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Abstract In this paper, we consider an optimal control problem involving a general switched system

that evolves by switching between several subsystems of nonlinear delay-differential equations. The control

variables in this system consist of: (i) the times at which the subsystem switches occur; and (ii) a set of

system parameters that influence the subsystem dynamics. We first establish the existence of the partial

derivatives of the system state with respect to both the switching times and the system parameters.

Then, on the basis of this result, we show that the gradient of the cost function can be computed by

solving the state system forward in time followed by a costate system backward in time. This gradient

computation procedure can be combined with any gradient-based optimization method to determine the

optimal control strategy. We propose an effective optimization algorithm based on this idea. Finally, we

consider three numerical examples, one involving the 1,3-propanediol fed-batch production process, to

illustrate the effectiveness and applicability of the proposed algorithm.
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1 Introduction

A hybrid system is a dynamic system that exhibits both continuous and discrete characteristics [1]. The

continuous characteristics of a hybrid system are typically modelled by difference or differential equations,

while the discrete characteristics are modelled by discrete logic or discrete events [2]. Because of their

flexibility, hybrid systems are often capable of accomplishing control objectives beyond the reach of

conventional control systems [3,4]. Thus, hybrid systems and hybrid control have become hot research

topics over the past decade. In this paper, we are concerned with a special class of hybrid systems

called switched systems. Such systems consist of a number of distinct subsystems, with a switching law

governing the system switches from one subsystem to another. Switched systems arise in many real-

world applications, including locomotives [5], biochemical reactors [6], switched-capacitor DC-DC power

converters [7], and hybrid power systems [8].

The optimal control of switched systems is an important and challenging research topic for control

theorists [9–14]. In the most general case, determining an optimal control strategy for a switched system

involves determining an optimal continuous input function (a continuous optimization variable) and an

optimal switching sequence (a discrete optimization variable). Many recent works in the literature are

based on the assumption that the switching sequence is fixed and the subsystem switching instants are

decision variables to be optimized. Relevant literature includes [15], in which linear switched systems

with pre-fixed switching sequence are investigated over an infinite time horizon, and [16,17], in which

computational approaches are developed based on the partial derivatives of the cost function with respect

to the switching times. More recently in [18], a new method for calculating the partial derivatives of the

cost function is developed for switched systems in which the state experiences instantaneous jumps at

the switching times. This new method is based on the time-scaling transformation described in [7,19].

The vast majority of optimization techniques for switched systems, including those mentioned above,

are restricted to switched systems without time-delays. However, time-delays are common in practical

engineering systems [21]. Indeed, switched systems with time-delays have various applications in areas

such as power systems [22] and network control systems [23]. The presence of delays in a switched system

complicates the search for an optimal control policy. In particular, the time-scaling transformation men-

tioned above, a powerful tool for solving switched system optimal control problems [7,13,18,19], is not

applicable to switched systems with time-delays [20]. In fact, optimal control techniques for switched sys-
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tems with time-delays are scarce in the literature. Necessary conditions for determining optimal switching

times and/or optimal impulse magnitudes for such systems are derived in [24–26] via classical variational

techniques. However, these analytical results are only applicable to separable systems with a single delay.

Reference [27] presents an effective optimal control algorithm for switched systems with time-delays that is

based on a parameterization scheme in which the switching instants are expressed in terms of the subsys-

tem durations. However, this algorithm has three limitations: (i) it is only applicable to switched systems

with a single delay and no system parameters; (ii) it involves integrating a large number of auxiliary

differential equations (one auxiliary system for each subsystem); and (iii) it is based on the assumption

that the duration between any two adjacent switching times is always larger than the time-delay.

