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2 Z. Jin and G. Yin

1 Introduction

Designing dividend payment policies has long been an interesting research issue in actuarial science

and finance literature. For early work on dividend related issues, see [1], in which it is shown that the

optimal dividends strategy is a barrier strategy under a simple random walk model. Gerber investigated

the optimal dividend problem for both the compound Poisson process and diffusion process models in

[2] and [3]. Recently, there have been increasing efforts on applying advanced methods of stochastic

control to study the optimal dividend policy; see [4], [5].

Azcue and Muler analyzed the problem of the maximization of total discounted dividend payment

for an insurance company in [6]. Empirical studies indicate, in particular, traditional surplus models fail

to capture more extreme movements such as market switches. To reflect reality, much effort has been

devoted to produce better models. One of the recent trends is to use regime-switching models. Hamilton

introduced a regime-switching time series model in [7]. Recent work on risk models and related issues

can be found in [8]. In [9], the optimal dividend strategy with restricted payment rate was studied

for the regime-switching jump diffusion model. A comprehensive study of switching diffusions with

“state-dependent” switching is in [10].

In this work, we consider the optimal strategy using the collective risk model under the Makovian

regime-switching setting with more general claim size distribution. We allow the investment of surplus

in a continuous-time financial market and the management of the dividend payment policy. In our

model, with the golden rule “never borrow money to do risky investment,” the insurers cannot put too

much money in risky assets for the sake of risk management. Therefore two constraints for the invest-

ment strategies are imposed: (i) The weight of the risky asset should be no more than one. (ii) Short
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Regular and Singular Controls for Switching Jump Diffusions 3

selling risky asset is prohibited. In addition, a dividend process is not necessarily absolutely continuous.

In fact, dividends are not usually paid out continuously in practice. For instance, insurance companies

may distribute dividends on discrete time intervals resulting in unbounded payment rate. In such a

scenario, the surplus level changes drastically on a dividend payday. Thus, abrupt or discontinuous

changes occur due to “singular” dividend distribution policy. Together with the investment strategies

and the incurred claims, this gives rise to a mixed regular-singular stochastic control problem with

jump diffusion. We model the surplus process by a regime-switching jump diffusion process. Investment

strategies and dividend payment policies are introduced as regular and singular stochastic controls.

The goal is to maximize the expected total discounted dividend payment until ruin. The formulation

of our model is very general and versatile. Nevertheless, due to the inclusion of both regular and sin-

gular controls, and the random switching environment, closed-form solutions are virtually impossible

to obtain. Thus, we focus on developing numerical solutions. Azcue and Muler considered the optimal

investment policy and dividend payment strategy in an insurance company in [6], but with the indepen-

dent and identically distributed claim sizes without regime-switching. The model we consider appears

to be more versatile and realistic. To find the optimal investment and dividend payment strategies,

one usually solves a so-called Hamilton-Jacobi-Bellman equation. However, in our work, because of the

regime-switching jump diffusion and the mixed regular and singular control formulation, the Hamilton-

Jacobi-Bellman equation is in fact a coupled system of nonlinear integro-differential quasi-variational

inequalities. A closed-form solution is virtually impossible to obtain. A viable alternative is to employ

numerical approximations. In this work, we adapt the Markov chain approximation methodology devel-

oped in [11]. To the best of our knowledge, numerical methods for singular controls of regime-switching
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4 Z. Jin and G. Yin

jump diffusions have not been studied in the literature to date. Even for singular controlled diffusions

without regime-switching, the related results are relatively scarce; [12] and [13] are the only papers that

carry out a convergence analysis using weak convergence and relaxed control formulation of numerical

schemes for singular control problems in the setting of Itô diffusions. We focus on developing numerical

methods that are applicable to mixed regular and singular controls for regime-switching jump diffusion

models. In a recent work, Jin et al. developed numerical algorithms for approximating optimal rein-

surance and dividend payment policies under regime-switching diffusion models in [14]. In that paper,

one needs to deal with a system of quasi-variational inequalities. This paper further treat models with

jumps. As a result, we have to deal with a system of integro-differential quasi-variational inequalities.

The problem becomes more complex and difficult to handle. Although the primary motivation stems

from insurance risk controls, the techniques and the algorithms suggested appear to be applicable to

other singular control problems as well.

The rest of the paper is organized as follows. A general formulation of optimal investment strategies

and dividend policies and assumptions are presented in Section 2. Some properties of the optimal value

function and the verification theorem are also presented. Section 3 deals with the numerical algorithm

of Markov chain approximation method. The Poisson jumps, regular control and the singular control

are well approximated by the approximating Markov chain and the dynamic programming equations

are presented. Section 4 deals with the convergence of the approximation scheme. The technique of

“rescaling time” is introduced and the convergence theorems are proved. Three numerical examples

are provided in Section 5 to illustrate the performance of the approximation method. Finally, some

additional remarks are provided in Section 6.
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Regular and Singular Controls for Switching Jump Diffusions 5

2 Formulation and Preliminaries

Following the classical risk model introduced in [15], we assume that X(t), the surplus of an insurance

company in the absence of dividend payment and investment, satisfies the classical Cramér Lundberg

process,

X(t) = x+ ct−R(t), t ≥ 0, (1)

where x is the initial surplus, the constant c is the rate of premium, and R(t) =
∑N(t)

n=1 An is a

compound Poisson process with the claim size An.

To delineate the random environment and other random factors, we use a continuous-time Markov

chain α(t) taking values in the finite space M = {1, . . . ,m}. The market states are represented by

the Markov chain α(t), and they undergo a Markov regime-switching. Let the continuous-time Markov

chain α(t) be generated by Q = (qij) ∈ Rm×m. That is,

Pr{α(t+ δ) = j|α(t) = i, α(s), s ≤ t} =

⎧
⎪⎪⎨

⎪⎪⎩

qijδ + o(δ), if j �= i,

1 + qiiδ + o(δ), if j = i,

(2)

where qij ≥ 0 for i, j = 1, 2, . . . ,m with j �= i and qii = −
∑

j �=i qij < 0 for each i = 1, 2, . . . ,m.

The surplus process X(t) under consideration is a jump diffusion process with regime-switching

under singular control. For each i ∈ M, the premium rate is c(i) > 0. Let ζn be the inter-arrival time

of the nth claim, νn =
∑n

j=1 ζj , and

N(t) = max{n ∈ N : νn ≤ t} (3)

counts the number of claims up to time t, which is a Poisson counting process. The function q(X, i, ρ)

is assumed to be the magnitude of the claim sizes, where ρ has distribution Π(·). Note that our

formulation is general, the claim sizes are assumed to depend on the switching regime. At different
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6 Z. Jin and G. Yin

regimes, the values of q could be much different, which takes into consideration of random environment.

Then the Poisson measure N(·) has intensity λdt×Π(dρ) where Π(dρ) = f(ρ)dρ. Assume that q(·, i, ρ)

is continuous for each ρ and each i ∈ M. Then the surplus process in the absence of dividend payment

and investment is a regime-switching jump process given by

dX̃(t)=
∑

i∈M
I{α(s)=i}(c(i)dt− dR(t))

= c(α(t))dt−
∫

R+

q(X(t−), α(t), ρ)N(dt, dρ),

(4)

We consider the financial market with a risk free asset B(t) and a risky asset S(t) with prices

satisfying

⎧
⎪⎪⎨

⎪⎪⎩

dB(t)

B(t)
= l(α(t))dt,

dS(t)

S(t)
= b(α(t))dt+ σ(α(t))dW (t),

(5)

where for each i ∈ M, l(i) and b(i) are the return rates of the risk free and risky asset, respectively.

