Skip to main content
Log in

Existence and Uniqueness of Solutions for Homogeneous Cone Complementarity Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider existence and uniqueness properties of a solution to homogeneous cone complementarity problem. Employing an algebraic characterization of homogeneous cones due to Vinberg from the 1960s, we generalize the properties of existence and uniqueness of solutions for a nonlinear function associated with the standard nonlinear complementarity problem to the setting of homogeneous cone complementarity problem. We provide sufficient conditions for a continuous function so that the associated homogeneous cone complementarity problems have solutions. In particular, we give sufficient conditions for a monotone continuous function so that the associated homogeneous cone complementarity problem has a unique solution (if any). Moreover, we establish a global error bound for the homogeneous cone complementarity problem under some conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I and II. Springer, New York (2003)

    Google Scholar 

  2. Schäfer, U.: A linear complementarity problem with a P-matrix. SIAM Rev. 46, 189–201 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Tao, J., Gowda, M.S.: Some P-properties for nonlinear transformations on Euclidean Jordan algebras. Math. Oper. Res. 30, 985–1004 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gowda, M.S., Sznajder, R.: Automorphism invariance of P and GUS properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31, 109–123 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Faraut, J., Korányi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  7. Koecher, M.: The Minnesota Notes on Jordan Algebras and Their Applications. Springer, Berlin (1999). Edited and annotated by A. Brieg and S. Walcher

    MATH  Google Scholar 

  8. Vinberg, E.B.: The theory of convex homogeneous cones. Trans. Mosc. Math. Soc. 12, 340–403 (1963)

    MATH  Google Scholar 

  9. Andersson, S.A., Wojnar, G.G.: Wishart distributions on homogeneous cones. J. Theor. Probab. 17, 781–818 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chua, C.B.: Relating homogeneous cones and positive definite cones via T-algebras. SIAM J. Optim. 14, 500–506 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chua, C.B.: A T-algebraic approach to primal-dual interior-point algorithms. SIAM J. Optim. 20, 503–523 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorfmeister, J.: Inductive construction of homogeneous cones. Trans. Am. Math. Soc. 252, 321–349 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dorfmeister, J.: Algebraic description of homogeneous cones. Trans. Am. Math. Soc. 255, 61–89 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  14. Faybusovich, L.: On Nesterov’s approach to semi-infinite programming. Acta Appl. Math. 74, 195–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21, 860–885 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Güler, O., Tunçel, L.: Characterization of the barrier parameter of homogeneous convex cones. Math. Program. A 81, 55–76 (1998)

    Article  MATH  Google Scholar 

  17. Ishi, H.: Positive Riesz distributions on homogeneous cones. J. Math. Soc. Jpn. 52, 161–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ostrogorski, T.: Homogeneous cones and Abelian theorems. Int. J. Math. Math. Sci. 21, 643–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rothaus, O.S.: The construction of homogeneous convex cones. Ann. Math. 83, 358–376 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tunçel, L., Xu, S.: On homogeneous convex cones, the Carathéodory number, and the duality mapping. Math. Oper. Res. 26, 234–247 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Truong, V.A., Tunçel, L.: Geometry of homogeneous cones: Duality mapping and optimal self concordant barriers. Math. Program. 100, 295–316 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vinberg, E.B.: The structure of the group of automorphisms of a homogeneous convex cone. Trans. Mosc. Math. Soc. 13, 63–93 (1965)

    MathSciNet  Google Scholar 

  23. Zarantonello, E.H.: Projections on convex sets in Hilbert space and spectral theory I and II. In: Zarantonello, E.H. (eds.) Contribution to Nonlinear Functional Analysis, pp. 237–424. Academic Press, New York (1971)

    Google Scholar 

  24. Chen, B., Harker, P.T.: Smooth approximations to nonlinear complementarity problems. SIAM J. Optim. 7, 403–420 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gowda, M.S.: Applications of degree theory to linear complementarity problems. Math. Oper. Res. 18, 868–879 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ha, C.D.: Application of degree theory in stability of the complementarity problem. Math. Oper. Res. 12, 368–376 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Howe, R., Stone, R.: Linear complementarity and the degree of mappings. In: Eaves, B.C., Gould, F.J., Peitgen, H.-Q., Todd, M.J. (eds.) Homotopy Methods and Global Convergence, pp. 179–223. Plenum Press, New York (1983)

    Chapter  Google Scholar 

  28. Isac, G., Bulavaski, V., Kalashnikov, V.: Exceptional families, topological degree and complementarity problems. J. Glob. Optim. 10, 207–225 (1997)

    Article  MATH  Google Scholar 

  29. Zhao, Y.B., Han, J.: Exceptional family of elements for a variational inequality problem and its applications. J. Glob. Optim. 14, 313–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhao, Y.B., Li, D.: On a new homotopy continuation trajectory for nonlinear complementarity problems. Math. Oper. Res. 26, 119–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lloyd, N.G.: Degree Theory. Cambridge University Press, Cambridge (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchen Kong.

Additional information

Communicated by Guang-ya Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, L., Tunçel, L. & Xiu, N. Existence and Uniqueness of Solutions for Homogeneous Cone Complementarity Problems. J Optim Theory Appl 153, 357–376 (2012). https://doi.org/10.1007/s10957-011-9971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9971-7

Keywords

Navigation