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Abstract: In this paper, we first remember the mathematical formulation of
an original variance-expected compliance model used for structural optimiza-
tion. It allows us to find robust structures for the main load and its perturba-
tions. In the second part, we valid this model on a 3-D benchmark test case and
compare the results obtained to those given by a classical expected compliance
model.
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1 Introduction

Trusses are mechanical structures consisting of an ensemble of slender bars,
connecting some pairs of nodal points in IRd with either d = 2 or d = 3. The
bars are supposed to be made of a linearly elastic, isotropic and homogeneous
material, and long bars overlapping small ones are neglected. They are designed
to support some external nodal loads as well as self-weight loads, taking into
account certain mechanical properties of the bar material.

Using the ground structure approach [14], we focus on the case where the
goal is to find bar volumes (topology) which minimize the compliance of the
truss under mechanical equilibrium, and total volume constraints. See problem
(2) in Section 2.

Typically, optimal trusses are unstable under load perturbations (see for
example [4, 8]). Therefore, in order to design robust truss structures it is nec-
essary to include theses perturbations into the model. In this context, several
approaches might be considered. For instance, the multiload model which, in its
standard form, consists of minimizing a weighted average of compliances associ-
ated with a finite set of loading scenarios [3]. Secondly, in the worst case design
the objective is to minimize the maximum compliance under a set of discrete
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loading scenarios ([1, 2]). Finally, in the same direction, the ellipsoid method
considers a continuum of primary and secondary loads defined by a particular
ellipsoid ([8]).

Assuming that loads are random variables, Alvarez and Carrasco [4] propose
the problem of finding the truss of minimum expected compliance (see problem
(DV ar; IP;α; 0) in Section 3). They show that this problem can be reformulated
as a multiload-type problem, but with a different interpretation of the scenarios.
Since multiload problems can be equivalently formulated as a convex finite-
dimensional problem, then the expected-compliance model may be efficiently
solved, see [3, 7, 23, 9]

The stochastic setting given in [4] allows us to consider the minimum var-
iance-compliance problem, where the variance of the compliance is included into
the model. This stochastic model is also equivalent to a nonlinear programming
problem. However, the variance formulation introduces a non-convex term, that
makes this type of problems harder to solve numerically than the minimum
expected compliance model. This paper focuses on this variance formulation.
Using a global optimization algorithm [25, 20], we analyze numerically a truss
from the point of view of its mechanical stability.

We point out that multilevel stochastic programming problems have also
been proposed to deal with mechanical stability of trusses ([24, 15]). In this
approach, approximation and discretization schemes are required in order to
estimate expected values. In our formulation, since we compute explicitly the
expected values, these types of approximation techniques are not needed at all.
Nevertheless, the non-convex term associated to the variance prevents to use it
for a large amount of variables.

In Section 2 we recall the well-known minimum compliance truss and the
multiload model [1, 8]. In Section 3, we present the mathematical formulation
of the variance-expected compliance model, based on [4, 12]. Finally, in Section
4, the results are analyzed and compared in terms of robustness among them.

2 Standard minimum compliance truss design

Set n = d · N − s, the number of degrees of freedom on a ground structure
consisting of N ≥ 2 nodes, where s ≥ 0 is the number of fixed nodal coordinate
directions (i.e., coordinates corresponding to support conditions are removed).
Let m ≥ n be the number of potential bars in the truss structure (of course,
m ≤ N(N − 1)/2), and denote by λi ≥ 0 the volume (normalized) of the i-
th bar with i ∈ {1, . . . ,m}. External loads are applied only at nodal points
and are described in global reduced coordinates by a vector f ∈ IRn. Under
the assumption that each bar is subjected only to axial tension or compression
(thus neglecting large deflections and bending effects), the mechanical response
of the truss is described by the elastic equilibrium equation (see e.g. [1])

K(λ)u = f,

where u ∈ IRn is the nodal displacements vector in global reduced coordinates
and K(λ) is the stiffness matrix of the truss, which has the form

K(λ) =

m
∑

i=1

λiKi. (1)
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Here λi ≥ 0 is the volume of the i-th bar and Ki ∈ IRn×n is a positive semi-
definite matrix, which corresponds to the specific stiffness matrix of the i-th bar
in global coordinates.