σ(α(t)) is the corresponding volatility and W (t) is a standard Brownian motion. The investment

behavior of the insurer is modeled as a portfolio process u(t), where proportional surplus u(t) ∈ [0, 1]

was invested in the risky asset S(t). We are now working on a filtered probability space (Ω,F , {Ft}, P ),

where Ft is the σ-algebra generated by the random variables {α(s),W (s), N(s) : 0 ≤ s ≤ t}.

A dividend strategy Z(·) is an Ft-adapted process {Z(t) : t ≥ 0} corresponding to the accumulated

amount of dividends paid up to time t such that Z(t) is a nonnegative and nondecreasing stochastic

process that is right continuous with left limits. Throughout the paper, we use the convention that

Z(0−) = 0. The surplus process considering dividend payment and investment satisfies the following
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Regular and Singular Controls for Switching Jump Diffusions 7

stochastic differential equation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX(t) =
[
[l(α(t))(1− u(t)) + u(t)b(α(t))]X(t) + c(α(t))

]
dt

+u(t)σ(α(t))X(t)dW (t)− dR(t)− dZ(t),

R(t) =

∫ t

0

∫

R+

q(X(t−), α(t), ρ)N(dt, dρ),

X(0) = x.

(6)

for all t < τ and we impose X(t) = 0 for all t > τ , where τ = inf{t > 0 : X(t) ≤ 0} represents the time

of ruin. The jump size of Z is denoted by ΔZ(t) := Z(t)− Z(t−), and Zc(t) := Z(t)−
∑

0≤s≤t ΔZ(s)

denotes the continuous part of Z. Also note that ΔX(t) := X(t)−X(t−) = −ΔZ(t) for any t ≥ 0.

Remark 2.1. From a numerical approximation point of view, making c, b and σ X-dependent will

not introduce any essential difficulty.

Denote by r > 0 the discount factor. For an arbitrary admissible pair π = (u, Z), the expected

discounted payoff is

J(x, i, π) := Ex,i

[∫ τ

0

e−rtdZ(t)

]

. (7)

We request r > b(i) for all i ∈ M, otherwise the optimal value of the payoff will be infinite. The pair

π = (u, Z) is said to be admissible if u and Z satisfy

(i) u(t) and Z(t) are nonnegative for any t ≥ 0,
(ii) Z is right continuous, have left limits, and is nondecreasing,
(iii) X(t) ≥ 0, for any t ≤ τ ,
(iv) both u and Z are adapted to Ft := σ {W (s), α(s), N(s), 0 ≤ s ≤ t} augmented by the P -null sets,

and
(iv) J(x, i, π) < ∞ for any (x, i) ∈ G × M and admissible pair π = (u, Z), where J is the functional

defined in (7).

Denote by A the collection of all admissible pairs, and U the collection of all investment strategies,

which is assumed to be a compact set. Define the value function as

V (x, i) := sup
π∈A

J(x, i, π). (8)
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8 Z. Jin and G. Yin

To proceed, we will introduce the following notation. For all i ∈ M,

b̄ = max
i

b(i), l̄ = max
i

l(i), c̄ = max
i

c(i), b̃ = min
i

b(i), l̃ = min
i

l(i), c̃ = min
i

c(i).

Lemma 2.1. Consider the process

Y (t) =
[
[l(α(t))(1− u(t)) + u(t)b(α(t))]Y (t) + c(α(t))

]
dt+ u(t)σ(α(t))Y (t)dW (t),

with Y (0) = x. We have

Ex,i(e
−rtY (t)) ≤ e−(r−b̄)t

(

x+
c̄(1− e−l̃t)

l̃

)

.

Proof. This result is obtained by using estimates for the linear SDE; see also [16].

Proposition 2.1. For all x > 0, i ∈ M, the value function V (x, i) satisfies

x+
c̃

λ+ r
≤ V (x, i) ≤ b̄

r − b̄

(

1 +
c̄

l̃

)

+
c̄

r
− b̄c̄

l̃(r − b̄+ c̃)
.

Proof. Since the claim sizes are always nonnegative, we have X(t) ≤ Y (t). Then

Ex,i[e
−rtX(t)] ≤ e(b̄−r)t

(

x+
c̄(1− e−l̃t)

l̃

)

.

It follows

V (x, i)= sup
π∈A

Ex,i

[∫ τ

0

e−rtdZ(t)

]

≤ sup
u∈U

Ex,i

[∫ τ

0

e−rtd

(

c̄t+

∫ t

0

[l(α(s)) + u(s)(b(α(s))− l(α(s)))]X(s)ds

)]

≤ Ex,i

[∫ τ

0

e−rtd

(

c̄t+ b̄

∫ t

0

X(s)ds

)]

≤
∫ ∞

0

e−rtc̄dt+ b̄

∫ ∞

0

Ex,i[e
−rtX(t)]dt

≤ b̄

r − b̄

(

1 +
c̄

l̃

)

+
c̄

r
− b̄c̄

l̃(r − b̄+ c̃)
.

Thus, the second inequality is obtained.
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Regular and Singular Controls for Switching Jump Diffusions 9

To prove the first inequality, let us consider an admissible strategy π̂ that pays the initial surplus

as dividend immediately and the premium until the first claim comes at τ̂ which leads to ruin. Then

we have the cost function under strategy π̂

J(x, i, π̂) = x+ Ex,i

∫ τ̂

0

e−rtc(α(t))dt ≥ x+
c̃

λ+ r
.

Since V (x, i) ≥ J(x, i, π̂), we get the first inequality. ��

Proposition 2.2. For all x ≥ y > 0, i ∈ M, the value function V (x, i) satisfies

x− y ≤ V (x, i)− V (y, i) ≤ (e(r+λ)(x−y)/c̃) − 1)V (y, i).

Proof. Consider an admissible strategy π0 with J(y, i, π0) ≥ V (y, i)− ε for any ε > 0. For any x ≥ y,

we define a new strategy π1 which pays x − y as dividend immediately and follows π0. Then for any

ε > 0, it holds that

V (x, i) ≥ x− y + J(y, i, π0) ≥ x− y + V (y, i)− ε.

Since ε is arbitrary, we have V (x, i) ≥ x− y + V (y, i).

For any x ≥ y, we take another admissible strategy π2 with J(x, i, π2) ≥ V (x, i)− ε for any ε > 0.

We define another new strategy π3 which holds money and invests them in the risk free asset and

follows the π2 when the surplus reaches x at time t̂. The probability of reaching x before the first claim

is e−λt̂. Since t̂ < (x− y)/c̃, we have that

V (y, i) ≥ J(y, i, π3) ≥ J(x, i, π2)e
−(r+λ)(x−y)/c̃ ≥ (V (x, i)− ε)e−(r+λ)(x−y)/c̃.

