M (245 W) = Waa + Wap + Wary + Mcipus (Wap + wpy + wyy). (33)
Therefore, by (32) and (33), we have

Tr(zy) = {weV:wﬁg—me—l—ww EK‘BUV‘}
= {weV:wgs +wsy +wy, € K}. (34)
Thus,
Ni(z4) = {weV:w=wgs+ws, +wyy € (—K)}.

Let lin(7x (z4)) denote the lineality space of Tx(zy), i.e., the largest linear space contained in
Tk (z4). Then, we obtain that

lin(7x(2z4)) = {weV:wgs+wgy +wyy, =0}
= {weV:wgg=wsy =wy, =0}. (35)

Define the critical cone of K at z as C(z; K) := T (24 ) NzE where 22 := {w € V: (w, 2_) = 0}.
Clearly, from the fact that —z_ € J,, N K by (7), we obtain that

2t ={w eV : (wgs+ wgy + Wy, z_) =0} (36)
Therefore, we derive
C(z K)
= {weV:iwgg+wgy +wy € K,—2_ € K, (wgg + wgy + wy,y, —2—) =0}

{weV:wgs +wgy +wy, € K,—2_ € K, (wgg+wgy+wyy)o(—2-) =0}
= {weV:wgg € K,wg, =0,wy, =0}, (37)
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where the first equality holds by —z_ € J,,NK, (34) and (36); the second by Proposition 6 of [2];
the last one is a straightforward calculation using Theorem 2.2. Moreover, letting aff (C(z; K))
denote the affine hull of C(z; K), we have

aff(C(z; K)) = {w € V : wg, = 0,w,y = 0}. (38)
Summarizing the above arguments, we obtain the following topological result related to K.

Proposition 2.8 Let V = (7, (-,-),0) be a FEuclidean Jordan algebra with rank r. Let z =
iy Ai(2)gi and the index sets o, 3, be given by (8). Then, we have the following

Tk (z4) = {weV:wgs+wgy +wy, € K},
IIH(TK(ZJ,_)) = {w ey: WER = Wy = Wyy = 0}7
C(z; K) = {weV:wgg € K,wgy, =0,wyy =0},

aff(C(z; K)) = {weV:wg,=0,wyy, =0}

We end this section by presenting the connection between 7x(z4) and the smallest face of
K containing z;. Recall that we say a convex cone F' C K is a face of K if w,v € K, w4+v € F
imply w,v € F. Let F be a face of K, then the complementary face of F' is specified by

FA ={weK:(waz)=0 VYzecF}
Let & be an arbitrary relative interior point of F'. It is well-known that
FA={weK: (w i) =0}

Let face(zy ) be the smallest face of K containing z; € K. From the argument following Theorem
2.1, we obtain
face(zy) ={w € V:w = waa € K}.

Thus, we have
face(z4)® = {w €V :w = wsp + wgy + wyy € K},

and
[face(z4 )2t = {w € V : wgp + wpy + wy, = 0}.

Therefore, by Proposition 2.8, we actually proved the following.

Proposition 2.9 Let V = (7,(-,-),0) be a Fuclidean Jordan algebra with rank r. For every

x € K, we have
lin(Tx (z)) = [face(x)?]* .

3 The Main Result

We will prove our main result which establishes various equivalent conditions for the nonsingu-
larity of Clarke’s generalized Jacobian of the KKT system (4) at a KKT point. We begin with
the following notations.

Let z € V be an optimal solution to the SCP problem (1) and define

M(z) :={(y,s) e R™ x V: (z,y, s) satisfies the KKT conditions (3)}.

12



Let (y,5) € M(Z) and z := Z — 5. From Proposition 6 of [2] and the fact that z € K,5 € K and
(z,5) = 0, we obtain that z = z;, § = —Z_ = (—Z);. Without loss of generality, we assume
that 2=, | Aig; with A\; > Xy > --- > A, and define

a:={i: >0}, B:={i: \=0} and75:={i: )\ <0}

For simplicity, let «, 3,7, respectively, replace @, 3,75 (no confusion should arise). In this case,
we obtain

T=2Zp = Z Ngi, §=—7Z=(=2)y =Y (“N)a (39)

Then, by Proposition 2.8, we easily obtain the following:

lin(Ti(@) = ln(Tic(5:)) = {w €V wgp = wgy = wyy = 0} (10)
lin(7x (5)) = lin(7Tg((—2)+)) ={w € V : Waa = wag = wgg = 0}, (41)

and
aff(C(z; K)) = {w € V : wg, = 0,w,, = 0}. (42)

Let Ker(.A) denote the Kernel (null space) of the linear operator A. Then, we obtain
aff(C(z; K)) NKer(A) = {weV:Aw) =0, wgy =0,wy, =0}. (43)

Next, we consider an important concept, strong regularity, which was introduced by Robinson
[32] for generalized equations. Employing the properties of the normal cone, the KKT system
(4) can be rewritten as the following generalized equation:

c—A(y) —s Ny (x)
0€e A(z) —b + ./\/]Rm y) |- (44)
x N (s)
The following strong regularity condition for (44) is adopted from [32].