The purpose of this paper is to develop a new computational method that does not suffer from these

drawbacks. We consider a general nonlinear switched system with multiple time-delays and multiple

system parameters. Each subsystem in this switched system is described by a set of nonlinear delay-

differential equations, and the switching times and system parameters are control variables to be selected

optimally. The optimal control problem involves choosing these control variables to minimize a given cost

function. We first investigate the existence of the partial derivatives of the system state with respect to

the system parameters and the switching times. In particular, we will show that the left and right partial

derivatives of the system state with respect to each switching time exist and are equal at all time points

except for the switching point in question. We then derive the gradient of the cost function and show

that this gradient can be computed by solving the original state system forward in time, followed by an

auxiliary system—called the costate system—backward in time. This is different from the method in [27],

which involves solving multiple auxiliary systems forward in time. The advantage of our new approach

is that we only require one auxiliary system, whereas the method in [27] requires many such systems.

Moreover, our new algorithm caters for more general switched systems with multiple delays and multiple

system parameters. We conclude the paper by validating our new algorithm on three numerical examples.
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2 Problem Formulation

Consider the following switched system with p subsystems and m time-delays:

ẋ(t) = f i(t, x(t), x̃(t), ζ), t ∈ (τi−1, τi], i = 1, 2, . . . , p, (1a)

x(t) = φ(t, ζ), t ≤ 0, (1b)

where τ0 = 0 is the initial time; τp = T > 0 is a given terminal time; τi, i = 1, 2, . . . , p − 1, are

switching times ; x(t) = (x1(t), x2(t), . . . , xn(t))
⊤ ∈ R

n is the state vector ; x̃(t) = (x(t − α1)
⊤, x(t −

α2)
⊤, . . . , x(t−αm)⊤)⊤ ∈ R

nm is the delayed state vector ; αj , j = 1, 2, . . . ,m, are given time-delays ; ζ =

(ζ1, ζ2, . . . , ζv)
⊤ ∈ R

v is a vector of system parameters ; and f i : R×R
n×R

nm×R
v → R

n, i = 1, 2, . . . , p,

and φ : R× R
v → R

n are given functions.

Equation (1a) expresses the dynamics of each subsystem in terms of the current time, the current

state, the delayed state, and the parameter vector. Note that the time-delays and system parameters may

be different for each subsystem. For example, subsystem 1 may only involve ζ1 and x(t−α1), subsystem 2

may only involve ζ2 and x(t − α2), and so on.

System (1) is controlled by manipulating the switching times and the system parameters. The switch-

ing times must satisfy the following constraints:

τi − τi−1 ≥ ∆i, i = 1, 2, . . . , p, (2)

where ∆i > 0 is the minimum duration of the ith subsystem. Any vector τ = (τ1, τ2, . . . , τp−1)
⊤ satisfying

(2) is called a feasible switching time vector. Let T denote the set of all such feasible switching time vectors.

Define

Z := {(ζ1, ζ2, . . . , ζv)
⊤ ∈ R

v : aq ≤ ζq ≤ bq, q = 1, 2, . . . , v}, (3)

where aq and bq are given constants such that aq ≤ bq. Clearly, Z is a compact and convex subset of Rv.

Any vector ζ ∈ Z is called a feasible parameter vector. Accordingly, any pair (τ, ζ) ∈ T × Z is called a

feasible pair for system (1).

We assume throughout this paper that the following conditions are satisfied.



Optimal Control of Nonlinear Switched Systems with Multiple Time-delays 5

Assumption 1 The functions f i, i = 1, 2, . . . , p, are continuously differentiable. Moreover, the function

φ is twice continuously differentiable.

Assumption 2 There exists a positive real number L1 > 0 such that for each i = 1, 2, . . . , p,

|f i(t, x, x̃, ζ)| ≤ L1(1 + |x|+ |x̃|), (t, x, x̃, ζ) ∈ [τi−1, τi]× R
n × R

nm ×Z,

where | · | denotes the Euclidean norm.

Assumptions 1-2 ensure that the switched system (1) has a unique solution x(·|τ, ζ) corresponding to

each pair (τ, ζ) ∈ T × Z [31]. This solution is called the state trajectory.