Thus, the right inequality is obtained by the arbitrary of ε. ��

JOTA263_source [01/03 14:14]     SmallExtended, MathPhysSci, Numbered, rh:Standard 9/32



10 Z. Jin and G. Yin

For an arbitrary π ∈ A, i = α(t) ∈ M, and V (·, i) ∈ C2(R), define an operator Lπ by

LπV (x, i)= Vx(x, i)([l(i)(1− u) + ub(i)]x+ c(i)) +
1

2
σ(i)2u2x2Vxx(x, i)

+λi

∫ x

0

[V (x− q(x, i, ρ), i)− V (x, i)]f(ρ)dρ+QV (x, ·)(i),
(9)

where Vx and Vxx denote the first and second derivatives with respect to x, and

QV (x, ·)(i) =
∑

j �=i

qij(V (x, j)− V (x, i)).

Formally, we obtain that V satisfies the following coupled system of integro-differential quasi-variational

inequalities (QVIs):
⎧
⎪⎪⎨

⎪⎪⎩

max {LπV (x, i)− rV (x, i), 1− Vx(x, i)} = 0, for each i ∈ M,

V (0, i) = 0, for each i ∈ M.

(10)

Remark 2.2. The value function V (x, α) is not smooth enough in our problem, in which case a

classical solution of the QVIs cannot be obtained. An alternative definition for a solution to the

quasi-variational inequalities (10) is that of a viscosity solution (see [17]). In our work, we focus on

the numerical solutions, the definition of viscosity solution will not lead any difficulty in numerical

approximation.

3 Numerical Algorithm

Our goal is to design a numerical scheme to approximate value function V in (8). As a standing

assumption, we assume V (·) is continuous with respect to x. In this section we will construct a locally

consistent Markov chain approximation for the jump diffusion model with singular control and regime-

switching. The discrete-time and finite-state controlled Markov chain is so defined that it is locally

consistent with (6). First let us recall some facts of Poisson random measure which is useful for

constructing the approximating Markov chain and for the convergence theorem.

JOTA263_source [01/03 14:14]     SmallExtended, MathPhysSci, Numbered, rh:Standard 10/32



Regular and Singular Controls for Switching Jump Diffusions 11

There is an equivalent way to define the process (6) by working with the claim times and values.

To do this, set ν0 = 0, and let νn, n ≥ 1, denote the time of the nth claim, and q(·, ·, ρn) is the

corresponding claim intensity with a suitable function of q(·). Let {νn+1 − νn, ρn, n < ∞} be mutually

independent random variables with νn+1 − νn being exponentially distributed with mean 1/λ, and let

ρn have a distribution Π(·). Furthermore, we assume that {νk+1 − νk, ρk, k ≥ n} is independent of

{x(s), α(s), s < νn, νk+1−νk, ρk, k < n}, then the nth claim term is q(X(ν−n ), α(νn), ρn), and the claim

amount R(t) can be written as

R(t) =
∑

νn≤t

q(X(ν−n ), α(νn), ρn).

We note the local properties of claims for (6). Because νn+1 − νn is exponentially distributed, we

can write

P{claim occurs on [t, t+Δ)|x(s), α(s),W (s), N(s), s ≤ t} = λΔ+ o(Δ). (11)

By the independence and the definition of ρn, for any H ∈ B(R+), we have

P
{
X(t)−X(t−) ∈ H|t = νn for somen;W (s), X(s), α(s), N(s), s < t;

X(t−) = x, α(t) = α
}
= Π(ρ : q(X(t−), α(t), ρ) ∈ H).

(12)

It is implied by the above discussion that x(·) satisfying (6) can be viewed as a process that involves

regime-switching diffusion with claims according to the claim rate defined by (11). Given that the nth

claim occurs at time νn, we construct the values according to the conditional probability law (12)

or, equivalently, write it as q(X(ν−n ), α(νn), ρn). Then the process given in (6) is a switching diffusion

process until the time of the next claim. To begin, we construct a discrete-time, finite-state, controlled

Markov chain to approximate the controlled diffusion process with regime-switching, with the dynamic
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12 Z. Jin and G. Yin

system
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dX(t) =
[
[l(α(t))(1− u(t)) + u(t)b(α(t))]X(t) + c(α(t))

]
dt

+u(t)σ(α(t))X(t)dW (t)− dZ,

X(0) = x.

(13)

We will construct a locally consistent Markov chain approximation for the mixed regular-singular

control model with regime-switching. The discrete-time controlled Markov chain is so defined that it is

locally consistent with (6). Note that the state of the process has two components x and α. Hence in

order to use the methodology in [11], our approximating Markov chain must have two components: one

component delineates the diffusive behavior whereas the other keeps track of the regimes. Let h > 0 be

a discretization parameter representing the step size. Define Lh = {x : x = kh, k = 0,±1,±2, . . . } and

Sh = Lh ∩Gh, where Gh = (0, B+h) and B is an upper bound introduced for numerical computation

purpose. Moreover, assume without loss of generality that the boundary point B is an integer multiple

of h. Let {(ξhn, αh
n), n < ∞} be a controlled discrete-time Markov chain on Sh × M and denote by

phD((x, �), (y, ι)|πh) the transition probability from a state (x, �) to another state (y, ι) under the control

πh. We need to define phD so that the chain’s evolution well approximates the local behavior of the

controlled regime-switching diffusion (13). At any discrete time n, we can either exercise a regular

control, a singular control or a reflection step. That is, if we put Δξhn = ξhn+1 − ξhn,

Δξhn = ΔξhnI{regular control step at n} +ΔξhnI{singular control step at n} +ΔξhnI{reflection step at n}. (14)

The chain and the control will be chosen so that there is exactly one term in (14) is nonzero. Denote

by
{
Ihn : n = 0, 1, . . .

}
a sequence of control actions, where Ihn = 0, 1 or 2, if we exercise a singular

control, regular control, or reflection at time n, respectively.
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When Ihn = 1, we regard uh
n ⊂ U as the random variable that is the regular control action

for the chain at time n. Let Δ̃th(·, ·, ·) > 0 be the interpolation interval on Sh × M × U . Assume

infx,�,u Δ̃th(x, �, u) > 0 for each h > 0 and limh→0 supx,�,u Δ̃th(x, �, u) → 0.

Let Eu,h,1
x,�,n , Varu,h,1x,�,n and Pu,h,1

x,�,n denote the conditional expectation, variance. We also denote

{ξhk , αh
k , u

h
k , I

h
k , k ≤ n, ξhn = x, αh

n = �, Ihn = 1, uh
n = u} as the given marginal probability. When

Eu,h,1
x,�,n [Δξhn] =

[
[l(�)(1− u) + ub(�)]x+ c(�)

]
Δ̃th(x, �, u) + o(Δ̃th(x, �, u)),

Varu,h,1x,�,n(Δξhn) = u2σ2(�)x2Δ̃th(x, �, u) + o(Δ̃th(x, �, u)),

Pu,h,1
x,�,n {αh

n+1 = ι} = q�ι(x)Δ̃th(x, �, u) + o(Δ̃th(x, �, u)), for ι �= �,

Pu,h,1
x,�,n {αh

n+1 = �} = 1 + q��(x)Δ̃th(x, �, u) + o(Δ̃th(x, �, u)),

sup
n,ω∈Ω

|Δξhn| → 0 as h → 0,

(15)

the sequence {(ξhn, αh
n)} is said to be locally consistent.

When Ihn = 0, we regard Δzhn as the random variable that is the singular control action for the

chain at time n if ξhn ∈ [0, B]. Note Δξhn = −Δzhn = −h. When Ihn = 2, or ξhn = B+h, reflection step is

exerted definitely. Dividend is paid out to lower the surplus level. Moreover, we require reflection takes

the state from B + h to B. That is, if we denote by Δghn the random variable that is the reflection

action for the chain at time n, then Δξhn = −Δghn = −h.