The problem of finding the minimum compliance truss for a normalized
volume constraint of material is given by (see e.g. [3, 10])

min
λ∈∆m

{

1

2
fT u | K(λ)u = f, u ∈ IRn

}

, (2)

where ∆m = {λ ∈ IRm | λ ≥ 0,
∑m

i=1 λi = 1}. This problem is known as single
load model.

Remark 2.1. For the sake of simplicity, the self-weight of the bars is not
included in the formulation of the model. If we consider the self-weight we have
to replace f by f + g(λ) in problem (2), where g(λ) =

∑m
1 λigi, with gi being

a specific nodal gravitation force vector (see [10] §4).
We also remark that compliance, i.e., the value of the objective function

in (2), does not depend on the choice of the equilibrium displacement vector
u ∈ IRn such that K(λ)u = f.

Taking into account the particular structure of the matrices Ki in (1), it
is possible to show that the single load model (2) is equivalent to a linear
programming problem, and therefore might be efficiently solved. Nevertheless,
numerical results using this model show that optimal solutions may be unstable
with respect to the mechanical equilibrium, even under small perturbations in
the principal load ([1, 8]). In fact, there are several examples showing some
optimal structures which, under small perturbations, give infinite compliance.

In order to handle this inconvenient we may consider a Multiload Model (see
[3, 7]) that we recall here.

min
λ∈∆m







1

2

k
∑

j=1

γj(f
j)T uj | K(λ)uj = f j , j = 1, ..., k







. (3)

where γj > 0 corresponds to the influence of the scenario j into the model. In
this formulation we minimize a weighted average of the compliances associated
with k different loads scenarios. The multiload model can be transformed to an
equivalent convex quadratic problem and might be solved efficiently. ([23, 9]).

3 Minimization stochastic problem

According to definitions of the previous section we define the function Ψ: IRn ×
IRm → IR ∪ {+∞} as

Ψ(ξ, λ) =

{

1
2 (f + ξ)T u if λ ∈ ∆m and ∃ u ∈ IRn such that K(λ)u = f + ξ.

+∞ otherwise.

(4)
The function Ψ turns out to be proper (i.e. Ψ 6≡ +∞), lower semi-continuous
and convex (see [4]). Therefore, for each λ ∈ ∆m, the function

Ψ(·, λ) :
(

IRn,B(IRn)
)

→
(

IR ∪ {+∞},B(IR)
)
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is measurable. Here B(IRn) and B(IR) stand for the Borel σ-algebra of IRn and
IR ∪ {+∞} respectively.

Next, let us assume that ξ is a random variable corresponding to an uncertain
perturbation of Ψ. More precisely, let (Ω,A, IP) be a probability space and
consider a measurable function

ξ : (Ω,A) → (IRn,B(IRn))
ω 7→ ξ(ω).

According to this setting we study the following stochastic minimization prob-
lem:

min
λ∈∆m

{αIEξ[Ψ(ξ, λ)] + β Varξ[Ψ(ξ, λ)]}, (D; IP;α;β)

where Ψ is defined by (4), α, β ≥ 0 and IEξ(·),Varξ(·) stand, respectively, for
the expected value and the variance of a random function.

Remark 3.1. Let λ ∈ ∆m and consider Vλ = Im K(λ) if IP{f + ξ /∈ Vλ} > 0,
then the value of αIEξ[Ψ(ξ, λ)] + β Varξ[Ψ(ξ, λ)]} = +∞ and thus the corre-
sponding volume is not a feasible point in (D; IP;α;β).

We note that taking ξ be a random variable with finite support, ξ1, . . . , ξk.
Then, denoting γj = IP{ξ = ξj} and f j = f + ξj , j = 1, . . . , k we obtain the
model described in (3). Therefore, the previous model extends the well-known
multiload model.

The next result provides an explicit expression for (D; IP;α;β), with α = 1
and β = 0 when the perturbation ξ is a continuous random variable (without
atoms). In the sequel, given a square matrix A = (aij), we denote by Tr(A) the
trace of A, i.e., Tr(A) =

∑

aii.

