Skip to main content
Log in

Necessary and Sufficient Constraint Qualification for Surrogate Duality

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In mathematical programming, constraint qualifications are essential elements for duality theory. Recently, necessary and sufficient constraint qualifications for Lagrange duality results have been investigated. Also, surrogate duality enables one to replace the problem by a simpler one in which the constraint function is a scalar one. However, as far as we know, a necessary and sufficient constraint qualification for surrogate duality has not been proposed yet. In this paper, we propose necessary and sufficient constraint qualifications for surrogate duality and surrogate min–max duality, which are closely related with ones for Lagrange duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)

    MATH  Google Scholar 

  2. Boţ, R.I., Wanka, G.: An alternative formulation for a new closed cone constraint qualification. Nonlinear Anal. 64, 1367–1381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goberna, M.A., Jeyakumar, V., López, M.A.: Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities. Nonlinear Anal. 68, 1184–1194 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jeyakumar, V.: Constraint qualifications characterizing Lagrangian duality in convex optimization. J. Optim. Theory Appl. 136, 31–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Jeyakumar, V., Dinh, N., Lee, G.M.: A new closed cone constraint qualification for convex optimization. Research Report AMR 04/8, Department of Applied Mathematics, University of New South Wales (2004)

  6. Glover, F.: A multiphase-dual algorithm for the zero-one integer programming problem. Oper. Res. 13, 879–919 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Greenberg, H.J.: Quasi-conjugate functions and surrogate duality. Oper. Res. 21, 162–178 (1973)

    Article  MATH  Google Scholar 

  8. Greenberg, H.J., Pierskalla, W.P.: Surrogate mathematical programming. Oper. Res. 18, 924–939 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Greenberg, H.J., Pierskalla, W.P.: Quasi-conjugate functions and surrogate duality. Cah. Cent. étud. Rech. Opér. 15, 437–448 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Luenberger, D.G.: Quasi-convex programming. SIAM J. Appl. Math. 16, 1090–1095 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Penot, J.P., Volle, M.: Surrogate programming and multipliers in quasi-convex programming. SIAM J. Control Optim. 42, 1994–2003 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jeyakumar, V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13, 947–959 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burachik, R.S., Jeyakumar, V.: A new geometric condition for Fenchel’s duality in infinite dimensional spaces. Math. Program., Ser. B 104, 229–233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jeyakumar, V., Rubinov, A.M., Wu, Z.Y.: Generalized Fenchel’s conjugation formulas and duality for abstract convex functions. J. Optim. Theory Appl. 132, 441–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Suzuki, S., Kuroiwa, D.: Optimality conditions and the basic constraint qualification for quasiconvex programming. Nonlinear Anal. 74, 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, C., Ng, K.F., Pong, T.K.: Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J. Optim. 19, 163–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Boţ, R.I., Grad, S.M., Wanka, G.: New regularity conditions for strong and total Fenchel–Lagrange duality in infinite dimensional spaces. Nonlinear Anal. 69, 323–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. I. Sufficient optimality conditions. J. Optim. Theory Appl. 142, 147–163 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Moldovan, A., Pellegrini, L.: On regularity for constrained extremum problems. II. Necessary optimality conditions. J. Optim. Theory Appl. 142, 165–183 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Suzuki, S., Kuroiwa, D.: On set containment characterization and constraint qualification for quasiconvex programming. J. Optim. Theory Appl. 149, 554–563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Suzuki.

Additional information

Communicated by Vaithilingam Jeyakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, S., Kuroiwa, D. Necessary and Sufficient Constraint Qualification for Surrogate Duality. J Optim Theory Appl 152, 366–377 (2012). https://doi.org/10.1007/s10957-011-9893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9893-4

Keywords

Navigation