The singular control can be seen as a combination of “inside” part (Ihn = 0) and “boundary” part

(Ihn = 2). Also we require the singular control and reflection to be “impulsive” or “instantaneous.” In

other words, the interpolation interval on Sh ×M× U × {0, 1, 2} is

Δth(x, �, u, i) = Δ̃th(x, �, u)I{i=1}, for any (x, �, u, i) ∈ Sh ×M× U × {0, 1, 2} . (16)
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Denote by πh := {πh
n, n ≥ 0} the sequence of control actions, where

πh
n := ΔzhnI{Ih

n=0} + uh
nI{Ih

n=1} +ΔghnI{Ih
n=2}.

The πh
n is admissible, if πh

n is σ{(ξh0 , αh
0 ), . . . , (ξ

h
n, α

h
n), π

h
0 , . . . , π

h
n−1} adapted and for any E ∈ B(Sh ×

M), we have

P
{
(ξhn+1, α

h
n+1) ∈ E

∣
∣σ{(ξh0 , αh

0 ), . . . , (ξ
h
n, α

h
n), π

h
0 , . . . , π

h
n}
}
= ph((ξhn, α

h
n), E|πh

n),

and

P{(ξhn+1, α
h
n+1) = (B, �)

∣
∣(ξhn, α

h
n) = (B + h, �), σ{(ξh0 , αh

0 ), . . . , (ξ
h
n, α

h
n), π

h
0 , . . . , π

h
n}} = 1.

Put

th0 := 0, thn :=

n−1∑

k=0

Δth(ξhk , α
h
k , u

h
k , I

h
k ), and nh(t) := max

{
n : thn ≤ t

}
.

Then the piecewise constant interpolations, denoted by (ξh(·), αh(·)), uh(·), gh(·), and zh(·), are nat-

urally defined as

ξh(t) := ξhn, αh(t) := αh
n, uh(t) := uh

n,

gh(t) :=
∑

k≤nh(t)

ΔghkI{Ih
k=2}, zh(t) :=

∑

k≤nh(t)

Δzhk I{Ih
k=0},

(17)

for t ∈ [thn, t
h
n+1). Let ηh := inf

{
n : ξhn ∈ ∂G

}
. Then the first exit time of ξh from G is τh = thηh

. Let

(ξh0 , α
h
0 ) = (x, �) ∈ Sh × M and πh be an admissible control. The cost function for the controlled

Markov chain is defined as

Jh
B(x, �, π

h) := E

ηh−1∑

k=1

e−rthkΔzhk , (18)

which is analogous to (7). Regarding the definition of interpolation intervals in (16). The value function

of the controlled Markov chain is

V h
B (x, �) := sup

πh admissible

Jh
B(x, �, π

h). (19)
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Regular and Singular Controls for Switching Jump Diffusions 15

We shall show that V h
B (x, �) satisfies the dynamic programming equation:

V h
B (x, �) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u∈U

{∑

(y,ι)

e−rΔth(x,�,u,1)ph((x, �), (y, ι)|π)V h(y, ι),

[∑

(y,ι)

ph((x, �), (y, ι)|π)V h(y, ι) + h
]
}

, for x ∈ Sh,

0, for x = 0.

(20)

Note that discount does not appear in the second line above because the singular control is impulsive.

In the actual computing, we use iteration in value space or iteration in policy space together with

Gauss-Seidel iteration to solve V h. The computations will be very involved. In contrast to the usual

state space Sh in [11], here we need to deal with an enlarged state space Sh ×M due to the presence

of regime-switching.

Define the approximation to the first and the second derivatives of V (·, �) by finite difference method

in the first part of QVIs (10) using stepsize h > 0 as:

V (x, �) → V h(x, �)

Vx(x, �) →
V h(x+ h, �)− V h(x, �)

h
for [l(�)(1− u) + ub(�)]x+ c(�) > 0,

Vx(x, �) →
V h(x, �)− V h(x− h, �)

h
for [l(�)(1− u) + ub(�)]x+ c(�) < 0,

Vxx(x, �) →
V h(x+ h, �)− 2V h(x, �) + V h(x− h, �)

h2
.

(21)

For the second part of the QVIs, we choose

Vx(x, �) →
V h(x, �)− V h(x− h, �)

h
.

It leads to

max
u∈U

{V h(x+ h, �)− V h(x, �)

h

[
[l(�)(1− u) + ub(�)]x+ c(�)

]+

−V h(x, �)− V h(x− h, �)

h

[
[l(�)(1− u) + ub(�)]x+ c(�)

]−

+
V h(x+ h, �)− 2V h(x, �) + V h(x− h, �)

h2

u2σ2(�)x2

2

+
∑

ι

V h(x, ·)q�ι − rV h(x, �), 1− V h(x, �)− V h(x− h, �)

h

}
= 0,

∀x ∈ Sh, � ∈ M with the boundary condition V h(0, �) = 0,

(22)
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16 Z. Jin and G. Yin

where
[
[l(�)(1−u)+ub(�)]x+ c(�)

]+
and

[
[l(�)(1−u)+ub(�)]x+ c(�)

]−
are the positive and negative

parts of
[
[l(�)(1 − u) + ub(�)]x + c(�)

]
, respectively. Simplifying (22) and comparing with (20), we

achieve the transition probabilities of the first part of the right side of (20) as the following:

phD((x, �), (x+ h, �)|π) =
(σ2(�)u2x2/2) + h

[
[l(�)(1− u) + ub(�)]x+ c(�)

]+

D − rh2
,

phD((x, �), (x− h, �)|π) =
(σ2(�)u2x2/2) + h

[
[l(�)(1− u) + ub(�)]x+ c(�)

]−

D − rh2
,

phD((x, �), (x, ι)|π) = h2

D − rh2
q�ι, for � �= ι,

phD(·) = 0, otherwise,

Δth(x, �, u, 1) =
h2

D
,

(23)

with

D = σ2(�)u2x2 + h|[l(�)(1− u) + ub(�)]x+ c(�)|+ h2(r − q��)

being well defined. We also find the transition probability for the second part of the right hand side of

(20). That is,

phD((x, �), (x− h, �)|π) = 1.

Suppose that the current state is ξhn = x, αh
n = �, and the control is uh

n = u. Next interpolation

interval Δth(x, �, u) is determined by (23). To present the claim terms, we determine the next state

(ξhn+1, α
h
n+1) by noting:

1. With probability (1 − λΔth(x, �, u) + o(Δth(x, �, u))) no claims occur in [thn, t
h
n+1); we determine

(ξhn+1, α
h
n+1) by transition probability phD(·) as in (23).

2. There is a claim in [thn, t
h
n+1) with probability λΔth(x, �, u) + o(Δth(x, �, u))), we then determine

(ξhn+1, α
h
n+1) by

ξhn+1 = ξhn − qh(x, �, ρ), α
h
n+1 = αh

n,
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Regular and Singular Controls for Switching Jump Diffusions 17

where ρ ∼ Π(·), and qh(x, �, ρ) ∈ Sh ⊆ R+ such that qh(x, �, ρ) is the nearest value of q(x, �, ρ) so

that ξhn+1 ∈ Sh. |qh(x, �, ρ)− q(x, �, ρ)| → 0 follows as h → 0, uniformly in x.