Definition 3.1 We say that a KKT point (Z,9,5) € V x R™ X V is a strongly regular solution
of the generalized equation (44) if there respectively exist neighborhoods B and Y of the origin 0
in VxR™xV and the point (T, 7, 5) such that for every ¢ € B, the following generalized equation

c— A*(y)— s No()
(€ A(z) — b + | Ner(y)
x Nk (s)

has a unique solution in X, denoted by sx(C), and the mapping sy : B — R is Lipschitz continuous.

Note that the strong regularity for SDP (or nonlinear SDP) is closely related to another
concept called the strong second order sufficient condition, see [8, 12] for details and references
therein. Motivated by the works mentioned above, we establish the strong second order sufficient
condition for the SCP problem (1) based on the following linear-quadratic function.

Definition 3. 2 Let z = > 1 X\i(2)q; and the index sets «, 3, be given by (8). Further let
2t = Zzeaw - We define the linear-quadratic function Y, :V xV — R by

T.(v,w) == (v, Q(w)z"), (v,w) €V xV,

which is linear in the first argument v and quadratic in the second argument w.
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Here, we call zt the Moore-Penrose pseudo-inverse of z (and adopt the same notation) since
in the context of S™ it is the Moore-Penrose pseudo-inverse of a symmetric matrix. By the
definition of operator Q@ and the associativity of the inner product, we know that

T.(v,w) = (u2wo (woz')—w?ozl)

= 2wow,z cw) — (vozl w?).
Clearly, when v o zf = 0, it yields
T.(v,w) = 2wow,z ow) = 2(v,wo (z ow)).

For instance, if (y,s) € M(Z), then s o ' = 0 by the argument in the second paragraph of this
section. In what follows, we only apply the above definition in the cases of (y,s) € M(z) and

Te(s,w) = 2(sow,Z ow),

which becomes Definition 2.1 of [12] in the context of S™.

Thus, we can give the strong second order sufficient condition for the SCP problem (1).

Definition 3.3 Let T be an optimal solution to the SCP problem (1). We say that the strong
second order sufficient condition (SSOSC) holds at T if

sup  {Yz(s,w)} >0, VO#we N {aff (C(z; K)) NKer(A)} . (45)
(y,s)EM() (y,8)EM(Z),2=T—s

The following result gives a useful and simple characterization of SSOSC when M(Z) is a

singleton, i.e., M(z) = {(y, 5)}.

Proposition 3.4 Let T be an optimal solution to the SCP problem (1). Assume that M(z) =
{(g,5)}. Let T and § have the spectral decompositions as in (39). Then the SSOSC (45) holds
at T if and only if the following condition holds

[A(w) =0, way =0, wgy =0, wy, =0 = w=0,] Vwe. (46)

Proof. Let Z2:=2 — 5 := Z£:1 Aiq; with Ay > Ay > -+ > A, and the index sets «, 3,7 be given
by (8). Note that Proposition 2.4 implies that any w € V can be expressed as

W = Waa + Wap + Way + W + Way + Wayy,

where waa € Jaa, Wag € Jags Way € Javy, Wag € Jgg, Way € Jgy, w4y € Jy,. By the assumptions,
we have T =z, = > ;. Nigi and 5§ = (=2)4 = >, (—Ai)gi. Since M(z) = {(7,35)}, by the
argument after Definition 3.2 and (43), it is not hard to see that (45) is equivalent to the following

(5ow,Zlow) >0, Vw0 such that A(w) =0, wgy =0, wyy =0.

Clearly, 5 = 5., € J,y and = Yica )\%qi € Jaa. Letting wgy, = w,, = 0, by Theorem 2.2,
direct calculation yields

Tlow = &' o (Waa + Wap + Way +was + Wey + Wary)

= zfo (Waa + Wap) + a’:T o wm

— zlo (Waa + wap) + E y wu,
zEa,jE'y
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and

Sow = 50 (Waa + Wap + Way +wgs + Way + Wyy)
= Syy O Way
= 5 Y (A
1€Q,JEY
Therefore, Theorem 2.2 implies that

(Z' ow,50w)

= <jTo(waa+wtxﬁ)7% > (—/\j)wz'j>+<% > %wij’% > (—Aj)wz‘j>

1€q,jEY 1€q,jEY v 1€EQ,jEY
= = > () lwyl
4 A
1€EQ,) €Y
Thus, the SSOSC holds at Z if and only if the following implication is true
Aw) =0, w#0, wgy =0, wyy =0 = wuy #0, Yw € V.