We suppose that the cost function can be expressed as a given function of the system parameters and

the final state reached by the system. Accordingly, we define the following cost function:

J(τ, ζ) := Φ(x(T |τ, ζ), ζ), (4)

where Φ : Rn×R
v → R is a given continuously differentiable function. Note that we can easily transform

an integral running cost into the form of (4) by introducing an additional state variable. For example,

consider the following integral term:

p
∑

i=1

∫ τi

τi−1

Li(t, x(t), x̃(t), ζ)dt,

where Li : R× R
n × R

nm × R
v → R, i = 1, 2, . . . , p, are given continuously differentiable functions. It is

clear that this term can be replaced by xn+1(T ), where xn+1 satisfies the dynamics

ẋn+1(t) = Li(t, x(t), x̃(t), ζ), t ∈ (τi−1, τi], i = 1, 2, . . . , p,

xn+1(t) = 0, t ≤ 0.

Thus, there is no loss of generality in ignoring integral terms in the cost function (4).

Our objective is to choose the switching time vector τ ∈ T and the parameter vector ζ ∈ Z to

minimize the cost function (4) subject to the switched system (1). This optimal control problem is stated

formally as follows.

Problem (P). Find a feasible pair (τ, ζ) ∈ T × Z such that the cost function (4) is minimized.



6 Chongyang Liu et al.

Problem (P) is an optimal control problem involving a nonlinear switched system with multiple

time-delays, where the switching times and system parameters are control variables to be optimized.

It is well known that variable switching times pose a significant challenge for conventional numerical

optimization techniques [18,28,29]. One of the most widely used methods for overcoming this challenge

is the time-scaling transformation described in [7,13,18,19]. This transformation involves mapping the

variable switching times to fixed points in a new time horizon. Unfortunately, since the time-scaling

transformation is not applicable to delay systems [20], it cannot be used to solve Problem (P). Therefore,

a new approach is needed to solve Problem (P). This provides the motivation for the work in this paper.

3 State Variation

In essence, Problem (P) is a nonlinear programming problem with decision vectors τ and ζ. The main

difficulty with solving this problem is that the cost function (4) is not an explicit function of the decision

vectors. Indeed, the decision vectors influence the cost function implicitly through the governing switched

system (1); changing the switching times and/or system parameters changes the state trajectory, which

subsequently changes the value of the cost function. It follows that computing the gradient of (4) is a

challenging task.

Our ultimate goal is to develop a computational algorithm for evaluating this gradient. Such an

algorithm can then be combined with any standard gradient-based optimization method to solve Problem

(P) as a nonlinear programming problem. In this section, as a preliminary step towards determining the

gradient of the cost function in Problem (P), we establish the existence of the gradient of the system

state.

Let S denote the set of all switching time vectors τ = (τ1, τ2, . . . , τp−1)
⊤ such that

0 = τ0 < τ1 < · · · < τp−1 < τp = T.

Clearly, T ⊂ S. We have already mentioned that system (1) admits a unique solution corresponding to

each pair in T ×Z. This result can, in fact, be extended to pairs in S ×Z. Let x(·|τ, ζ) denote the unique

solution of (1) corresponding to (τ, ζ) ∈ S×Z. Furthermore, let x(t|·, ·) : S×Z → R
n denote the function

that returns the value of the state vector at time t corresponding to a given input pair in S ×Z. We will

show in this section that the partial derivatives of the function x(t|·, ·) exist on S × Z. This result will
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then be exploited in Section 4 to derive an effective computational procedure for calculating the gradient

of the cost function (4).

The partial derivative of x(t|·, ·) with respect to ζ is called the state variation with respect to ζ. The

following result, which can be proved in a similar manner as that given for the proof of Theorem 2 in

[37], gives a method for determining this state variation. Note that, in this and subsequent sections, we

use the notation ∂x̃j to denote differentiation with respect to the delayed state x(t− αj).

