Skip to main content
Log in

On a Nonrenewable Resource Extraction Game Played by Asymmetric Firms

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

A differential game of extraction of a nonrenewable resource is taken into account, where two firms compete over time and their two terminal times of extraction are two different random variables. The winning firm will be the only one remaining in the game after the first one retires. We explicitly compute the Hamilton–Jacobi–Bellman equations of the model and solve them in an asymmetric game with logarithmic payoff structure and linear state dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Notes

  1. Note that ω 1 and ω 2 correspond to two unique levels of resource stocks; if we call x (t) the optimal state variable, which is monotonically decreasing by assumption, (x )−1(ω 1) and (x )−1(ω 2) are uniquely determined, but firms cannot know them from the beginning because they have no information about each other’s level of extraction, and furthermore the two random terminal times are independent. This rules out the possibility of a precommitment to such a level.

References

  1. Dockner, E., Jørgensen, S., van Long, N., Sorger, G.: Differential Games in Economics and Management Science. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  2. Jørgensen, S., Zaccour, G.: Developments in differential game theory and numerical methods: economic and management applications. Comput. Manag. Sci. 4(2), 159–182 (2007)

    Article  MathSciNet  Google Scholar 

  3. Yaari, M.E.: Uncertain lifetime, life insurance and the theory of the consumer. Rev. Econ. Stud. 32(2), 137–150 (1965)

    Article  Google Scholar 

  4. Petrosjan, L.A., Murzov, N.V.: Game-theoretic problems of mechanics. Litovsk. Math. Sb. 6, 423–433 (1966) (in Russian)

    MathSciNet  MATH  Google Scholar 

  5. Boukas, E.K., Haurie, A., Michel, P.: An optimal control problem with a random stopping time. J. Optim. Theory Appl. 64(3), 471–480 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Petrosjan, L.A., Shevkoplyas, E.V.: Cooperative solutions for games with random duration. Game Theory Appl. 9, 125–139 (2003)

    MathSciNet  Google Scholar 

  7. Pliska, S.R., Ye, J.: Optimal life insurance purchase and consumption/investment under uncertain lifetime. J. Bank. Finance 31(5), 1307–1319 (2007)

    Article  Google Scholar 

  8. Giri, B.C., Goyal, S.K.: Recent trends in modeling of deteriorating inventory. Eur. J. Oper. Res. 134(1), 1–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Perry, D., Stadje, W.: Function space integration for annuities. Insur. Math. Econ. 29(1), 73–82 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hotelling, H.: The economics of exhaustible resources. J. Polit. Econ. 39, 137–175 (1931)

    Article  Google Scholar 

  11. Reinganum, J.F., Stokey, N.L.: Oligopoly extraction of a common property resource: the importance of the period of commitment in dynamic games. Int. Econ. Rev. 26, 161–173 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dasgupta, P., Stiglitz, J.: Resource depletion under technological uncertainty. Econometrica 49, 85–104 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dasgupta, P., Gilbert, R., Stiglitz, J.: Strategic considerations in invention and innovation: the case of natural resources. Econometrica 51, 1439–1448 (1983)

    Article  Google Scholar 

  14. Harris, C., Vickers, J.: Innovation and natural resources: a dynamic game with uncertainty. Rand J. Econ. 26(3), 418–430 (1995)

    Article  Google Scholar 

  15. Feliz, R.A.: The optimal extraction rate of a natural resource under uncertainty. Econ. Lett. 43, 231–234 (1993)

    Article  MATH  Google Scholar 

  16. Epstein, G.S.: The extraction of natural resources from two sites under uncertainty. Econ. Lett. 51, 309–313 (1996)

    Article  MATH  Google Scholar 

  17. Van der Ploeg, F.: Aggressive oil extraction and precautionary saving: coping with volatility. J. Public Econ. 94, 421–433 (2010)

    Article  Google Scholar 

  18. Solow, R.M.: Intergenerational equity and exhaustible resources. Rev. Econ. Stud. Symp. 41, 29–45 (1974)

    Article  Google Scholar 

  19. Hartwick, J.M.: Intergenerational equity and the investing of rents from exhaustible resources. Am. Econ. Rev. 67, 972–974 (1977)

    Google Scholar 

  20. Van der Ploeg, F.: Voracious transformation of a common natural resource into productive capital. Int. Econ. Rev. 51(2), 365–381 (2010)

    Article  Google Scholar 

  21. Rubio, S.: On coincidence of feedback nash equilibria and Stackelberg equilibria in economic applications of differential games. J. Optim. Theory Appl. 128(1), 203–211 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marin-Solano, J., Shevkoplyas, E.: Non-constant discounting in differential games with random time horizon. Automatica 47(12), 2626–2638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kostyunin, S., Palestini, A., Shevkoplyas, E.: Differential game of resource extraction with random time horizon and different hazard functions. In: Eremin, A.S., Smirnov, N.V. (eds.) Control Processes and Stability: Proceedings of XLII International Conference, pp. 571–576 (2011)

    Google Scholar 

  24. Kostyunin, S.Y., Shevkoplyas, E.V.: On simplification of integral payoff in differential games with random duration. Vestn. St. Petersbg. Univ., Math. 10(4), 47–56 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Luca Lambertini, Andrea Tancredi and the anonymous referee for valuable comments and suggestions. Usual disclaimers apply.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palestini.