This is equivalent to the desired conclusion. O

From the above proof we also obtain that, for any w with wg, = w,, = 0,

) = 5 % () bl (a7
1€EQ,JEY

Continuing the line of thought started with Proposition 3.4, we present a connection between
the SSOSC and another important concept of constraint nondegeneracy defined below. Notice
that a related concept of nondegeneracy goes back at least to Robinson [33, 34] for a general
abstract problem, and the primal and dual nondegeneracy was extensively considered in the
SDP context [6, 7, 5, 8, 9, 11, 12], where Bonnans and Shapiro [7] also studied constraint
nondegeneracy for general optimization problems. It has been used in [5, 15, 35, 36] for sensitivity
and stability analysis in optimization and variational inequalities. Here, our definition comes

from Robinson’s terminology [34, 33].

Definition 3.5 We say that the primal constraint nondegeneracy holds at a feasible solution
z €V to the SCP problem (1) if

[ 7 } v [ (1) ] - < o ) ’ (48)

A lin(Ty (7)) = R™. (49)

or equivalently

Similarly, we say that the dual constraint nondegeneracy holds at a feasible solution (y,5) €
R™ x V to the dual problem (2) if

[gl*ﬂ<ﬂ1§m>+[1in({fof<}(g))]:<z>= (50)

A*R™ 4+ 1in(Tx (3)) = V. (51)

or equivalently
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Note that the above definition coincides with the definition of primal and dual nondegeneracy
by Pataki [14] in the setting of SDP, also see the reference [5] for details.

Proposition 3.6 Let T be an optimal solution to the SCP problem (1). Assume that M(z) =
{(g,5)}. Then the SSOSC (45) holds at T if and only if the dual constraint nondegeneracy
condition (51) holds at (y, ).

Proof. Asin the proof of Proposition 3.4, letting z := Z—5 := Y ;_; Nig; with Ay > Xy > --- > A,
and a, 3,7 be defined by (8), we have z = zZy = >, Aig; and 5 = (=2)4 = Ei@,(—)\z’)%" By
Proposition 2.4, any w € V can be expressed as

W = Waa + Wag + Way + WG + Wy + Wy,

where woa € Jaa, Wag € Jags Way € Jay,wgg € Jag,wgy € Jgy,wyy € Jyy. Note that, since
M(z) = {(y,5)}, Proposition 3.4 means that the SSOSC (45) holds at z if and only if (46)
holds. In order to prove the theorem, we only need to show that (46) holds if and only if the
dual constraint nondegeneracy condition (51) holds at (g, ).

First, suppose that (46) holds but the dual constraint nondegeneracy condition (51) does
not hold at (g, 5). Then,

(A R™)* N (lin(7 ()" # {0}
Pick any arbitrary 0 # @ € (A*R™)* N (lin(7x(5)))*. Clearly,

(w,A*(y)) = 0, VyeR™, (52)
(w,s) = 0, Vsé€lin(7x(s)). (53)

Note that (w, A*(y)) = (A(w),y). Then, (52) implies A(w) = 0. Let

W = Waa + Was + Wary + Weg + Wey + Wy,

S = Saa Tt Sapt Say + S5+ Sgy Tt Syy-
Thus, by (41) and (53), we have Way +Wgy + Wy = 0, which, together with (46) and A(w) = 0,
yields @ = 0. This is a contradiction. Hence, the dual constraint nondegeneracy condition (51)
holds at (g, 5).

Conversely, suppose that the dual constraint nondegeneracy condition (51) holds at (g, 3).

Then, for any w € V with A(w) = 0 and way + wgy + wyy, = 0, there exist y € R™ and
s € lin(7k(5)) such that w = A*(y) + s. Then, we obtain

<w’ w> = <w7 A*(y) + 8>
= (A(w),y) + (w,s)
-0,

where the last equality follows from the facts A(w) = 0, and way + wgy + wyy = 0 and sqq +
508 + spg = 0 because s € lin(7x(5)). Therefore, w = 0 as desired. The proof is completed. [

Likewise, for the dual SCP problem (2), we can establish a similar statement, which is omitted
here for brevity. We remark that in the setting of S™, the above result becomes Proposition 3.8
of [8].