Theorem 1 Let t ∈ [0, T ] be a fixed time point. Then

∂x(t|τ, ζ)

∂ζq
= Γ q(t|τ, ζ), q = 1, 2, . . . , v, (5)

where Γ q(·|τ, ζ) is the solution of the following auxiliary switched system:

Γ̇ q(s) =
∂f i(s, x(s), x̃(s), ζ)

∂x
Γ q(s) +

m
∑

j=1

∂f i(s, x(s), x̃(s), ζ)

∂x̃j
Γ q(s− αj)

+
∂f i(s, x(s), x̃(s), ζ)

∂ζq
, s ∈ (τi−1, τi], i = 1, 2, . . . , p, (6)

with the initial condition

Γ q(s) =
∂φ(s, ζ)

∂ζq
, s ≤ 0. (7)

Theorem 1 gives the state variation with respect to the system parameters. To solve Problem (P), we

also need the state variation with respect to the switching times. Unfortunately, unlike the state variation

with respect to the system parameters, the state variation with respect to the switching times does not

follow easily from known results. In fact, it is well known in computational optimal control that gradient

calculations involving variable switching times present major numerical challenges [18]. The remainder

of this section is devoted to this important issue.

3.1 Preliminaries

Let k ∈ {1, 2, . . . , p − 1} and (τ, ζ) ∈ S × Z be arbitrary but fixed. For notational simplicity, we write

x(·) instead of x(·|τ, ζ) and xǫ(·) instead of x(·|τ + ǫek, ζ), where ek denotes the kth unit basis vector in

R
p−1.
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Define

Θ := (τk−1 − τk, τk+1 − τk).

Note that Θ is a non-empty open interval. Clearly,

ǫ ∈ Θ ⇐⇒ τ + ǫek ∈ S.

Now, for each ǫ ∈ Θ, define the following functions:

ϕǫ(t) := xǫ(t)− x(t), t ≤ T, (8)

θǫ,j(t) := xǫ(t− αj)− x(t− αj), t ≤ T, j = 1, 2, . . . ,m. (9)

Furthermore, let

θǫ(t) := ((θǫ,1(t))⊤, (θǫ,2(t))⊤, . . . , (θǫ,m(t))⊤)⊤ ∈ R
nm, t ≤ T,

and

x̃ǫ(t) := ((xǫ(t− α1))
⊤, (xǫ(t− α2))

⊤, . . . , (xǫ(t− αm))⊤)⊤, t ≤ T.

Obviously, for each ǫ ∈ Θ,

θǫ,j(t) = ϕǫ(t− αj), t ≤ T, j = 1, 2, . . . ,m, (10)

and

ϕǫ(t) = 0, t ≤ min{τk + ǫ, τk}. (11)

The following result can be proved in a similar manner as that given for the proof of Lemma 6.4.2 in [32].

Note that Assumption 2 plays a key role in the proof.

Lemma 1 There exists a positive real number L2 > 0 such that for all ǫ ∈ Θ,

|xǫ(t)| ≤ L2, t ∈ [−αmax, T ], (12)

where αmax = max
j∈{1,2,...,m}

{αj}.
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The next lemma gives an important upper bound for the functions defined in (8) and (9).

Lemma 2 There exists a positive real number L3 > 0 such that for all ǫ ∈ Θ,

|ϕǫ(t)|, max
j∈{1,2,...,m}

|θǫ,j(t)| ≤ L3|ǫ|, t ∈ [0, T ]. (13)

Proof Let t ∈ [0, T ] be arbitrary but fixed. Furthermore, let i(s) ∈ {1, 2, . . . , p} denote the active subsys-

tem at time s corresponding to the switching time vector τ , and let iǫ(s) denote the active subsystem at

time s corresponding to the switching time vector τ + ǫek. Then

x(t) = φ(0, ζ) +

∫ t

0

f i(s)(s, x(s), x̃(s), ζ)ds (14)

and

xǫ(t) = φ(0, ζ) +

∫ t

0

f iǫ(s)(s, xǫ(s), x̃ǫ(s), ζ)ds. (15)

Combining (14) and (15) gives

ϕǫ(t) = xǫ(t)− x(t)

=

∫ t

0

{

f iǫ(s)(s, xǫ(s), x̃ǫ(s), ζ) − f i(s)(s, x(s), x̃(s), ζ)
}

ds. (16)

Since ǫ ∈ Θ, there exists an interval Iǫ such that |Iǫ| = ǫ and

iǫ(s) = i(s), s /∈ Iǫ.

