Skip to main content
Log in

Strong Convergence of an Iterative Scheme by a New Type of Projection Method for a Family of Quasinonexpansive Mappings

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We deal with a common fixed point problem for a family of quasinonexpansive mappings defined on a Hilbert space with a certain closedness assumption and obtain strongly convergent iterative sequences to a solution to this problem. We propose a new type of iterative scheme for this problem. A feature of this scheme is that we do not use any projections, which in general creates some difficulties in practical calculation of the iterative sequence. We also prove a strong convergence theorem by the shrinking projection method for a family of such mappings. These results can be applied to common zero point problems for families of monotone operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr. Inform. Rech. Opér. 4, 154–158 (1970)

    MathSciNet  Google Scholar 

  2. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brézis, H., Lions, P.-L.: Produits infinis de résolvantes. Israel J. Math. 29, 329–345 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  4. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383–390 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87, 189–202 (2000)

    MATH  MathSciNet  Google Scholar 

  6. Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002)

    Article  MathSciNet  Google Scholar 

  7. Kohsaka, F., Takahashi, W.: Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal., 239–249 (2004)

  8. Kimura, Y., Nakajo, K., Takahashi, W.: Strongly convergent iterative schemes for a sequence of nonlinear mappings. J. Nonlinear Convex Anal. 9, 407–416 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Tricomi, F.G.: Lezioni di Analisi Matematica, Parte I Padova, Casa Editrice CEDAM (1956), p. 325

  10. Mann, W.R.: Mean value methods in iteration. Proc. Am. Math. Soc. 4, 506–510 (1953)

    Article  MATH  Google Scholar 

  11. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MATH  Google Scholar 

  12. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  13. Reich, S.: Strong convergence theorems for resolvents of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wittmann, R.: Approximation of fixed points of nonexpansive mappings. Arch. Math. (Basel) 58, 486–491 (1992)

    MATH  MathSciNet  Google Scholar 

  15. Reich, S.: Approximating fixed points of nonexpansive mappings. Panamer. Math. J. 4, 23–28 (1994)

    MATH  MathSciNet  Google Scholar 

  16. Shioji, N., Takahashi, W.: Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces. Proc. Am. Math. Soc. 125, 3641–3645 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Takahashi, W., Kim, G.-E.: Approximating fixed points of nonexpansive mappings in Banach spaces. Math. Jpn. 48, 1–9 (1998)

    MATH  MathSciNet  Google Scholar 

  18. Nakajo, K., Takahashi, W.: Approximation of a zero of maximal monotone operators in Hilbert spaces. In: Takahashi, W., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 303–314. Yokohama Publishers, Yokohama (2003)

    Google Scholar 

  19. Takahashi, W., Takeuchi, Y., Kubota, R.: Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 341, 276–286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Plubtieng, S., Ungchittrakool, K.: Hybrid iterative methods for convex feasibility problems and fixed point problems of relatively nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 19, 583082 (2008)

    MathSciNet  Google Scholar 

  21. Takahashi, W., Zembayashi, K.: Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings. Fixed Point Theory Appl. 11, 528476 (2008)

    MathSciNet  Google Scholar 

  22. Qin, X., Cho, Y.J., Kang, S.M.: Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math. 225, 20–30 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wattanawitoon, K., Kumam, P.: Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 3, 11–20 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wattanawitoon, K., Kumam, P.: Corrigendum to: “Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings” [Nonlinear Anal. Hybrid Syst. 3, 11–20 (2009) [MR2487980]]. Nonlinear Anal. Hybrid Syst. 3, 176 (2009)

    Article  MathSciNet  Google Scholar 

  25. Kimura, Y., Takahashi, W.: On a hybrid method for a family of relatively nonexpansive mappings in a Banach space. J. Math. Anal. Appl. 357, 356–363 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kimura, Y.: Shrinking projection methods and common zero point problems for a finite family of maximal monotone operators. In: Akashi, S., Kimura, Y., Tanaka, T. (eds.) Nonlinear Analysis and Convex Analysis, pp. 125–133. Yokohama Publishers, Yokohama (2010)

    Google Scholar 

  27. Takahashi, W.: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)

    MATH  Google Scholar 

  28. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  29. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  30. Bruck, R.E., Jr.: Nonexpansive projections on subsets of Banach spaces. Pacific J. Math. 47, 341–355 (1973)

    MATH  MathSciNet  Google Scholar 

  31. Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory 40, 301–309 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  32. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Itoh, S., Takahashi, W.: The common fixed point theory of single valued mappings and multivalued mappings. Pacific J. Math. 79, 493–508 (1978)

    MathSciNet  Google Scholar 

  34. Takahashi, W., Yao, J.-C.: Strong convergence theorems by hybrid methods for countable families of nonlinear operators in Banach spaces (to appear)

  35. Kohsaka, F., Takahashi, W.: Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Arch. Math. (Basel) 91, 166–177 (2008)

    MATH  MathSciNet  Google Scholar 

  36. Kohsaka, F., Takahashi, W.: Existence and approximation of fixed points of firmly nonexpansive-type mappings in Banach spaces. SIAM J. Optim. 19, 824–835 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Kimura, Y., Takahashi, W., Toyoda, M.: Convergence to common fixed points of a finite family of nonexpansive mappings. Arch. Math. (Basel) 84, 350–363 (2005)

    MATH  MathSciNet  Google Scholar 

  38. Xu, H.-K.: Another control condition in an iterative method for nonexpansive mappings. Bull. Aust. Math. Soc. 65, 109–113 (2002)

    Article  MATH  Google Scholar 

  39. Barbu, V., Precupanu, T.: Convexity and optimization in Banach spaces. In: Mathematics and Its Applications. East European Series, vol. 10. Reidel, Dordrecht (1986). Romanian ed.

    Google Scholar 

  40. Goebel, K., Kirk, W.A.: A fixed point theorem for asymptotically nonexpansive mappings. Proc. Am. Math. Soc. 35, 171–174 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  41. Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000)

    Google Scholar 

  42. Takahashi, W.: Nonlinear Functional Analysis: Fixed Point Theory and Its Applications. Yokohama Publishers, Yokohama (2000)

    MATH  Google Scholar 

  43. Takahashi, W., Toyoda, M.: Weak convergence theorems for nonexpansive mappings and monotone mappings. J. Optim. Theory Appl. 118, 417–428 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Additional information

The first author and the second author are supported by Grant-in-Aid for Scientific Research No. 22540175 and No. 19540167 from Japan Society for the Promotion of Science, respectively. The third author is supported by the Grant NSC 99-2115-M-110-004-MY3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Takahashi, W. & Yao, J.C. Strong Convergence of an Iterative Scheme by a New Type of Projection Method for a Family of Quasinonexpansive Mappings. J Optim Theory Appl 149, 239–253 (2011). https://doi.org/10.1007/s10957-010-9788-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9788-9

Keywords

Navigation