Skip to main content

Advertisement

Log in

Right-Hand Side Decomposition for Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider a general class of variational inequality problems in a finite-dimensional space setting. The cost mapping need not be the gradient of any function. By using a right-hand side allocation technique, we transform such a problem into a collection of small-dimensional variational inequalities. The master problem is a set-valued variational inequality. We suggest a general iterative method for the problem obtained, which is convergent under monotonicity assumptions. We also show that regularization of partial problems enables us to create single-valued approximations for the cost mapping of the master problem and to propose simpler solution methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baiocchi, C., Capelo, A.: Variational and Quasivariational Inequalities: Applications to Free Boundary Problems. Wiley, New York (1984)

    MATH  Google Scholar 

  2. Giannessi, F., Maugeri, A. (eds.): Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    MATH  Google Scholar 

  3. Hadjisavvas, N., Komlósi, S., Schaible, S. (eds.): Handbook of Generalized Convexity and Generalized Monotonicity. Nonconvex Optimization and Applications, vol. 76. Springer, New York (2005)

    MATH  Google Scholar 

  4. Konnov, I.V.: Equilibrium Models and Variational Inequalities. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  5. Lasdon, L.S.: Optimization Theory for Large Systems. Macmillan, New York (1970)

    MATH  Google Scholar 

  6. Minoux, M.: Programmation Mathématique, Théorie et Algorithmes. Bordas, Paris (1989)

    Google Scholar 

  7. Hager, W.W., Hearn, D.W., Pardalos, P.M. (eds.): Large Scale Optimization: State of the Art. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  8. Lawphongpanich, S., Hearn, D.W.: Benders decomposition for variational inequalities. Math. Program. 48, 231–247 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fuller, J., Chung, W.: Dantzig–Wolfe decomposition of variational inequalities. Comput. Econ. 25, 303–326 (2005)

    Article  MATH  Google Scholar 

  10. Fuller, J., Chung, W.: Benders decomposition for a class of variational inequalities. Eur. J. Oper. Res. 185, 76–91 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kornai, J., Liptak, T.: Two-level planning. Econometrica 33, 141–169 (1965)

    Article  MATH  Google Scholar 

  12. Belen’kii, V.Z., Volkonskii, V.A. (eds.): Iterative Methods in Game Theory and Programming. Nauka, Moscow (1974). In Russian

    Google Scholar 

  13. Konnov, I.V.: Dual approach to one class of mixed variational inequalities. Comput. Math. Math. Phys. 42, 1276–1288 (2002)

    MathSciNet  Google Scholar 

  14. Konnov, I.V.: Application of the proximal point method to a system of extended primal-dual equilibrium problems. In: Seeger, A. (ed.) Recent Advances in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 563, pp. 87–102. Springer, New York (2006)

    Chapter  Google Scholar 

  15. Kyparisis, J.: Sensitivity analysis for nonlinear programs and variational inequalities with nonunique multipliers. Math. Oper. Res. 15, 286–298 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kyparisis, J.: Parametric variational inequalities with multivalued solution sets. Math. Oper. Res. 17, 341–364 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yen, N.D.: Parametric optimization problems and parametric variational inequalities. Vietnam J. Math. 37, 191–223 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Antipin, A.S., Vasil’ev, F.P.: A stabilization method for equilibrium programming problems with an approximately given set. Comput. Math. Math. Phys. 39, 1707–1714 (1999)

    MATH  MathSciNet  Google Scholar 

  19. Gol’shtein, E.G., Tret’yakov, N.V.: Modified Lagrange Functions. Nauka, Moscow (1989). Engl. transl. Wiley, New York (1996)

    Google Scholar 

  20. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  21. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Konnov, I.V.: On combined relaxation method’s convergence rates. Russ. Math. (Izv. VUZ) 37(12), 89–92 (1993)

    MATH  MathSciNet  Google Scholar 

  23. Konnov, I.V.: Combined relaxation methods for finding equilibrium points and solving related problems. Russ. Math. (Izv. VUZ) 37(2), 44–51 (1993)

    MATH  MathSciNet  Google Scholar 

  24. Konnov, I.V.: Combined relaxation methods for generalized monotone variational inequalities. In: Konnov, I.V., Luc, D.T., Rubinov, A.M. (eds.) Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol. 583, pp. 3–31. Springer, Berlin (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by grant No. 259488 from Academy of Finland and by the RFBR grant, project No. 13-01-00029a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Konnov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konnov, I.V. Right-Hand Side Decomposition for Variational Inequalities. J Optim Theory Appl 160, 221–238 (2014). https://doi.org/10.1007/s10957-013-0370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0370-0

Keywords

Navigation