Thus, we can rewrite (16) as follows:

ϕǫ(t) =

∫

Iǫ∩[0,t]

{

f iǫ(s)(s, xǫ(s), x̃ǫ(s), ζ) − f i(s)(s, x(s), x̃(s), ζ)
}

ds

+

∫

[0,t]\Iǫ

{

f i(s)(s, xǫ(s), x̃ǫ(s), ζ)− f i(s)(s, x(s), x̃(s), ζ)
}

ds. (17)
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Taking the norm of both sides of (17) yields

|ϕǫ(t)| ≤

∫ t

0

∣

∣f i(s)(s, xǫ(s), x̃ǫ(s), ζ) − f i(s)(s, x(s), x̃(s), ζ)
∣

∣ds

+

∫

Iǫ

∣

∣f iǫ(s)(s, xǫ(s), x̃ǫ(s), ζ)− f i(s)(s, x(s), x̃(s), ζ)
∣

∣ds. (18)

Now, by Assumption 1 and (12), there exists a Lipschitz constant M1 > 0 such that the first integral

term on the right-hand side of (18) can be simplified as follows:

∫ t

0

∣

∣f i(s)(s, xǫ(s), x̃ǫ(s), ζ) − f i(s)(s, x(s), x̃(s), ζ)
∣

∣ds

≤

∫ t

0

M1|ϕ
ǫ(s)|ds+

m
∑

j=1

∫ t

0

M1|θ
ǫ,j(s)|ds. (19)

Furthermore, there exists another constant M2 > 0 such that for all ǫ ∈ Θ,

∣

∣f l(s, xǫ(s), x̃ǫ(s), ζ)
∣

∣ ≤ M2, s ∈ [0, T ], l = 1, 2, . . . , p.

Thus, the last integral term on the right-hand side of (18) can be simplified as follows:

∫

Iǫ

∣

∣f iǫ(s)(s, xǫ(s), x̃ǫ(s), ζ) − f i(s)(s, x(s), x̃(s), ζ)
∣

∣ds ≤ 2M2|ǫ|. (20)

Substituting (19) and (20) into (18), and then simplifying using (10) and (11), we obtain

|ϕǫ(t)| ≤ 2M2|ǫ|+

∫ t

0

M1|ϕ
ǫ(s)|ds+

m
∑

j=1

∫ t

0

M1|ϕ
ǫ(s− αj)|ds

≤ 2M2|ǫ|+ (m+ 1)M1

∫ t

0

|ϕǫ(s)|ds.

Thus, by the Gronwall-Bellman Lemma [32], it follows that

|ϕǫ(t)| ≤ L3|ǫ|, (21)

where L3 = 2M2 exp(mM1T +M1T ). Therefore, by (10) and (11),

max
j∈{1,2,...,m}

|θǫ,j(t)| = max
j∈{1,2,...,m}

|ϕǫ(t− αj)| ≤ L3|ǫ|. (22)
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Since t ∈ [0, T ] and ǫ ∈ Θ are chosen arbitrarily, inequalities (21) and (22) verify the result.

Now, consider the following auxiliary switched system:

Λ̇k(s) =
∂f i(s, x(s), x̃(s), ζ)

∂x
Λk(s) +

m
∑

j=1

∂f i(s, x(s), x̃(s), ζ)

∂x̃j
Λk(s− αj),

s ∈ (τi−1, τi], i = k + 1, . . . , p, (23)

with the jump condition

Λk(τ+k ) = fk(τk, x(τk), x̃(τk), ζ)− fk+1(τk, x(τk), x̃(τk), ζ) (24)

and the initial condition

Λk(s) = 0, s < τk. (25)

Let Λk(·|τ, ζ) denote the unique right-continuous solution of (23)-(25). We will show that the state

variation with respect to τk is equal to Λk at all time points t 6= τk.

