Skip to main content

Advertisement

Log in

A Subgradient-Like Algorithm for Solving Vector Convex Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a strongly convergent variant of Robinson’s subgradient algorithm for solving a system of vector convex inequalities in Hilbert spaces. The advantage of the proposed method is that it converges strongly, when the problem has solutions, under mild assumptions. The proposed algorithm also has the following desirable property: the sequence converges to the solution of the problem, which lies closest to the starting point and remains entirely in the intersection of three balls with radius less than the initial distance to the solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Polyak, B.T.: Minimization of unsmooth functionals. USSR Comput. Math. Math. Phys. 9, 14–29 (1969)

    Article  Google Scholar 

  2. von Neumann, J.: Functional Operators. The Geometry of Orthogonal Spaces, vol. 2. Princeton University Press, Princeton (1950)

    Google Scholar 

  3. Censor, Y., Herman, G.T.: Block-iterative algorithms with underrelaxed Bregman projections. SIAM J. Optim. 13, 283–297 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  5. Robinson, S.M.: A subgradient algorithm for solving K-convex inequalities. In: Optimization and Operations Research. Lecture Notes in Economics and Mathematical Systems, vol. 117, pp. 237–245. Springer, Berlin (1976)

    Chapter  Google Scholar 

  6. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent method for nonsmooth convex minimization in Hilbert spaces. Numer. Funct. Anal. Optim. 32, 1009–1018 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Solodov, M.V., Svaiter, B.F.: Forcing strong convergence of proximal point iterations in a Hilbert space. Math. Program. 87, 189–202 (2000)

    MATH  MathSciNet  Google Scholar 

  9. Bolintinéanu, S.: Approximate efficiency and scalar stationarity in unbounded nonsmooth convex vector optimization problems. J. Optim. Theory Appl. 106, 265–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Graña Drummond, L.M., Maculan, N., Svaiter, B.F.: On the choice of parameters for the weighting method in vector optimization. Math. Program. 111, 201–216 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jahn, J.: Scalarization in vector optimization. Math. Program. 29, 203–218 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Luc, D.T.: Theory of Vector Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 319. Springer, Berlin (1989)

    Google Scholar 

  13. Luc, D.T.: Scalarization of vector optimization problems. J. Optim. Theory Appl. 55, 85–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bello Cruz, J.Y., Lucambio Pérez, L.R., Melo, J.G.: Convergence of the projected gradient method for quasiconvex multiobjective optimization. Nonlinear Anal. 74, 5268–5273 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Allgower, E.L., Böhmer, K., Potra, F.-A., Rheinboldt, W.C.: A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23, 160–169 (2011)

    Article  Google Scholar 

  16. Allgower, E.L., Böhmer, K.: Application of the mesh-independence principle to mesh refinement strategies. SIAM J. Numer. Anal. 24, 1335–1351 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Laumen, M.: Newton’s mesh independence principle for a class of optimal shape design problems. SIAM J. Control Optim. 37, 1070–1088 (1987)

    Article  MathSciNet  Google Scholar 

  18. Henry, J., Yvon, J.-P.: System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol. 197. Springer, London (1994)

    Book  MATH  Google Scholar 

  19. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gordon, R., Herman, G.T.: Reconstruction of pictures from their projections. Commun. ACM 14, 759–768 (1971)

    Article  MATH  Google Scholar 

  21. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–609 (1994)

    Article  Google Scholar 

  22. Rockmore, A.J., Macovski, A.: A maximum likelihood approach to transmission image reconstruction from projections. IEEE Trans. Nucl. Sci. 24, 1929–1935 (1977)

    Article  Google Scholar 

  23. Luc, D.T., Tan, N.X., Tinh, P.N.: Convex vector functions and their subdifferential. Acta Math. Vietnam. 23, 107–127 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    MATH  Google Scholar 

  25. Jahn, J.: Introduction to the Theory of Nonlinear Optimization. Springer, Berlin (2007)

    MATH  Google Scholar 

  26. Eichfelder, G., Jahn, J.: Vector optimization problems and their solution concepts. In: Recent Developments in Vector Optimization, vol. 1, pp. 1–27. Springer, Berlin (2012)

    Chapter  Google Scholar 

  27. Chen, G.-Y., Craven, B.D.: A vector variational inequality and optimization over an efficient set. ZOR. Math. Methods Oper. Res. 34, 1–12 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Alber, Ya.I., Iusem, A.N., Solodov, M.V.: On the projected subgradient method for nonsmooth convex optimization in a Hilbert space. Math. Program. 81, 23–37 (1998)

    MATH  MathSciNet  Google Scholar 

  29. Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 46, 247–263 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Iusem, A.N., Sosa, W.: Iterative algorithms for equilibrium problems. Optimization 52, 301–316 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2007)

    Google Scholar 

Download references

Acknowledgements

The authors were partially supported by Project PROCAD-nf-UFG/UnB/IMPA, by Project PRONEX-CNPq-FAPERJ and by Project CAPES-MES-CUBA 226/2012 “Modelos de Otimização e Aplicações”.

The authors would like to extend their gratitude toward anonymous referees whose suggestions helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Lucambio Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bello Cruz, J.Y., Lucambio Pérez, L.R. A Subgradient-Like Algorithm for Solving Vector Convex Inequalities. J Optim Theory Appl 162, 392–404 (2014). https://doi.org/10.1007/s10957-013-0300-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0300-1

Keywords

Navigation