Appendix

Appendix

1.1 A.1 Proof of Proposition 3.1

Since T 1 and T 2 are independent random variables, the p.d.f. of the random vector (T 1,T 2) must be the product of their p.d.f., i.e., an expression of the kind f 1(θ)f 2(τ). We can note that

$$\begin{aligned} \mathbb{E} \bigl[\varPsi_1^i(T_1,T_2) \bigr] =&\int_0^\omega\int_0^\omega \int_0^\theta h_1^*(t)\,dt \mathbb{I}_{[\theta<\tau]}f_2(\tau)\,d \tau f_1(\theta) \,d \theta \\ &{}+\int_0^\omega\int_0^\omega \int_0^\tau h_1^*(t)\,dt \mathbb{I}_{[\theta>\tau]}f_1(\theta)\,d \theta f_2(\tau) \,d \tau. \end{aligned}$$
(19)

From now on, call \(H_{i}(\theta):=\int_{0}^{\theta}h_{i}^{*}(t)\,dt\). Hence, (19) amounts to

$$ \int_0^\omega \biggl( \int_0^\tau H_1(\theta) f_1(\theta) \,d \theta \biggr)f_2( \tau)\,d \tau+ \int_0^\omega \biggl(\int _0^\theta H_1(\tau) f_2( \tau) \,d \tau \biggr) f_1(\theta)\,d \theta. $$
(20)

Integrating by parts twice and taking into account that F 1(ω)=F 2(ω)=1, we obtain that the sum (20) is

$$\begin{aligned} &\int_0^\tau H_1^*(\theta) f_1(\theta) \,d \theta F_2( \omega)-\int_0^\omega H_1(\theta) f_1(\theta) F_2(\theta)\,d \theta \\ &\qquad{}+\int_0^\theta H_1( \tau)f_2(\tau)\,d \tau F_1(\omega) - \int _0^\omega H_1(\tau)f_2( \tau)F_1(\tau) \,d \tau \\ &\quad=H_1(\omega)F_1(\omega)-\int_0^\omega h_1^*(\theta)F_1(\theta)\,d \theta - H_1( \omega) F_1(\omega) F_2(\omega) \\ &\qquad{}+\int_0^\omega F_1(\theta) \bigl[h_1^*(\theta)F_2(\theta)+H_1(\theta )f_2(\theta)\bigr]\,d \theta \\ &\qquad{}+H_1(\omega)F_2(\omega)-\int _0^\omega h_1^*(\tau)F_2( \tau)\,d \tau - H_1(\omega) F_1(\omega) F_2( \omega) \\ &\qquad{}+\int_0^\omega F_2(\tau) \bigl[h_1^*(\tau)F_1(\tau)+H_1(\tau) f_1(\tau )) \bigr]\,d \tau \\ &\quad=-\int_0^\omega h_1^*(\tau) \bigl[F_1(\tau)+F_2(\tau)-2 F_1(\tau )F_2(\tau)\bigr] \,d \tau+ \int_0^\omega H_1(\theta) \bigl[F_1(\tau) F_2(\tau ) \bigr]^\prime \,d \tau \\ &\quad=-\int_0^\omega h_1^*(\tau) \bigl[F_1(\tau)+F_2(\tau)-2 F_1( \tau)F_2(\tau)\bigr] \,d \tau \\ &\qquad{}+H_1(\omega) F_1(\omega) F_2( \omega)-\int_0^\omega h_1^*(\tau ) \bigl[F_1(\tau)F_2(\tau)\bigr] \,d \tau \\ &\quad\biggl(\text{and since } H_1(\omega)=\int_0^\omega h_1^*(\tau)\,d \tau\biggr) \\ &\quad=\int_0^\omega h_1^*(\tau) \,d \tau- \int_0^\omega h_1^*(\tau) \bigl[F_1(\tau )+F_2(\tau)- F_1( \tau)F_2(\tau)\bigr] \,d \tau \\ &\quad=\int_0^\omega h_1^*(\tau) \bigl[1-F_1(\tau)-F_2(\tau)+ F_1( \tau)F_2(\tau)\bigr] \,d \tau \\ &\quad=\int_0^\omega h_1^*(\tau) \bigl[1-F_1(\tau)\bigr] \bigl[1-F_2(\tau)\bigr] \,d \tau. \end{aligned}$$
(21)