3.2 Right State Variation with Respect to the Switching Times

The right state variation at time t with respect to τk is defined by

lim
ǫ→0+

x(t|τ + ǫek, ζ)− x(t|τ, ζ)

ǫ
= lim

ǫ→0+

xǫ(t)− x(t)

ǫ
.

We will now establish the existence of the right state variation.

For each ǫ ∈ Θ ∩ [0,∞), define

ρǫk :=

∫ τk+ǫ

τk

{

fk(s, xǫ(s), x̃ǫ(s), ζ)− fk(τk, x(τk), x̃(τk), ζ)
}

ds (26)

and

ρǫk+1 :=

∫ τk+ǫ

τk

{

fk+1(s, xǫ(s), x̃ǫ(s), ζ) − fk+1(τk, x(τk), x̃(τk), ζ)
}

ds. (27)

The next lemma gives an upper bound for the functions defined in (26) and (27).
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Lemma 3 There exists a constant L4 > 0 such that for all ǫ ∈ Θ ∩ [0,∞),

|ρǫk|, |ρ
ǫ
k+1| ≤ L4ǫ

2.

Proof From the definition of ρǫk in (26), we have

|ρǫk| ≤

∫ τk+ǫ

τk

∣

∣fk(s, xǫ(s), x̃ǫ(s), ζ)− fk(s, x(s), x̃(s), ζ)
∣

∣ds

+

∫ τk+ǫ

τk

∣

∣fk(s, x(s), x̃(s), ζ) − fk(τk, x(τk), x̃(τk), ζ)
∣

∣ds.

Thus, since fk is Lipschitz continuous,

|ρǫk| ≤

∫ τk+ǫ

τk

M1|ϕ
ǫ(s)|ds +

m
∑

j=1

∫ τk+ǫ

τk

M1|θ
ǫ,j(s)|ds+

∫ τk+ǫ

τk

M1|s− τk|ds

+

∫ τk+ǫ

τk

M1|x(s)− x(τk)|ds+

m
∑

j=1

∫ τk+ǫ

τk

M1|x(s − αj)− x(τk − αj)|ds,

where M1 > 0 is the Lipschitz constant defined in the proof of Lemma 2. Applying Lemma 2, we obtain

|ρǫk| ≤ M1L3ǫ
2 +mM1L3ǫ

2 +M1ǫ
2 +

∫ τk+ǫ

τk

M1|x(s) − x(τk)|ds

+

m
∑

j=1

∫ τk+ǫ

τk

M1|x(s− αj)− x(τk − αj)|ds. (28)

Now, let M2 > 0 be as defined in the proof of Lemma 2. Since φ is continuously differentiable, we may

assume that M2 is such that |φ̇(η, ζ)| ≤ M2 for all η ∈ [−αmax, 0], where αmax = max
j∈{1,2,...,m}

{αj}. Then

clearly,

|ẋ(η)| ≤ M2, η ∈ [−αmax, T ].

Hence, for each s ∈ [τk, τk + ǫ],

|x(s) − x(τk)| ≤

∫ s

τk

|ẋ(η)|dη ≤ M2ǫ, (29)

and

|x(s− αj)− x(τk − αj)| ≤

∫ s−αj

τk−αj

|ẋ(η)|dη ≤ M2ǫ. (30)
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Substituting (29) and (30) into (28) gives

|ρǫk| ≤ M1L3ǫ
2 +mM1L3ǫ

2 +M1ǫ
2 +M1M2ǫ

2 +mM1M2ǫ
2. (31)

In a similar manner, it is also possible to show that

|ρǫk+1| ≤ M1L3ǫ
2 +mM1L3ǫ

2 +M1ǫ
2 +M1M2ǫ

2 +mM1M2ǫ
2. (32)

Choosing L4 = M1L3 +mM1L3 +M1 +M1M2 +mM1M2 in (31) and (32) completes the proof.