Theorem 3.1 (Alvarez, Carrasco [4]). Let ξ : Ω → IRn be a continuous random
variable with mean vector IE(ξ) = 0, and covariance matrix Var(ξ) = PPT

with P ∈ IRn×k for some k ≥ 1. Then, the corresponding minimum expected
compliance design problem (D; IP; 1; 0) is given by

min
λ∈∆m

{

1

2
fT u +

1

2
Tr(PT U)

}

(5)

s.t. K(λ)u = f, (6)

K(λ)U = P. (7)

Here the value of the objective function is independent of the choice of u ∈ IRn

and U ∈ IRn×k satisfying (6) and (7) respectively.

We note that (5)-(7) may be written as a multiload-type problem (3), where
the loading scenarios have a new interpretation, see [4]. Thus, in order to
construct robust structures in this continuous model, it is not necessary to
consider explicitly all the loading scenarios but a good representation of them,
according to the covariance matrix P tP .

3.1 Minimization stochastic problem including variance

In this section we deal with the case of β 6= 0 in the formulation of (D; IP;α;β).
Besides we recall the following result from the formulation of the stochastic
model (D; IP;α;β) as a mathematical programming problem (see [4]). We give
the proof here only for completeness
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Theorem 3.2 (Alvarez, Carrasco [4]). Suppose ξ ∼ Nn(0, PPT ), i.e., the distri-
bution of ξ is a n-multivariate normal with mean vector 0 and covariance matrix
PPT . Taking for simplicity, α = 0 and β = 1, we have that (DV ar; IP;α;β) is
given by

min
λ∈∆m

{

1

2
Tr(PT U)2 + fT UUT f | K(λ)u = f, K(λ)U = P

}

.

It is worth pointing out the high nonlinearity of this problem, thus it would
be interesting to develop a primal-dual formulation of (DV ar; IP;α;β) which al-
lows us to implement efficient numerical resolution methods for this alternative.

Proof. We will use the two technical lemmas below whose proof can be found
in [4].

Let λ ∈ ∆m be a feasible for (D; IP;α;β), i.e. IP(f + ξ ∈ Vλ) = 1, where
Vλ = ImK(λ). By Lemma 3.1 we have that f ∈ Vλ and ξ ∈ Vλ IP- a.s., then,
there exists u such that K(λ)u = f and a measurable function x : Ω → IRn

such that K(λ)x = ξ IP-a.s. The existence of such function is ensured by
classical results on measurable selections (see for instance [26, Ch. 14]). Then
Ψ(ξ(ω), λ) = 1

2 (f + ξ(ω))T (u + x(ω)) for IP-a.e. ω ∈ Ω. By Lemma 3.2, we get

IEξ[Ψ(ξ, λ)] =
1

2
fT u +

1

2
Tr(PT U),

Varξ[Ψ(ξ, λ)] =
1

2
Tr(PT U)2 + fT UUT f.

where U is such that K(λ)U = P and the proof is fulfilled.

Lemma 3.1. Let V be a nonempty vector subspace of IRn. Under the assump-
tions of Theorem 3.1, we have:
(i) IP{f + ξ ∈ V } = 1 iff f ∈ V and IP{ξ ∈ V } = 1.
(ii) IP{ξ ∈ V } = 1 iff the columns of P are vectors in V .

Lemma 3.2. Let A ∈ IRn×n be a symmetric matrix. Under the assumptions
of Theorem 3.1, if IP{ξ ∈ Im A} = 1 and x : Ω → IRn is a measurable function
satisfying Ax(ω) = ξ(ω) for -a.e. ω ∈ Ω. Then IE(ξT x) = Tr(PT U), where
U ∈ IRn×k is any matrix satisfying AU = P. Furthermore, if we suppose that
ξ ∼ Nn(0, PPT ) then Var(ξT x) = 2Tr((AΓ)2) + 4µT AΓAT µ (see [27]).

4 Numerical study

4.1 Numerical problem

In order undertake a numerical study into the interest of the formulation (DV ar;
IP;α;β) presented in Section 3 and the choice of the parameters (α, β), we
consider a 3-D benchmark structure (related to [23]) composed of a set of 3×3×3
nodes in which all of them are connected with bars. This structure is depicted
by Figure 1-Left. A main vertical load f is applied to a particular node.