Let Hh
n denote the event that (ξhn+1, α

h
n+1) is determined by the first alternative above and use Th

n to

denote the event of the second case. Let IHh
n
and ITh

n
be corresponding indicator functions, respec-

tively. Then IHh
n
+ ITh

n
= 1. Then we need a new definition of the local consistency for Markov chain

approximation of compound Poisson process with diffusion and regime-switching.

Definition 3.1. A controlled Markov chain {(ξhn, αh
n), n < ∞} is said to be locally consistent with

(6), if there is an interpolation interval Δth(x, �, u) → 0 as h → 0 uniformly in x,�, and u such that

1. there is a transition probability phD(·) that is locally consistent with (13) in the sense that (15)

holds.

2. there is a δh(x, �, u) = o(Δth(x, �, u)) s.t. the one-step transition probability {ph((x, �), (y, ι))|π} is

given by

ph(((x, �), (y, ι))|π) = (1− λΔth(x, �, u) + δh(x, �, u))phD((x, �), (y, ι))

+(λΔth(x, �, u) + δh(x, �, u))Π{ρ : qh(x, �, ρ) = x− y}.
(24)

Furthermore, the system of dynamic programming equations is a modification of (20). That is,

V h(x, �)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
π∈A

[
(1− λΔth(x, �, u) + δh(x, �, u))e−rΔth(x,�,u)

∑

(y,ι)

(phD((x, �), (y, ι))|π)

×V h(y, �) + (λΔth(x, �, u) + δh(x, �, u))e−rΔth(x,�,π)

×
∫ x

0

V h(x− qh(x, �, ρ), �)Π(dρ), V h(x− h, �) + h
]
, for x ∈ Sh,

0, for x = 0.

(25)

Remark 3.1. The first part of the QVIs can be seen as a “continuation” region where the regular

control is dominant. The Markov approximating chain can switch between regimes and states nearby

with the transition probabilities defined above. But the second part of the QVIs is the “jump” region,
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18 Z. Jin and G. Yin

where the dividends are paid out and the singular control is dominant. The singular control will project

the Markov approximation chain back one step h w.p.1 on the boundary due to the representation.

4 Convergence of Numerical Approximation

This section focuses on the asymptotic properties of the approximating Markov chain proposed in the

last section. The main techniques are methods of weak convergence. To begin with, the technique of

time rescaling and the interpolation of the approximation sequences are introduced in Section 4.1.

The definition of relax controls is presented in Section 4.2. Section 4.3 deals with weak convergence of

{ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)}, a sequence of rescaled process. As a result,

a sequence of controlled surplus processes converges to a limit surplus process. By using the techniques

of inversion, Section 4.3 also takes up the issue of the weak convergence of the surplus process. Finally

Section 4.4 establishes the convergence of the value function.

4.1 Interpolation and Rescaling

Based on the approximating Markov chain constructed above, the piecewise constant interpolation is

obtained and the appropriate interpolation interval level is chosen. Recalling (17), the continuous-time

interpolations (ξh(·), αh(·)), uh(·), gh(·), and zh(·) are defined. In addition, let Uh denote the collection

of controls, which are determined by a sequence of measurable functions Fh
n (·) such that

uh
n = Fh

n (ξ
h
k , α

h
k , k ≤ n;uh

k , k ≤ n). (26)

Let the discrete times at which claims occur be denoted by νhj , j = 1, 2, . . . Then we have

ξhνh
j −1 − ξhνh

j
= qh(ξ

h
νh
j −1, α

h
νh
j −1, ρ).
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Regular and Singular Controls for Switching Jump Diffusions 19

The smallest σ-algebra of {ξhk , αh
k , u

h
k , H

h
k , g

h
k , z

h
k , k ≤ n; νhk , ρ

h
k : νhk ≤ tn} is denoted as Dh

n. In addition,

Uh defined by (26) is equivalent to the collection of all piecewise constant admissible controls with

respect to Dh
n.

Using the representations of regular control, singular control, reflection step and the interpolations

defined above, (14) yields

ξn= x+
n−1∑

k=0

[Δξhk IHh
k
+Δξhk (1− IHh

k
)]−

n−1∑

k=0

zhk −
n−1∑

k=0

ghk

= x+
n−1∑

k=0

Eh
kΔξhk IHh

k
+

n−1∑

k=0

(Δξhk − Eh
kΔξhk )IHh

k
+

n−1∑

k=0

Δξhk (1− IHh
k
)−

n−1∑

k=0

zhk −
n−1∑

k=0

ghk .

(27)

The local consistency leads to

n−1∑

k=0

Eh
kΔξhk IHh

k
=

n−1∑

k=0

[
[l(αh

k)(1− uh
k) + uh

kb(α
h
k)]ξ

h
k + c(αh

k)
]
Δthk + o(Δthk)IHh

k

=

n−1∑

k=0

[
[l(αh

k)(1− uh
k) + uh

kb(α
h
k)]ξ

h
k + c(αh

k)
]
Δthk + o(Δthk)− (max

k′≤n
Δthk′)O(

n−1∑

k=0

ITh
k
).

(28)

Denote

Mh
n =

n−1∑

k=0

(Δξhk − Eh
kΔξhk )IHh

k
,

Rh
n = −

n−1∑

k=0

Δξhk (1− IHh
k
) =

∑

k:νk<n

qh(ξ
h
νk
, αh

νk
, ρk),

(29)

where Mh
n is a martingale with respect to Dh

n. Note that

E

n−1∑

k=0

ITh
k
= E[number of n : νhn ≤ t] → λt as h → 0.

This implies

(max
k′≤n

Δthk′)O(
n−1∑

k=0

ITh
k
) → 0 in probability as h → 0.

Hence we can drop the term involving ITh
k
without affecting the limit in (28). We attempt to represent

Mh(t) similar to the diffusion term in (6). Define Wh(·) as

Wh(t)=
n−1∑

k=0

(Δξhk − Eh
kΔξhk )/[σ(α

h(s))uh(s)ξh(s)],

=

∫ t

0

[σ(αh(s))uh(s)ξh(s)]−1dMh(s).

(30)
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20 Z. Jin and G. Yin

Combining (28)-(30), we rewrite (27) by

ξh(t) = x+

∫ t

0

[
[l(αh(s))(1− uh(s)) + uh(s)b(αh(s))]ξh(s) + c(αh(s))

]
ds

+

∫ t

0

σ(αh(s))uh(s)ξh(s)dWh(s)−Rh(t)− zh(t)− gh(t) + εh(t),

(31)

where Rh(t) =
∑

νh
n≤t qh(ξ

h
ν−
n
, αh

νn
, ρn), and εh(t) is a negligible error satisfying

lim
h→∞

sup
0≤t≤T

E|εh(t)| → 0 for any 0 < T < ∞. (32)

Next we will introduce the rescaling process. The basic idea of rescaling time is to “stretch out”

the control and state processes so that they are “smoother” so the tightness of gh(·) and zh(·) can be

proved. Define Δt̂hn by

Δt̂hn =

⎧
⎪⎨

⎪⎩

Δthn for a diffusion on step n,

|Δzhn| = h for a singular control on step n,

|Δghn| = h for a reflection on step n,

(33)

and define T̂h(·) by T̂h(t) =
∑n−1

i=0 Δthi = thn for t ∈ [t̂hn, t̂
h
n+1] Thus, T̂

h(·) will increase with the slope

of unity if and only if a regular control is exerted. In addition, define the rescaled and interpolated

process ξ̂h(t) = ξh(T̂h(t)), likewise define α̂h(t), ûh(t), N̂h(·), R̂h(t), ĝh(t) similarly. The time scale is

stretched out by h at the reflection and singular control steps. We can now write

ξ̂h(t) = x+

∫ t

0

[
[l(α̂h(s))(1− ûh(s)) + ûh(s)b(α̂h(s))]ξ̂h(s) + c(α̂h(s))

]
ds

+

∫ t

0

σ(α̂h(s))ûh(s)ξ̂h(s)dWh(s)− R̂h(t)− ẑh(t)− ĝh(t) + εh(t).

