Skip to main content

Advertisement

Log in

Strict Feasibility for Generalized Mixed Variational Inequality in Reflexive Banach Spaces

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate the nonemptiness and boundedness of solution set for a generalized mixed variational inequality with strict feasibility in reflexive Banach spaces. A concept of strict feasibility for the generalized mixed variational inequality is introduced, which recovers the existing concepts of strict feasibility for variational inequalities and complementarity problems. By using the equivalence characterization of nonemptiness and boundedness of the solution set for the generalized mixed variational inequality due to Zhong and Huang (J. Optim. Theory Appl. 147:454–472, 2010), it is proved that the generalized mixed variational inequality problem has a nonempty bounded solution set is equivalent to its strict feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crouzeix, J.P.: Pseudomonotone variational inequality problems: Existence of solutions. Math. Program. 78, 305–314 (1997)

    MathSciNet  MATH  Google Scholar 

  2. Daniilidis, A., Hadjisavvas, N.: Coercivity conditions and variational inequalities. Math. Program. 86, 433–438 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite-dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  4. Harker, P.T., Pang, J.S.: Finite-dimensional variational and nonlinear complementarity problems: A survey of theory, algorithms and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Karamardian, S.: Complementarity problems over cones with monotone and pseudomonotone maps. J. Optim. Theory Appl. 18, 445–454 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Yao, J.C.: Multivalued variational inequalities with K-pseudomonotone operators. J. Optim. Theory Appl. 83, 391–403 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bianchi, M., Hadjisavvas, N., Schaible, S.: Minimal coercivity conditions and exceptional families of elements in quasimonotone variational inequalities. J. Optim. Theory Appl. 122, 1–17 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Konnov, I.V., Yao, J.C.: On the generalized vector variational inequality problem. J. Math. Anal. Appl. 206, 42–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang, Y.P., Huang, N.J.: Feasibility and solvability for vector complementarity problems. J. Optim. Theory Appl. 129, 373–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, J.H., Wang, X.G.: Solvability of generalized variational inequality problems for unbounded sets in reflexive Banach spaces. J. Optim. Theory Appl. 143, 59–74 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y.R., Mao, X.Z., Zhou, M.: Strict feasibility of variational inequalities in reflexive Banach spaces. Acta Math. Sin. Engl. Ser. 23, 563–570 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu, R., Fang, Y.P.: Feasibility-solvability theorem for a generalized system. J. Optim. Theory Appl. 142, 493–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, R., Fang, Y.P.: Strict feasibility and solvability for vector equilibrium problems in reflexive Banach spaces. Optim. Lett. 5, 505–514 (2011)

    Article  MathSciNet  Google Scholar 

  14. He, Y.R., Ng, K.F.: Strict feasibility of generalized complementarity problems. J. Aust. Math. Soc. A 81, 15–20 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Y.R.: Stable pseudomonotone variational inequality in reflexive Banach spaces. J. Math. Anal. Appl. 330, 352–363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panagiotopoulos, P., Stavroulakis, G.: New types of variational principles based on the notion of quasidifferentiability. Acta Mech. 94, 171–194 (1994)

    Article  MathSciNet  Google Scholar 

  17. Cohen, G.: Nash equilibria: Gradient and decomposition algorithms. Large Scale Syst. 12, 173–184 (1987)

    MATH  Google Scholar 

  18. Konnov, I.V.: A combined relaxation method for a class of nonlinear variational inequalities. Optimization 51, 127–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezis, H.: Operateurs maximaux monotone et semigroups de constractions dans les Espaces de Hilbert. North-Holland, Amsterdam (1973)

    Google Scholar 

  20. Cohen, G.: Auxiliary problem principle extended to variational inequalities. J. Optim. Theory Appl. 49, 325–333 (1988)

    Google Scholar 

  21. Lemaire, B.: Coupling optimization methods and variational convergence. In: Hoffmann, K.H., Hiriart-urruty, J.B., Lemaréchal, C., Zowe, J. (eds.) Trends in Mathematical Optimization. Int. Ser. Numer. Math., pp. 163–179. Birkhauser, Basel (1998)

    Google Scholar 

  22. Salmon, G., Strodiot, J.J., Nguyen, V.H.: A bundle method for solving variational inequalities. SIAM J. Optim. 14, 869–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xia, F.Q., Huang, N.J.: Auxiliary principle and iterative algorithms for Lions-Stampacchia variational inequalities. J. Optim. Theory Appl. 140, 377–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jeyakumar, V., Oettli, W., Natividad, M.: A solvability theorem for a class of quasiconvex mappings with applications to optimization. J. Math. Anal. Appl. 179, 537–546 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Baiocchi, C., Buttazzo, G., Gastaldi, F.: General existence theorems for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–188 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Aubin, J.P.: Optima and Equilibria. Springer, Berlin (1993)

    MATH  Google Scholar 

  27. He, Y.R.: A relationship between pseudomonotone and monotone mappings. Appl. Math. Lett. 17, 459–461 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yin, H.Y., Xu, C.X., Zhang, Z.X.: The F-complementarity problem and its equivalence with the least element problem. Acta Math. Sin. 44, 679–686 (2001)

    MathSciNet  MATH  Google Scholar 

  29. He, Y.R.: A new projection algorithm for mixed variational inequalities. Acta Math. Sci. 27, 215–220 (2007)

    MATH  Google Scholar 

  30. Zhong, R.Y., Huang, N.J.: Stability analysis for Minty mixed variational inequality in reflexive Banach spaces. J. Optim. Theory Appl. 147, 454–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fan, J.H., Zhong, R.Y.: Stability analysis for variational inequality in reflexive Banach spaces. Nonlinear Anal. TMA 69, 2566–2574 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    MathSciNet  MATH  Google Scholar 

  33. Fan, K.: A generalization of Tychonoff’s fixed point theorem. Math. Ann. 142, 305–310 (1961)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-jing Huang.

Additional information

Communicated by I.V. Konnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Ry., Huang, Nj. Strict Feasibility for Generalized Mixed Variational Inequality in Reflexive Banach Spaces. J Optim Theory Appl 152, 696–709 (2012). https://doi.org/10.1007/s10957-011-9914-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9914-3

Keywords

Navigation