This problem can be solved by using the dual approach presented in [3, 1].
The obtained solution, depicted by Figure 1-Right, is resilient to f but is highly
unstable in cases of small perturbations of this load. Thus, as we are interested
in generating resilient structures to small perturbations of f , we consider a
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Figure 1: (Left) Considered 3D-benchmark structure and (Right) associated
single-load solution.

random load ξ of law Nn(0, PPT ) applied to the same node as f and situated
in the plane orthogonal to f .

This problem is solved considering both the formulation (DV ar; IP;α;β) and
S ∈ IN set of values (α, β) ∈ Σ = {(α1, β1), ..., (αS , βS)}. In order to solve
(DV ar; IP;α;β), which seems to be a non-convex problem (the cost function
associated to the problem appears to have various local minima, see Figure 2),
we use a particular global optimization algorithm based on the steepest descent
algorithm, where the initial condition is generated using the secant method
[25]. A complete description and validation of this algorithm can be found in
the following literature [20, 18, 13, 22, 21, 16, 17]. The obtained solutions are
denoted by λ(α,β). It is interesting to notice that for (DV ar; IP; 1; 0), λ(1,0) the
solution is the same to the one obtained using the dual approach described in
[12].

In order to have a qualitative comparison of those structures (λ(α,β))(α,β)∈Σ,
we analyze their robustness when they are submitted to random loads, their
topology and their compliance iso-contours in function of loads.

More precisely, to study the robustness of each structure λ(α,β), we con-
sider the random variable Ψ(α,β) = Ψ(ξ, λ(α,β)) and we approximate its density
function ρΨ(α,β)

using a Monte-Carlo approach [19] (i.e. generating M ∈ IN
values of ξ). Then, we compute the minimum, maximum and average values of
ρΨ(α,β) and a particular risk measure of Ψα,β . Risk measures on L∞(Ω,A, IP)
are mapping ̟ : L∞(Ω,A, IP) → IR where (Ω,A, IP) is a probability space (a
complete presentation can be found in [6]). They are used in various areas, such
as financial analysis [19], in order to study the value of the worst case scenarios
(in our case, the random loads which generate the highest compliances of the
structure). Here we focus on a particular and popular risk measure called the
Coherent-Value at Risk (C-VaR) [5], defined as:

C-VaRγ(X) =
1

γ

∫ γ

0

inf[Z|

∫ Z

0

ρX(x)dx > (1 − p)]dp (8)
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Figure 2: Part of the convergence history obtained from the considered global
optimization algorithm used to solve problem (DV ar; IP; (1, 0.25)). The value of
the cost function to minimize is calibrated in order to obtain 0 as the minimum
value. As we can observe, the steepest descent algorithm visits various local
attraction basins (i.e. the cost function seems to have several local minima).

where γ is a percentile, X ∈ L∞(Ω,ℑ, IP) and ρX is the density function of X.
The C-VaRγ corresponds to the average value of the worst γ % case scenarios
of X.

Finally, to study the compliance iso-contours of a structure λ(α,β) in function
of the loads, we consider the function Jλ(α,β)

: IR3 → IR defined by:

Jλ(α,β)(x1, x2, x3) =
1

2
f̄T (x1, x2, x3)u (9)

where f̄(x1, x2, x3) = x1f +x2d
1+x3d

2, and where d1 and d2 are two orthogonal
loads situated in the plane orthogonal to the main load, as well as u ∈ IRn is a
solution of K(λ(α,β))u = f̄ . Then, fixing r ∈ IR, we compute numerically one
iso-contour of this function considering Jλ(α,β)(x) = r.

4.2 Numerical results

We set f = (0, 0, 1), P =





0.25 0 0
0 0.25 0
0 0 0



 (both in space coordinate), Σ =

{(1, 0), (1, .25), (1, .5), (1, .75), (1, 1), (.75, 1), (.5, 1), (.25, 1), (0, 1)}, M = 106 and
γ = 0.01 (this level is often used as it reduces the impact of too extreme scenarios
[19]).
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α 1 1 1 1 1 0.75 0.5 0.25 0
β 0 0.25 0.5 0.75 1 1 1 1 1

Av. Comp. 32.2 34.0 36.3 38.3 40.2 42.6 47.7 56.3 8e+7
E. Comp. 28.1 31.3 33.7 35.8 37.8 40.2 45.3 54.1 8e+7
C-VaR0.01 54.3 49.6 50.3 51.3 52.9 54.7 59 66.5 8e+7

Vari. 55 30.7 24.2 20.9 18.7 16.7 13.8 10.8 1.8

Table 1: Summary of the results obtained for each set of parameters (α, β):
Average compliance (Av. Comp.), Expected compliance (E. Comp.), Coher-
ent Value at Risk (C-VaR0.01) and Variance (Vari.) of the structure λ(α,β).
The double bar represents changes in the topology (with apparition/vanishing
of bars).

