Skip to main content
Log in

An Inexact Alternating Direction Method for Structured Variational Inequalities

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Recently, the alternating direction method of multipliers has attracted great attention. For a class of variational inequalities (VIs), this method is efficient, when the subproblems can be solved exactly. However, the subproblems could be too difficult or impossible to be solved exactly in many practical applications. In this paper, we propose an inexact method for structured VIs based on the projection and contraction method. Instead of solving the subproblems exactly, we use the simple projection to get a predictor and correct it to approximate the subproblems’ real solutions. The convergence of the proposed method is proved under mild assumptions and its efficiency is also verified by some numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Signorini, A.: Questioni di elasticità non linearizzata e semilinearizzata. Rend. Mat. Appl. 18, 95–139 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Siam, Philadelphia (2000)

    Book  MATH  Google Scholar 

  3. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problem. Springer, New York (2003)

    Google Scholar 

  4. Glowinski, R., Lions, J.L., Tremolieres, R.: Numerical Analysis of Variational Inequalities. Elsevier, Engelska (2011)

    Google Scholar 

  5. Bertsekas, D.P., Gafni, E.M.: Projection method for variational inequalities with applications to the traffic assignment problem. Math. Program. Study 17, 139–159 (1987)

    Article  MathSciNet  Google Scholar 

  6. Fukushima, M.: Application of the alternating directions method of multipliers to separable convex programming problems. Comput. Optim. Appl. 2, 93–111 (1992)

    Article  MathSciNet  Google Scholar 

  7. He, B.S.: The solution and application of a class of generalized linear variational inequalities. Sci. China 38, 939–945 (1995). (in Chinese)

    Google Scholar 

  8. Nagurney, A.: Network Economics, A Variational Inequality Approach. Kluwer Academics Publishers, Dordrect (1993)

    Book  MATH  Google Scholar 

  9. Glowinski, R., Marrocco, A.: Sur l’approximation par éléments finis d’ordre 1 et la résolution par pénalisation-dualité d’une classe de problèmes de Dirichlet nonlinéaires. C. R. Acad. Sci. 278A, 1649–1652 (1974)

    MathSciNet  Google Scholar 

  10. Glowinski, R., Marrocco, A.: On the solution of a class of nonlinear Dirichlet problems by a penalty–duality method and finite elements of order one. In Optimization Techniques, IFIP Technical Conference: Marchuk G.I. (eds.): Lecture Notes in Computer Sciences, 27, 327–333. Springer, Berlin (1974).

  11. Chan, T.F., Glowinski, R.: Finite Element Approximation and Iterative Solution of a Class of Mildly Non-linear Elliptic Equations. Computer Science Department, Stanford University, Stanford (1978)

    Google Scholar 

  12. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite-element approximations. Comput. Math. Appl. 2, 17–40 (1976)

    Article  MATH  Google Scholar 

  13. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eckstein, J., Fukushima, M.: Some reformulation and applications of the alternating direction method of multipliers. In: Hager, W.W. (ed.) Large Scale Optimization: State of the Art, pp. 115–134. Kluwer Academic Publishers, Dordrecht (1994)

    Chapter  Google Scholar 

  15. Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M., Glowinski, R. (eds.) Augmented Lagrange Methods: Applications to the Solution of Boundary-Valued Problems, pp. 299–331. North-Holland, Amsterdam (1983)

    Google Scholar 

  16. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984)

    Book  MATH  Google Scholar 

  17. Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics. SIAM, Philadelphia (1989)

    Book  MATH  Google Scholar 

  18. Chen, G., Teboulle, M.: A proximal-based decomposition mathod for convex minimization problems. Math. Program. 64, 81–101 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Han, D.R.: A proximal decomposition algorithm for variational inequality problems. J. Comput. Appl. Math. 161, 231–244 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Han, D.R., Lo, H.K.: Solving variational inequality problems with linear constraints by a proximal decomposition algorithm. J. Global. Optim. 28, 97–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Han, D.R.: A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems. Comput. Math. Appl. 42, 195–212 (2009)

    Google Scholar 

  22. He, B.S., Liao, L.Z., Han, D.R., Yang, H.: A new inexact alternating direction method for monotone variational inequalities. Math. Program. 92, 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. He, B.S.: Parallel splitting augmented Lagrangian methods for monotone structured varia-tional inequalities. Comput. Optim. Appl. 42, 195–212 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, M., Han, D.R., He, H.J., et al.: A new alternating direction method for solving separable variational inequality problems. Sci. Sin. Math. 42, 133–149 (2012). (in Chinese)

    Article  Google Scholar 

  25. Yang, Q.Z.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MATH  Google Scholar 

  26. He, B.S., Xu, M.H.: A general framework of contraction methods for monotone variational inequalities. Pacific J. Optim. 4, 195–212 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Tao, M., Yuan, X.M.: An inexact parallel splitting augmented Lagrangian method for monotone variational inequalities with separable structures. Comput. Optim. Appl. 52, 439–461 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. He, B.S., Liao, L.Z., Qian, M.J.: Alternating projection based prediction-correction methods for structured variational inequalities. J. Comput. Math. 24, 693–710 (2006)

    MathSciNet  MATH  Google Scholar 

  29. He, B.S., Liao, L.Z., Yuan, X.M.: A LQP based interior prediction–correction method for nonlinear complementarity problems. J. Comput. Math. 24, 33–44 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic, Boston (1996)

    Book  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the editor and the anonymous referees for their valuable suggestions and constructive comments, which have considerably improved the presentation of the paper. Qingzhi Yang’s work is supported by the National Natural Science Foundation of China (Grant No. 11271206), Doctoral fund of Chinese Ministry of Education (Grant No. 20120031110024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingzhi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Wan, L. & Yang, Q. An Inexact Alternating Direction Method for Structured Variational Inequalities. J Optim Theory Appl 163, 439–459 (2014). https://doi.org/10.1007/s10957-014-0522-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0522-x

Keywords

Mathematics Subject Classification (2000)

Navigation