Before giving our main result, we need two lemmas which demonstrate the link between the
constraint nondegeneracy and the nonsingularity of Clarke’s generalized Jacobian of H at a KKT
point (Z,7y,8) € V x R™ x V. We first show that the primal and dual constraint nondegeneracy
conditions are sufficient for the nonsingularity of any W € 0H(z, 9, 5).
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Lemma 3.7 Let (z,79,5) € V x R™ xV be a KKT point satisfying the KKT conditions (3)
and H be the function given by (4). Suppose that the primal constraint nondegeneracy condition
(49) holds at T and the dual constraint nondegeneracy condition (51) holds at (y,58). Then, every
element in OH (Z,y, S) is nonsingular.

Proof. From Proposition 4.50 of [5] or Theorem 3.5 of [14], we obtain that the primal constraint
nondegeneracy condition implies that M(z) = {(g,5)}. Thus, it follows from Proposition 3.6
that the SSOSC holds at z. That is,

Tz(5,w) >0, VO0#weaff(C(z;K))NKer(A), (54)

where z := T —§ := Y [ Nig; with Ay > Xg > --- > A\, and «, 3,7 be defined by (8). Then
T =3 icaNilis 8= e (—Ai)qi. Choose any W € 0H(Z,7,5). We only need to show that W
is nonsingular. It is obvious that W has the form

0 -A* -7
W = A 0 0 )
-V 0 v

where V' € Ollg(z) is the given element related to W. Suppose that (x,y,s) € V x R™ x V is
any vector such that W(z,y,s) =0, i.e.,

—A'y)—s = 0, (55)
A(z) = 0, (56)
(Z-V)x + Vs = 0. (57)
By Proposition 2.4, we can set
T = Zaat+Tagt Tay+ 233+ Ty + Tyy,
§ = Saat Sapt Sayt+ S8+ Sgy + Syy,

where Toq, Saa € Jaar Tags Sa € Jass Tay, Say € Jay:s T8,588 € JB3:Ty: S8y € JBys Ty, Syy €
J+~. By Proposition 2.6, we have

Ai
Vi = Zaa+ Tap+ Z N i + Va2, (58)
i T A

1€EQ,jEY

where Vi € 0l (0) is the element related to V. From (57), we obtain that

Ty + Ty = 0, (59)
Saa+Sap = 0, (60)
(Z = Viis)eps + Vigissps = 0, (61)
—Aj i

i i = 0. 62
Z <>\i_)\jx]+)\i_>\jsj> ( )

1€EQ,) €Y

By (61), we have

rgs = Viis1wss — V161588, (63)

and
0= (zpp,(Z — Vi) 28 + Viis1588) = (s, (T — Viis1)sT8) + (28, Vii51588) -
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Noting that 7 — Vs is positive semidefinite on the subspace Jg3, we obtain

(zss, Viia15a8) = — (28, (T — Viis1)x8) < 0. (64)
Similarly,
(Vkis188, 533) = 0. (65)
By (63),
(z38,583) = (Viis1238, 583) — (Vi151538, 583) - (66)
This together with (64) and (65) yields that
(zpp: spp) < 0. (67)

Therefore, we have

<$a'ya 5a“{> + <$Bﬁa 565>
<$a'ya 5a~/>
)\.
> Ny
. N 7
1€EQ,JEY
= —2T5(5,3§),

(x,5)

IN

where the first equality holds by (59) and (60), the second equality follows from s;; = i‘\—ix,] for
i € o, j € v by (62), the third equality holds by (47), and the first inequality holds by (67). This
together with (54) and (59) yields = 0. Thus, from (55) and (57), we obtain that

Saa + Saﬁ + Sa—y = 0, A*(y) + s = 0 (68)

Note that the constraint nondegeneracy condition (48) means that there exist v € V and w €
lin(7x (z)) such that
Alw)=y and v+ w=s.

Thus, this together with (54) and wgg + wgy + wyy = 0 yields

(,y) +(s,8) = (y,Av)) + (5,0 +w)
- < *(y),v> + <37U> + <87w>
= (AYy) +s,v) + (s,w)
= 0.
Therefore, s = 0 and y = 0. Hence, the desired conclusion follows. O
Note that W € 0pH (%, ¥, 5) if and only if there is a V' € dpllx(Z) such that
0 -A* -T
W = A 0 0 . (69)

-V 0 V

By Proposition 2.6, 0,Pg3 € 0pllys(0). Let VO .= Py, + Pyg + Usy © P,y and Vvl =
Poo + Pog + Uay © Py + Pgg. Clearly, VO VT € 0pllk(2). Let W9 and W7 be specified by
(69) with V being replaced by V' and VZ, respectively. Define ex(dpH (%,7,5)) := {W° WZ}.
Clearly, ex(0pH(Z,y,5)) C OpH(Z,7,5).