Because T 1 and T 2 are independent, if we define T=min{T 1, T 2}, we can see that its p.d.f. F(t) is given by

$$\begin{aligned} F(t)&=1-\mathrm{Prob} \{T \geq t \}=1-\mathrm{Prob} \{T_1 \geq t \} \mathrm{Prob} \{T_2 \geq t \} \\ &=1-\bigl(1-F_1(t)\bigr) \bigl(1-F_2(t)\bigr) \quad \Longleftrightarrow\quad \bigl(1-F_1(t)\bigr) \bigl(1-F_2(t) \bigr)=1-F(t), \end{aligned}$$

hence (21) becomes

$$ \int_0^\omega h_1^*(\tau)\bigl[1-F( \tau)\bigr]\, d \tau=\mathbb{E} \biggl[ \int_0^{\min\{T_1, T_2\}} h_i^*(t) \,dt \biggr], $$

completing the proof.

1.2 A.2 Proof of Proposition 3.2

Integrating by parts and taking into account that F 1(ω)=1, we have that

$$\begin{aligned} &\mathbb{E} \bigl[\varPhi_i\bigl(x^*(T)\bigr)\mathbb{I}_{[T_i>T_j]} \bigr] \\&\quad= \int_0^\omega \biggl( \int_0^\omega\varPhi_i\bigl(x^*(\tau)\bigr) \mathbb{I}_{[\theta >\tau]} f_2(\tau) \,d \tau \biggr) f_1(\theta) \,d \theta \\ &\quad=F_1(\omega) \int_0^\omega\varPhi_1\bigl(x^*(\tau)\bigr) f_2(\tau) \,d \tau- \int_0^\omega F_1(\theta) \varPhi_i\bigl(x^*(\theta)\bigr)f_2(\theta)\,d \theta \\ &\quad=\int_0^\omega\varPhi_1\bigl(x^*(\tau)\bigr) f_2(\tau) \,d \tau- \int_0^\omega F_1(\theta) \varPhi_i\bigl(x^*(\theta)\bigr)f_2(\theta)\,d \theta, \end{aligned}$$
(22)

then, by considering a unique variable for integration, we conclude that

$$ \mathbb{E} \bigl[\varPhi_i\bigl(x^*(T)\bigr)\mathbb{I}_{[T_i>T_j]} \bigr]=\int_0^\omega\varPhi_i \bigl(x^*(\tau)\bigr)f_2(\tau) \bigl(1-F_1(\tau)\bigr)\,d \tau. $$

1.3 A.3 Proof of Proposition 4.1

We just consider the Cauchy problem for A i (t) because the explicit calculation of B i (t) can be avoided in that B i (t) does not appear in the expression of \(u_{i}^{*}\):

$$ \begin{cases} \dot{A}_i(t)= A_i(t) [\lambda_i(t)+\lambda_j(t) ]- 1 - c_i \lambda_j(t), \\ \lim_{t \to\omega} A_i(t) = 0, \end{cases} $$

whose general solution is given by

$$\begin{aligned} A_i(t) = e^{\int_0^t [\lambda_i(\tau) + \lambda_j(\tau)] \,d \tau} \biggl(C - \int_0^t \bigl(1 + c_i \lambda_j(\tau)\bigr) e^{-\int_0^\tau [\lambda_i(s) + \lambda_j(s)] \,ds} \,d \tau \biggr), \end{aligned}$$
(23)

where the constant C is determined by employing the transversality condition on A i (t)

$$C=\int_0^\omega\bigl(1 + c_i \lambda_j(\tau) \bigr) e^{-\int_0^\tau [\lambda_i(s) + \lambda_j(s)] \,ds} \,d \tau, $$

leading to the solution

$$\begin{aligned} A_i^*(t) = e^{\int_0^t (\lambda_i(\tau) + \lambda_j(\tau)) \,d \tau} \biggl[\int_t^\omega \bigl(1 + c_i \lambda_j(\tau) \bigr) e^{- \int_0^\tau (\lambda_i(s) + \lambda_j(s)) \,ds}\, d \tau \biggr]. \end{aligned}$$
(24)

Finally, the expression of the optimal feedback strategy for the ith firm can be achieved from the FOCs of the model

$$ u_i^*(t,x) = \frac{x}{A_i^*(t)}=\frac{x e^{-t-\int_0^t (\lambda _i(\tau) + \lambda_j(\tau)) \,d\tau} }{ \int_t^\omega (1 + c_i \lambda _j(\tau)) e^{-\tau-\int_0^\tau (\lambda_i(\theta) + \lambda_j(\theta)) \,d\theta }\,d\tau}. $$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostyunin, S., Palestini, A. & Shevkoplyas, E. On a Nonrenewable Resource Extraction Game Played by Asymmetric Firms. J Optim Theory Appl 163, 660–673 (2014). https://doi.org/10.1007/s10957-013-0462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-013-0462-x

Keywords

Navigation