Skip to main content
Log in

Uniform Global Convergence of a Hybrid Scheme for Singularly Perturbed Reaction–Diffusion Systems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a system of coupled singularly perturbed reaction–diffusion two-point boundary-value problems. A hybrid difference scheme on a piecewise-uniform Shishkin mesh is constructed for solving this system, which generates better approximations to the exact solution than the classical central difference scheme. Moreover, we prove that the method is third order uniformly convergent in the maximum norm when the singular perturbation parameter is small. Numerical experiments are conducted to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, G.P.: Towards an improved turbulence model for wave-current interactions. 2nd Annual Report to EU MAST-III Project the Kinematics and Dynamics of Wave–Current Interactions, Contract No MAS3-CT95-0011 (1998)

  2. Kan-On, Y., Mimura, M.: Singular perturbation approach to a 3-component reaction–diffusion system arising in population dynamics. SIAM J. Math. Anal. 29, 1519–1536 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shishkin, G.I.: Mesh approximation of singularly perturbed boundary-value problems for systems of elliptic and parabolic equations. Comput. Math. Math. Phys. 35, 429–446 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Doolan, E.P., Miller, J.J.H., Schilders, W.H.A.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dún Laoghaire (1980)

    MATH  Google Scholar 

  5. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer, Berlin (2008)

    MATH  Google Scholar 

  6. Kadalbajoo, M.K., Patidar, K.C.: A survey of numerical techniques for solving singularly perturbed ordinary differential equations. Appl. Math. Comput. 130, 457–510 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xenophontos, C., Oberbroeckling, L.: A numerical study on the finite element solution of singularly perturbed systems of reaction–diffusion problems. Appl. Math. Comput. 187, 351–1367 (2007)

    Article  MathSciNet  Google Scholar 

  8. Xenophontos, C.: The hp finite element method for singularly perturbed systems of reaction–diffusion equations. Neural Parallel Sci. Comput. 16, 337–352 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Valanarasu, T., Ramanujam, N.: An asymptotic initial value method for boundary value problems for a system of singularly perturbed second order ordinary differential equations. Appl. Math. Comput. 147, 227–240 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matthews, S.: Parameter robust numerical methods for a system of two coupled singularly perturbed reaction–diffusion equations. MS thesis, School of Mathematics sciences, Dublin City University (2000)

  11. Matthews, S., O’Riordan, E., Shishkin, G.I.: A numerical method for a system of singularly perturbed reaction–diffusion equations. J. Comput. Appl. Math. 145, 151–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rao, S.C.S., Kumar, M.: Parameter-uniformly convergent exponential spline difference scheme for singularly perturbed semilinear reaction–diffusion problems. Nonlinear Anal. 71, e1579–e1588 (2009)

    Article  MathSciNet  Google Scholar 

  13. Rao, S.C.S., Kumar, S., Kumar, M.: A parameter-uniform B-spline collocation method for singularly perturbed semilinear reaction–diffusion problems. J. Optim. Theory Appl. 146, 795–809 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Surla, K., Uzelac, Z.: A uniformly accurate spline collocation method for a normalized flux. J. Comput. Appl. Math. 166, 291–305 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jeffries, J.S.: A singularly perturbed semilinear system. Methods Appl. Anal. 3, 157–173 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Shishkina, L., Shishkin, G.I.: Conservative numerical method for a system of semilinear singularly perturbed parabolic reaction–diffusion equations. Math. Model. Anal. 14, 211–228 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  MATH  Google Scholar 

  18. Bakhvalov, N.S.: Towards optimization of methods for solving boundary value problems in the presence of a boundary layer. Zh. Vychisl. Mat. Mat. Fiz. 9, 841–859 (1969)

    MATH  Google Scholar 

  19. Bellman, R.E., Kalaba, R.E.: Quasilinearization and Nonlinear Boundary-Value Problems. Elsevier, New York (1965)

    MATH  Google Scholar 

  20. Kadalbajoo, M.K., Patidar, K.C.: Spline techniques for solving singularly-perturbed nonlinear problems on nonuniform grids. J. Optim. Theory Appl. 114, 573–591 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rao, S.C.S., Kumar, M.: B-spline collocation method for nonlinear singularly-perturbed two-point boundary-value problem. J. Optim. Theory Appl. 134, 91–105 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. S. Rao.

Additional information

Communicated by Ilio Galligani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, S.C.S., Kumar, S. & Kumar, M. Uniform Global Convergence of a Hybrid Scheme for Singularly Perturbed Reaction–Diffusion Systems. J Optim Theory Appl 151, 338–352 (2011). https://doi.org/10.1007/s10957-011-9867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9867-6

Keywords

Navigation