All results are reported in Table 1. The different topology configurations
and their compliance iso-contour in function of the loads, obtained considering
r = 0.1, are presented by Figures 3-4. A boxplot [28] representation of the
densities ρΨ(α,β)

is presented in Figure 5.
As we can observe in Table 1 and Figure 5, the solution λ(1,0) is less resilient

to perturbations of the main load, considering the 0.01 % worst case scenarios,
than the solutions λ(1,0.25) up to λ(1,1). This is confirmed taking into account
the compliance of the worst case scenario which is more important for λ(1,0)

than for all other structures, except λ(0,1). Furthermore, the variance of the
compliance decreases with the increase of β. This is intuitive as this value is
controlled by our optimization problem. However, the average and the expected
compliance values raise with the increase of the β proportion. For high values of
the β proportion, the structure becomes meaningfully less resilient to the main
load.

Figures 3-4 and Table 1 point out that the topology of the structure changes
with the evolution of the coefficients α and β. There are four topology config-
urations. In fact, it seems to have a mass transfer phenomenon, which occurs
when β is rising from the upper to the lower bars. The final topology, with two
main bars, tends to confirm this situation. This is intuitive as those two bars
provide a good resistance to horizontal loads and thus to the perturbations of
the main load. In counterpart, they are not resilient to the main load. As we
can observe in Figures 3-4, the iso-contours are ellipses which tend to straighten
and flatten in the orthogonal plane of the main load f as the β proportion in-
creases. This geometrical evolution confirms that the structure becomes more
robust for the horizontal perturbations of the main load but, more fragile to the
main load. Currently, considering the discrete model used during this work, our
understanding of this mass transfer phenomenon is limited. In Section 5, we
present some issues for this limitation.

From previous results, we can deduce that considering the formulation (DV ar

; IP;α;β) with a reasonable proportion of β, it can help to generate more robust
structures for the perturbations of the main load. For example, in our particular
case, (α, β) = (0.25, 1) is a good compromise as it generates the lowest risk
measure C-VaR0.01, reduces the variance by 45 % and has a compliance value
(31) close to the best one (28).
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Figure 3: Topology and compliance iso-contour in function of the loads of the
structures λα,β with ((α, β)) set to (Top)(1,0), (Bottom) (1,0.5).
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Figure 4: Topology and compliance iso-contour in function of the loads of the
structures λα,β with ((α, β)) set to (Top) (0.5,1) and (Bottom) (0,1).
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Figure 5: Boxplot representation of the density function of the compliance of
the solutions (λ(α,β))(α,β)∈Σ−(0,1). C-Var (- -) is also reported.

5 Conclusions

A new variance-expected compliance formulation has been validated numerically
on a 3-D benchmark test. This new formulation allows us to generate more
resilient structures to perturbations of the main load. However, a good choice
of the balance between compliance variance and expectancy weights should be
chosen in order to avoid fragile structures to the main load.

After this paper, we intend to generalize the formulation and theorems to a
continuous model (see [10]), and carry out new numerical tests.
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[24] K. Marti and G. Stöckl. Optimal (topology) design under stochastic uncer-
tainty. Safety and Reliability,(eds. Schueller, G.I., Kafka, P.), 2:1597–1602,
1999. Rotterdam-Brookfield: A.A. Balkema.

[25] B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique.
Dunod, 2002.

[26] R. Tyrrell Rockafellar and Roger J.-B. Wets. Variational analysis, vol-
ume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998.

[27] G. A. F. Seber. Linear regression analysis. John Wiley & Sons, New
York-London-Sydney, 1977. Wiley Series in Probability and Mathematical
Statistics.

[28] J.W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading, MA.,
1977.

13