(34)

4.2 Relaxed Controls

Let B(U × [0,∞)) be the σ-algebra of Borel subsets of U × [0,∞). An admissible relaxed control (or

deterministic relaxed control) m(·) is a measure on B(U × [0,∞)) such that m(U × [0, t]) = t for each

t ≥ 0. Given a relaxed control m(·), there is an mt(·) such that m(dφdt) = mt(dφ)dt. We can define

mt(B) = limδ→0
m(B×[t−δ,t])

δ for B ∈ B(U). With the given probability space, we say that m(·) is an
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admissible relaxed (stochastic) control for (W (·), α(·)) or (m(·),W (·), α(·)) is admissible, if m(·, ω) is a

deterministic relaxed control with probability one and if m(A× [0, t]) is Ft-adapted for all A ∈ B(U).

There is a derivative mt(·) such that mt(·) is Ft-adapted for all A ∈ B(U).

Given a relaxed control m(·) of uh(·), we define the derivative mt(·) such that

mh(K) =

∫

U×[0,∞)

I{(uh,t)∈K}mt(dφ)dt (35)

for all K ∈ B(U × [0,∞)), and that for each t, mt(·) is a measure on B(U) satisfying mt(U) = 1. For

example, we can define mt(·) in any convenient way for t = 0 and as the left-hand derivative for t > 0,

mt(A) = lim
δ→0

m(A× [t− δ, t])

δ
, ∀A ∈ B(U). (36)

Note that m(dφdt) = mt(dφ)dt. It is natural to define the relaxed control representation mh(·) of uh(·)

by

mh
t (A) = I{uh(t)∈A}, ∀A ∈ B(U). (37)

Let Fh
t be a filtration, which denotes the minimal σ-algebra that measures

{ξh(s), αh(s),mh
s (·),Wh(s), Nh(s), Rh(s), zh(s), gh(s), s ≤ t}. (38)

Use Γh to denote the set of admissible relaxed controls mh(·) with respect to (αh(·),Wh(·)) such that

mh
t (·) is a fixed probability measure in the interval [thn, t

h
n+1) given Fh

t . Then Γh is a larger control

space containing Uh. Referring to the stretched out time scale, we denote the rescaled relax control as

mT̂h(t)(dφ). Define Mt(A) and Mh
t (dφ) by

Mt(A)dt = dW (t)Iu(t)∈A, ∀A ∈ B(U)

Mh
t (dφ)dt = dWh(t)Iuh(t)∈U .
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Analogously, as an extension of time rescaling, we let

M̂h
T̂h(t)

(dφ)dT̂h(t) = dŴh(T̂h(t))Iuh(T̂h(t))∈U .

With the notation of relaxed control given above, we can write (31), (34), and the value function (8)

as

ξh(t) = x+

∫ t

0

∫

U

[
[l(αh(s))(1− φ) + φb(αh(s))]ξh(s) + c(αh(s))

]
mh

s (dφ)ds

+

∫ t

0

∫

U
φσ(αh(s))ξh(s)Mh

s (dφ)ds−Rh(t)− zh(t)− gh(t) + εh(t),

(39)

ξ̂h(t) = x+

∫ t

0

∫

U

[
[l(α̂h(s))(1− φ) + φb(α̂h(s))]ξ̂h(s) + c(α̂h(s))

]
m̂h

T̂h(s)
(dφ)dT̂h(s)

+

∫ t

0

∫

U
φσ(α̂h(s))ξ̂h(s)M̂T̂h(s)(dφ)dT̂

h(s)− R̂h(t)− ẑh(t)− ĝh(t) + εh(t),

(40)

and

V h(x, i) = inf
mh∈Γh

Jh(x, i,mh). (41)

Now we give the definition of existence and uniqueness of weak solution.

Definition 4.2. By a weak solution of (39), we mean that there exists a probability space (Ω,F , P ), a

filtration Ft, and process (X(·), α(·),m(·),W (·), N(·)) such that W (·) is a standard Ft-Wiener process,

α(·) is a Markov chain with generator Q and state space M, for each i ∈ M, N(·) is an Ft-Poisson

process, m(·) is admissible with respect to X(·), and is Ft-adapted, and (39) is satisfied. For an initial

condition (x, �), by the weak sense uniqueness, we mean that the probability law of the admissible

process (α(·),m(·),W (·), N(·)) determines the probability law of solution (X(·), α(·),m(·),W (·), N(·))

to (39), irrespective of probability space.

To proceed, we need some assumptions.

(A1) Let u(·) be an admissible ordinary control with respect to W (·), α(·), and N(·), and suppose that

u(·) is piecewise constant and takes only a finite number of values. For each initial condition, there
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exists a solution to (39), where m(·) is the relaxed control representation of u(·) and this solution

is unique in the weak sense.

4.3 Convergence of A Sequence of Surplus Processes

Lemma 4.2. Using the transition probabilities {ph(·)} defined in (23), the interpolated process of the

constructed Markov chain {α̂h(·)} converges weakly to α̂(·), the rescaled Markov chain with generator

Q = (q�ι).

Proof. The proof is similar to Theorem 3.1 in [18]. By using the same technique in the re-scaled

process, the convergence can be achieved. ��

Theorem 4.1. Let the approximating chain {ξhn, αh
n, n < ∞} be constructed with transition probabil-

ities defined in (23) be locally consistent with (6), the relaxed control representation of {uh
n, n < ∞}

be mh(·), (ξh(·), αh(·)) be the continuous-time interpolation defined in (17), and the corresponding

rescaled processes be {ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)}. Then we can obtain

that {ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)} is tight.

The proof of the tightness of the sequence are similar to Theorem 4.5 in [14].

Since {ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)} is tight, we can extract a weakly

convergent subsequence. Let {X̂(·), α̂(·), m̂(·), Ŵ (·), N̂(·), R̂(·), ẑ(·), ĝ(·), T̂ (·)} be the limit of the sub-

sequence. Also, the paths of {X̂(·), α̂(·), m̂(·), Ŵ (·), N̂(·), R̂(·), ẑ(·), ĝ(·), T̂ (·)} are continuous w.p.1.

Theorem 4.2. Let W (·) be a standard Ft-Wiener process, and m(·) be admissible. We also have that

{ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)} generates the σ-algebra F̂t. Then we obtain
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that Ŵ (t) = W (T̂ (t)) is an F̂t-martingale with quadratic variation T̂ (t). The limit processes satisfy

X̂(t)= x+

∫ t

0

∫

U

[
[l(α̂(s))(1− φ) + φb(α̂(s))]X̂(s) + c(α̂(s))

]
m̂h

T̂ (s)
(dφ)dT̂ (s)

+

∫ t

0

∫

U
φσ(α̂(s))X̂(s)M̂T̂ (s)(dφ)dT̂ (s)− R̂(t)− ẑ(t)− ĝ(t).

