Skip to main content
Log in

Switching Stepsize Strategies for Sequential Quadratic Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A Sequential Quadratic Programming (in short, SQP) algorithm is presented for solving constrained nonlinear programming problems. The algorithm uses three stepsize strategies, in order to achieve global and superlinear convergence. Switching rules are implemented that combine the merits and avoid the drawbacks of the three stepsize strategies. A penalty parameter is determined, using an adaptive strategy that aims to achieve sufficient decrease of the activated merit function. Global convergence is established and it is also shown that, locally, unity step sizes are accepted. Therefore, superlinear convergence is not impeded under standard assumptions. Global convergence and convergence of the stepsizes are displayed on test problems from the Hock and Schittkowski collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  2. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, San Diego (1981)

    MATH  Google Scholar 

  3. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, London (2002)

    MATH  Google Scholar 

  4. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, vols. I–VI. Kluwer Academic, Dordrecht (2001)

    Book  MATH  Google Scholar 

  5. Tzallas-Regas, G.: Switching stepsize strategies for Nonlinear Programming. Ph.D. thesis, University of London, Imperial College London, London (2007)

  6. El-Bakry, A.S., Tapia, R.A., Tsuchiya, T., Zhang, Y.: On the formulation and theory of the Newton interior-point method for nonlinear programming. J. Optim. Theory Appl. 89, 507–541 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Shanno, D.F., Simantiraki, E.M.: Interior point methods for linear and nonlinear programming. In: The State of the Art in Numerical Analysis, York, 1996. Inst. Math. Appl. Conf. Ser. New Ser., vol. 63, pp. 339–362. Oxford University Press, London (1997)

    Google Scholar 

  8. Pietrzykowski, T.: An exact potential method for constrained maxima. SIAM J. Numer. Anal. 6, 299–304 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  9. Han, S.P.: A globally convergent method for nonlinear programming. J. Optim. Theory Appl. 22, 297–309 (1977)

    Article  MATH  Google Scholar 

  10. Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Watson, G. (ed.) Lecture Notes in Mathematics, Numerical Analysis, Dundee, 1977. Springer, Berlin (1977)

    Google Scholar 

  11. Powell, M.J.D.: Algorithms for nonlinear constraints that use Lagrangian functions. Math. Program. 14, 224–228 (1978)

    Article  MATH  Google Scholar 

  12. Han, S.P.: Superlinearly convergent variable metric algorithms for general nonlinear programming problems. Math. Program. 11, 263–282 (1976)

    Article  Google Scholar 

  13. Maratos, N.: Exact penalty function algorithms for finite-dimensional and control optimization problems. Ph.D. thesis, University of London (1978)

  14. Rustem, B.: Equality and inequality constrained optimization algorithms with convergent stepsizes. J. Optim. Theory Appl. 76, 429–453 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chamberlain, R.M., Powell, M.J.D., Lemarechal, C., Pedersen, H.C.: The wathdog technique for forcing convergence in algorithms for constrained optimization. Math. Program. Stud. 16, 1–17 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pshenichnyi, B.N., Danilin, Y.M.: Numerical Methods in Extremal Problems. Nauka, Moscow (1975), English translation (1978)

    Google Scholar 

  17. Mayne, D.Q., Polak, E.: A superlinearly convergent algorithm for constrained optimization problems. Math. Program. Stud. 16, 45–61 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Tapia, R.A.: Quasi-Newton methods for equality constrained optimization: equivalence of existing methods and a new implementation. In: Mangasarian, O.L., Meyer, R.R., Robinson, S.M. (eds.) Nonlinear Programming, vol. 3, pp. 125–164. Academic Press, San Diego (1978)

    Google Scholar 

  19. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  20. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: Some theoretical properties of an augmented Lagrangian merit function. Technical Report SOL 86-6R, SOL, Stanford University (1986)

  21. Fukushima, M.: A successive quadratic programming algorithm with global and superlinear convergence properties. Math. Program. 35, 253–264 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. Panier, E.R., Tits, A.L.: Avoiding the Maratos effect by means of a nonmonotone line search I. general constrained problems. SIAM J. Numer. Anal. 28, 1183–1195 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. Powell, M.J.D., Yuan, Y.: A recursive quadratic programming algorithm that uses differentiable penalty functions. Math. Program. 7, 265–278 (1986)

    Article  MathSciNet  Google Scholar 

  24. Yamashita, H.: A globally convergent constrained quasi-Newton method with an augmented Lagrangian type penalty function. Math. Program. 23, 75–86 (1982)

    Article  MATH  Google Scholar 

  25. Byrd, R.H., Nocedal, J., Waltz, R.A.: Steering exact penalty methods. Technical Report OTC 05, Optimization Technology Center, Northwestern University, Evanston Il 60208 (2005)

  26. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91, 239–269 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  27. Rustem, B.: Convergent stepsizes for constrained optimization algorithms. J. Optim. Theory Appl. 49, 135–160 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  28. Bertsekas, D.P.: Constrained Optimization and Lagrange Multipliers. Academic Press, San Diego (1982)

    Google Scholar 

  29. Hock, W., Schittkowski, K.: Test examples for nonlinear programming codes. In: Lecture Notes in Economics and Mathematical Systems, vol. 187. Springer, Berlin (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tzallas-Regas.

Additional information

Communicated by P.M. Pardalos.

The authors would like to thank the anonymous referees and Prof. F. Giannessi for their useful comments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzallas-Regas, G., Rustem, B. Switching Stepsize Strategies for Sequential Quadratic Programming. J Optim Theory Appl 149, 269–292 (2011). https://doi.org/10.1007/s10957-010-9790-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9790-2

Keywords

Navigation