We continue to show that the nonsingularity of only two elements W° W7 in OgH(Z, 7, 5)
will imply both the primal and dual constraint nondegeneracy conditions.
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Lemma 3.8 Let (Z,7,5) € VX R™ xV be a KKT point satisfying the KKT conditions (3) and
H be the function given by (4). Suppose that two elements {W°, W2} of ex(0pH(Z,7,5)) are
nonsingular. Then the primal constraint nondegeneracy condition (49) holds at T and the dual
constraint nondegeneracy condition (51) holds at (g, S).

Proof. We consider the following two cases:

Case 1: Assume that the primal constraint nondegeneracy condition (49) does not hold at z.
By Definition 3.5, (48) does not hold. Thus, we obtain

{[?}V}L” [ (o) T*{O}e < v )
5)

which means that there exists a nonzero (g, §) such that

(@,§)€H“I4]V}L, (70)

(,3) € [ lin(g(—)fi(f)) r'

By (71), for any w € lin(7x(Z)), we have (5, w) = 0. Since wgg+wgy+wyy = 0, Saa+3a3+5ay =
0. Then, V3 = 840 + 8ap + (Uay ® Pay)3ay = 0. On the other hand, by (70),

(9,8), (A(w),w)) =0,Yw eV = A (§)+s5=0.

Letting x = 0, we obtain that for nonzero (0, 3, §)

and

(71)

0 A" -I —A*()) — 3
w%0,4,3) = A 0 0 |(0,9,8 = 0 =0,
I-v% o VO VO3

which says that WY is singular. This is a contradiction, and the primal constraint nondegeneracy
condition holds.

Case 2: Assume that the dual constraint nondegeneracy condition (51) does not hold at (g, §).
We obtain

A R™* M [lin(Tic(5))] # {0} € V.
Similarly, there is a nonzero & such that
i e [A'R™*, (72)
and
& € [lin(Tx (5))]". (73)

By (73) and (41), Tay + &8y + &4y = 0, ie., T = Zoa + Tap + Zg3. Thus, we obtain that
VI3 =30 + g+ 2ss = 2, and (Z — VZ)& = 0. On the other hand, by (72),

(&, A*(y)) =0,YVy e R = A(z) =0.
Likewise, letting (y, s) = (0,0), we obtain that for nonzero (&,0, 0)

0 —A* I 0
wZ(#,0,0) = A 0 0 |(z00)= A() =0,
7-vI o VZ (Z-vhHz

which says that W7 is singular. This is also a contradiction, and the dual constraint nondegen-
eracy condition holds. O
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Now, we are in the position to prove our main result.

Theorem 3.9 Let (Z,7,5) € V X R™ x V be a KKT point satisfying the KKT conditions (3)
and H be the function given by (4). Then, the following statements are all equivalent:

(a) Every element in OH (Z,¥,S) is nonsingular.
(b) Every element in OpH (Z,7,8) is nonsingular.
(¢) Both elements in ex(0pH (Z,y,5)) are nonsingular.

(d) The primal constraint nondegeneracy condition (49) holds at T and the dual constraint
nondegeneracy condition (51) holds at (3, S).

(e) The function H is a locally Lipschitz homeomorphism near (Z,9,§).
(f) The KKT point (Z,y,5) is a strongly reqular solution of the generalized equation (44).

In each case, T is a unique primal optimal solution to SCP (1) and (g, S) is a unique optimal
solution to its dual (2) .

Proof. It follows from Lemmas 3.7 and 3.8 that (b) < (a) < (¢) < (d). Note that from the
proof of Lemma 3.4 of [8], we actually obtain that a similar result is still true in the setting
of symmetric cones. This establishes (¢) < (f). Furthermore, we know from Clarke’s inverse
function theorem for Lipschitz functions [21, 37] that (b) = (e), and from [38, 39] that (e) = (b).

Furthermore, by Theorem 3.5 of [14] and the remark after Definition 3.5, if the condition (d)
holds then Z is a unique primal optimal solution and (g, ) is a unique dual optimal solution.
Thus, the proof is complete, establishing the equivalence of all statements. O

Acknowledgment We thank two anonymous referees for their very useful comments. In par-
ticular, one of the referees pointed out a gap in our original proof of Proposition 2.7.
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