(42)

Proof. For δ > 0, define the process f(·) by fh,δ(t) = fh(nδ), t ∈ [nδ, (n+1)δ). Then, by the tightness

of {ξ̂h(·), α̂h(·)}, (40) can be rewritten as

ξ̂h(t)= x+

∫ t

0

∫

U

[
[l(α̂h(s))(1− φ) + φb(α̂h(s))]ξ̂h(s) + c(α̂h(s))

]
m̂h

T̂h(s)
(dφ)× dT̂h(s)

+

∫ t

0

∫

U
φσ(α̂h,δ(s))ξ̂h,δ(s)M̂T̂h(s)(dφ)dT̂

h(s)− R̂h(t)− ẑh(t)− ĝh(t) + εh,δ(t),

(43)

where

lim
δ→0

lim sup
h→0

E|εh,δ(t)| = 0. (44)

If we can verify that Ŵ (·) is an F̂t-martingale, then (42) could be obtained by taking limits in (43).

To characterize W (·), let t > 0, δ > 0, p, κ, {tk : k ≤ p} be given such that tk ≤ t ≤ t+ δ for all k ≤ p,

ϕj(·) for j ≤ κ is real-valued and continuous functions on U × [0,∞) having compact support for all

j ≤ q. Define

(ϕj , m̂)t =

∫ t

0

∫

U
ϕj(φ, s)m̂

h
T̂ (s)

(dφ)dT̂ (s). (45)

Let {Γκ
j , j ≤ κ} be a sequence of nondecreasing partition of Γ such that Π(∂Γκ

j ) = 0 for all j and all

κ, where ∂Γκ
j is the boundary of the set Γκ

j . As κ → ∞, let the diameter of the sets Γκ
j go to zero.

Let K(·) be a real-valued and continuous function of its arguments with compact support. In view of

the definition of Ŵ (t), for each i ∈ M, we have

EK(ξ̂h(tk), α̂
h(tk), Ŵ

h(tk), N̂
h(tk, Γ

κ
j ), (ϕj ,m

h)tk , R̂
h(tk), z

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p)[Ŵ h(t+ δ)− Ŵh(t)] = 0.

(46)
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By using the Skorohod representation and the dominant convergence theorem, letting h → 0, we obtain

EK(ξ̂h(tk), α̂
h(tk), Ŵ

h(tk), N̂
h(tk, Γ

κ
j ), (ϕj ,m

h)tk , R̂
h(tk), ẑ

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p)× [Ŵ (t+ δ)− Ŵ (t)] = 0.

(47)

Since Ŵ (·) has continuous sample paths, (47) implies that Ŵ (·) is a continuous Ft-martingale. On the

other hand, since

E[((Ŵh(t+ δ))2 − (Ŵh(t))2] = E[(Ŵh(t+ δ)− Ŵh(t))2] = T̂ (t+ δ)− T̂ (t), (48)

by using the Skorohod representation and the dominant convergence theorem together with (48), we

have

EK(ξ̂h(tk), α̂
h(tk), Ŵ

h(tk), N̂
h(tk, Γ

κ
j ), (ϕj ,m

h)tk , R̂
h(tk), ẑ

h(tk), ĝ
h(tk),

j ≤ κ, k ≤ p)× [Ŵ 2(t+ δ)− Ŵ 2(t)− (T̂ (t+ δ)− T̂ (t))] = 0.

(49)

The quadratic variation of the martingale Ŵ (t) is ΔT̂ , then Ŵ (·) is an F̂t-Wiener process.

Let h → 0, by using the Skorohod representation, we obtain

E
∣
∣
∣

∫ t

0

∫

U

[
[l(α̂h(s))(1− φ) + φb(α̂h(s))]ξ̂h(s) + c(α̂h(s))

]
m̂h

T̂h(s)
(dφ)dT̂h(s)

−
∫ t

0

∫

U

[
[l(α̂(s))(1− φ) + φb(α̂(s))]X̂(s) + c(α̂(s))

]
m̂h

T̂ (s)
(dφ)dT̂ (s)

∣
∣
∣→ 0

(50)

uniformly in t. On the other hand, {m̂h(·)} converges in the compact weak topology, that is, for any

bounded and continuous function ϕ(·) with compact support, as h → 0,

∫ ∞

0

∫

U
ϕ(φ, s)m̂h

T̂h(s)
(dφ)dT̂h(s) →

∫ ∞

0

∫

U
ϕ(φ, s)m̂T̂ (s)(dφ)dT̂ (s). (51)

Again, the Skorohod representation (with a slight abuse of notation) implies that as h → 0,

∫ t

0

∫

U

[
[l(α̂h(s))(1− φ) + φb(α̂h(s))]ξ̂h(s) + c(α̂h(s))

]
m̂h

T̂h(s)
(dφ)dT̂h(s)

→
∫ t

0

∫

U

[
[l(α̂(s))(1− φ) + φb(α̂(s))]X̂(s) + c(α̂(s))

]
m̂T̂ (s)(dφ)dT̂ (s)

(52)

uniformly in t on any bounded interval.
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In view of (43), since ξh,δ(·) and αh,δ(·) are piecewise constant functions,

∫ t

0

∫

U
φσ(α̂h,δ(s))ξ̂h,δ(s)M̂T̂h(s)(dφ)dT̂

h(s) →
∫ t

0

∫

U
φσ(α̂δ(s))ξ̂δ(s)M̂T̂ (s)(dφ)dT̂ (s) (53)

as h → 0. Combining (45)-(53), we have

X̂(t)= x+

∫ t

0

∫

U

[
[l(α̂(s))(1− φ) + φb(α̂(s))]X̂(s) + c(α̂(s))

]
m̂h

T̂ (s)
(dφ)dT̂ (s)

+

∫ t

0

∫

U
φσ(α̂δ(s))X̂δ(s)M̂T̂ (s)(dφ)dT̂ (s)− R̂(t)− ẑ(t)− ĝ(t) + εδ(t),

(54)

where limδ→0 E|εδ(t)| = 0. Finally, taking limits in the above equation as δ → 0, (42) is obtained. ��

Theorem 4.3. For t < ∞, define the inverse L(t) = inf{s : T̂ (s) > t}. Then L(t) is right continuous

and L(t) → ∞ as t → ∞ w.p.1. For any process ψ̂(·), define the rescaled process ψ(·) by ψ(t) = ψ̂(L(t)).

Then, W (·) is a standard Ft-Wiener process, N(·) is a Poisson measure and (6) holds.

Proof. Since T̂ (t) → ∞ w.p.1 as t → ∞, L(t) exists for all t and L(t) → ∞ as t → ∞ w.p.1. Similar

to (47) and (49), for each i ∈ M,

EK(ξh(tk), α
h(tk),W

h(tk), N
h(tk, Γ

κ
j ), (ψj ,m

h)tk , R
h(tk), z

h(tk), g
h(tk),

j ≤ κ, k ≤ p)[W (t+ δ)−W (t)] = 0.

EK(ξh(tk), α
h(tk),W

h(tk), N
h(tk, Γ

κ
j ), (ψj ,m

h)tk , R
h(tk), z

h(tk), g
h(tk),

j ≤ κ, k ≤ p)[W 2(t+ δ)−W 2(t)− (L(t+ δ)− L(t))] = 0.

