Skip to main content
Log in

A Class of Linearized Proximal Alternating Direction Methods

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Due to its significant efficiency, the alternating direction method (ADM) has attracted a lot of attention in solving linearly constrained structured convex optimization. In this paper, in order to make implementation of ADM relatively easy, some linearized proximal ADMs are proposed and the associated convergence results of the proposed linearized proximal ADMs are given. Additionally, theoretical analysis shows that the relaxation factor for the linearized proximal ADMs can have the same restriction region as that for the general ADM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  2. Douglas, J., Rachford, H.H.: On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  3. Douglas, J., Gunn, J.E.: A general formulation of alternating direction methods, Part I. Parabolic and hyperbolic problems. Numer. Math. 6, 428–453 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Glowinski, R., Marroco, A.: Sur L’Approximation, par Elements Finis d’Ordre Un, et la Resolution, par Penalisation-Dualité, d’une Classe de Problemes de Dirichlet non Lineares. Revne Francaise d’Automatique, Informatique et Recherche Opérationelle 9(R-2), 41–76 (1975)

    Google Scholar 

  5. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  6. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-valued Problems, pp. 299–331. North Holland, Amsterdam (1983)

    Chapter  Google Scholar 

  7. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    MATH  Google Scholar 

  8. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Comput. Optim. Appl. 2, 93–111 (1992)

    MathSciNet  Google Scholar 

  9. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  11. Chen, G., Teboulle, M.: A proximal-based decomposition method for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating directions method of multipliers. In: Hager, W.W. et al. (eds.) Large Scale Optimization: State of the Art, pp. 115–134. Kluwer Academic, Norwell (1994)

    Chapter  Google Scholar 

  13. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. Philadelphia (1989)

  14. He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, B.S., Yang, H.: Some convergence properties of a method of multipliers for linearly constrained monotone variational inequalities. Oper. Res. Lett. 23, 151–161 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Math. Program. 83, 29–53 (1998)

    MathSciNet  MATH  Google Scholar 

  17. He, B.S., Xu, M.H., Yuan, X.M.: Solving large-scale least squares semidefinite programming by alternating direction methods. SIAM J. Matrix Anal. Appl. 32(1), 136–152 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, J., Zhang, S.: A modified alternating direction method for convex quadratically constrained quadratic semidefinite programs. Eur. J. Oper. Res. 207(3), 1210–1220 (2010)

    Article  MATH  Google Scholar 

  19. Wen, Z.W., Yin, W.T., Goldfarb, D.: Alternating direction augmented lagrangian methods for semidefinite programming. Math. Program. Comput. 2(3–4), 203–230 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, J.F., Zhang, Y., Yin, W.T.: A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data. IEEE J. Sel. Top. Signal Process. 4(2), 288–297 (2010)

    Article  Google Scholar 

  21. He, B.S., Wang, S.L., Yang, H.: A modified variable-penalty alternating directions method for monotone variational inequalities. J. Comput. Math. 21, 495–504 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Xu, M.H.: Proximal alternating directions method for structured variational inequalities. J. Optim. Theory Appl. 134, 107–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pardalos, P.M., Resende, M.G.C.: Handbook of Applied Optimization. Oxford University Press, London (2002)

    MATH  Google Scholar 

  24. Pardalos, P.M., Rassias, T.M., Khan, A.A.: Nonlinear Analysis and Variational Problems: In Honor of George Isac, 1st edn. Springer Optimization and Its Applications, vol. 35. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Floudas, C.A., Pardalos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer, Berlin (2008)

    Google Scholar 

  26. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Operations Research. Springer, Berlin (2003)

    Google Scholar 

  27. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Xu.

Additional information

Communicated by P.M. Pardalos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, M.H., Wu, T. A Class of Linearized Proximal Alternating Direction Methods. J Optim Theory Appl 151, 321–337 (2011). https://doi.org/10.1007/s10957-011-9876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9876-5

Keywords

Navigation