Thus, we can verify W (·) is an Ft-Wiener process. A rescaling of (42) yields

X(t) = x+

∫ t

0

∫

U
[[l(α(s))(1− φ) + φb(α(s))]X(s) + c(α(s))

]
ms(dφ)ds

+

∫ t

0

∫

U
φσ(α(s))X(s)Ms(dφ)ds−R(t)− z(t)− g(t).

(55)

In other words, (6) holds. ��
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4.4 Convergence of Cost and Value Functions

Theorem 4.4. Let {ξ̂h(·), α̂h(·), m̂h(·), Ŵh(·), N̂h(·), R̂h(·), ẑh(·), ĝh(·), T̂h(·)} be the weak conver-

gent subsequence of the sequence with the limit {X̂(·), α̂(·), m̂(·), Ŵ (·), N̂(·), R̂(·), ẑ(·), ĝ(·), T̂ (·)}.

Then,

Jh(x, �, πh) → Eπ
x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ = Eπ

x,�

∫ τ

0

∫

U
e−rtdZ = J(x, �, π). (56)

Proof. Note that Δzh = Δgh = h, the uniform integrability of dZ can be easily verified. Due to the

tightness and the uniform integrability properties, for any t,
∫ t

0
dẐ can be well approximated by a

Reimann sum uniformly in h. By the weak convergence and the Skorohod representation,

Jh
B(x, �, π

h) = E

ηh−1∑

k=1

e−rthkΔzhk → Eπ
x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ.

By an inverse transformation,

Eπ
x,�

∫ τ

0

∫

U
e−rT̂ (t)dẐ = Eπ

x,�

∫ τ

0

∫

U
e−rtdZ.

Thus, as h → 0,

Jh(x, �, πh) → J(x, �, π).

��

Theorem 4.5. V h(x, �) and V (x, �) are value functions defined in (41) and (8), respectively. Then

V h(x, �) → V (x, �) as h → 0.

The proof of the convergence of value function is similar to that in [14]. Thus we omit it.
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5 Numerical Examples

This section is devoted to several examples. For simplicity, we consider the case that the discrete

event has two states. That is, the continuous-time Markov chain has two states with given claim size

distributions. By using value iteration methods, we numerically solve the optimal control problems

and set the error tolerance to be 10−8.

Example 5.1. The continuous-time Markov chain α(t) representing the discrete event state has the

generator Q =

⎛

⎜
⎜
⎝

−0.5 0.5

5 −5

⎞

⎟
⎟
⎠ , and takes values in M = {1, 2}. The premium rate depends on the

discrete state with c(1) = 1 and c(2) = 3. The portfolio rate u(t) taking values in [0, 1] is the control.

Corresponding to the different discrete states, the yield rate of the riskless asset is l(1) = 0.03 and

l(2) = 0.04, whereas the risky asset return rate is b(1) = 0.06 and b(2) = 0.08. The volatility of

the financial market σ(α(t)) is valued as σ(1) = 0.2 and σ(2) = 2. R(t) is the compound Poisson

process with uniform claim sizes ρ = 0.01. Then {νn+1−νn} is a sequence of exponentially distributed

random variables with mean 1/4. Let λ = 4. Furthermore, the initial surplus x is supposed to have

the maximum 20 and the minimum 0. The discount rate r = 0.1. We obtain the computation results

depicted in Figure 5 as follows.
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Fig. 5.1 Compound poisson process with uniform claim sizes
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Example 5.2.

Comparing to Example 5.1, we consider a more general claim size distribution. R(t) is a compound

Poisson process interpreted as aggregated claims with R(t) =
∑

νn≤t ρn, where ρn ∈ {0.01, 0.02}, with

distribution Π(0.01) = 0.6, Π(0.02) = 0.4. See Figure 5 for this case.
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Fig. 5.2 Compound poisson process with general claim size distribution

Example 5.3. Comparing to Example 5.2, we change the generator of the Markov chain α(t) to

Q′ =

⎛

⎜
⎜
⎝

−5 5

5 −5

⎞

⎟
⎟
⎠ .

The generator is symmetric. We obtain Figure 5 in this case.
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Fig. 5.3 Faster switching Markov chains

All the figures contain at least two lines since we consider the two-regime case. Figures 5.1.1, 5.2.1

and 5.3.1 show that the value function is concave and increases with unity slope after some barrier

level, which means the extra surplus will all be paid out as the dividend after reaching certain barrier.
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It is also shown that the total expected discounted value of all dividends are bounded in all cases in

Figures 5.1.2, 5.2.2 and 5.3.2, which is consistent with our results in Proposition 2.1. This result is

under the assumption that the discount rate r is higher than the maximal yield rate b̄, whereas if the

r < b̃, the total expected discounted value of all dividends could lead to infinity.

Regarding the investment strategy, we observe from Figures 5.1.3, 5.2.3 and 5.3.3 that the pro-

portion of investment in the risky asset will be zero after certain threshold. To maximize the total

expected discounted value of all the dividends, the rational insurers seem to be risk averse. Especially

in Figure 5.3.3, the insurer is totally risk averse with portfolio in risky asset being zero all the time.

In addition, we observe that from Figures 5.1.3, 5.2.3 that the insurer prefers to put big weight money

in the risky asset when the surplus is not high enough. At the mean time, the optimal discounted

dividend increases with a faster pace (the derivative is greater than 1). In other words, with small

amount of money, the rational investor makes the investment more efficient by choosing investment

strategy aggressively. Furthermore, from the two lines in the graphs, it is shown that the investment

strategy varies in different regimes due to the Markov switching.

In Figures 5.1.4, 5.2.4, and 5.3.4, we use “1” to denote the region in QVIs when regular control

is dominant and “2” to denote the region in QVIs when singular control is dominant. Although the

optimal values of the discounted total dividend in different regimes do not have big difference, but the

dividend payment policies are very different in different regimes. In particular regime, from Figures

5.1.3, 5.2.3 and 5.3.3, we find that the singular control is dominant when the investment in risky assets

becomes zero. It seems that the insurer chooses to put money in the riskless asset or pay out the

surplus as dividend when it is high enough to avoid the possible risk.
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6 Concluding Remarks

In this work, we have developed numerical approximation schemes for finding the optimal investment

and dividend payment policy to maximize the total discounted dividend paid out until the lifetime

of ruin. A generalized regime-switching jump diffusion formulation of surplus with singular control is

presented. Although one could derive the associated system of integro-differential QVIs by using the

usual dynamic programming approach together with the use of properties of regime-switchings, solving

the mixed regular-singular control problem is very difficult to solve analytically. As an alternative, we

presented a Markov chain approximation method using mainly probabilistic methods. For the singular

control part, a technique of time rescaling is used. In the actual computation, the optimal value function

can be obtained by using the value or policy iteration methods. The method proposed in this paper

can be extended to more complicated payoff functions.

In addition, not only will the numerical approaches provide guidance for the decision makers in

the financial and insurance industries but also help researchers to gain further understanding for more

complex problems encountered. The numerical results that may not be obtained by using classical

models will provide insight in studying the dividend payment and investment strategies and have the

potential to benefit society as a whole. Furthermore, although the primary motivation stems from

investment and dividend payout strategies, the techniques and the algorithms suggested in fact are

applicable to a wide range of regime-switching impulse control problems.
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