On the basis of Lemmas 1-3, we now establish the existence of the right state variation with respect

to the switching times.

Theorem 2 Let k ∈ {1, 2, . . . , p− 1} and (τ, ζ) ∈ S × Z. Then for all time points t 6= τk,

lim
ǫ→0+

ǫ−1ϕǫ(t) = Λk(t|τ, ζ), (33)

where Λk(·|τ, ζ) is the unique right-continuous solution of the auxiliary system (23)-(25). In addition, for

t = τk,

lim
ǫ→0+

ǫ−1ϕǫ(τk) = 0. (34)

Proof For each i = 1, 2, . . . , p and ǫ ∈ Θ, define the following functions:

f̄ i,ǫ(s, η) := f i(s, x(s) + ηϕǫ(s), x̃(s) + ηθǫ(s), ζ), (s, η) ∈ [τi−1, τi]× [0, 1],

∆i,ǫ
1 (s, η) :=

{

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

}

ϕǫ(s), (s, η) ∈ [τi−1, τi]× [0, 1],

and

∆i,ǫ
2 (s, η) :=

m
∑

j=1

{

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

}

θǫ,j(s), (s, η) ∈ [τi−1, τi]× [0, 1].

By Assumption 1 and Lemma 1, there exists a positive constant N1 > 0 such that for all ǫ ∈ Θ,

∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

≤ N1, s ∈ [τi−1, τi], i = 1, 2, . . . , p,

and
∣

∣

∣

∣

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

≤ N1, s ∈ [τi−1, τi], i = 1, 2, . . . , p, j = 1, 2, . . . ,m,
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where | · | denotes the natural matrix norm on R
n×n. Moreover, by Lemma 2, the following limits exist

uniformly with respect to η ∈ [0, 1] and s ∈ [0, T ]:

lim
ǫ→0+

{x(s) + ηϕǫ(s)} = x(s),

lim
ǫ→0+

{x̃(s) + ηθǫ(s)} = x̃(s).

Thus, it follows from Assumption 1 that for each δ > 0, there exists a corresponding ǫ′ > 0 such that for

all ǫ ∈ Θ satisfying |ǫ| < ǫ′,

∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x
−

∂f̄ i,ǫ(s, 0)

∂x

∣

∣

∣

∣

< δ, (s, η) ∈ [τi−1, τi]× [0, 1], i = 1, 2, . . . , p, (35)

and

∣

∣

∣

∣

∂f̄ i,ǫ(s, η)

∂x̃j
−

∂f̄ i,ǫ(s, 0)

∂x̃j

∣

∣

∣

∣

< δ, (s, η) ∈ [τi−1, τi]× [0, 1], i = 1, 2, . . . , p,

j = 1, 2, . . . ,m. (36)

Inequalities (35) and (36), together with Lemma 2, imply that for all ǫ ∈ Θ with |ǫ| < ǫ′,

|∆i,ǫ
1 (s, η)| ≤ δL3|ǫ|, |∆i,ǫ

2 (s, η)| ≤ δmL3|ǫ|, i = 1, 2, . . . , p. (37)

By the chain rule, we obtain

∂f̄ i,ǫ(s, η)

∂η
=

∂f̄ i,ǫ(s, η)

∂x
ϕǫ(s) +

m
∑

j=1

∂f̄ i,ǫ(s, η)

∂x̃j
θǫ,j(s). (38)

We can rewrite (38) as follows:

∂f̄ i,ǫ(s, η)

∂η
= ∆i,ǫ

1 (s, η) +∆i,ǫ
2 (s, η) +

∂f̄ i,ǫ(s, 0)

∂x
ϕǫ(s)

+

m
∑

j=1

∂f̄ i,ǫ(s, 0)

∂x̃j
θǫ,j(s). (39)

Now, let t ∈ [0, T ] be a fixed time point. We consider two cases: (i) t ≤ τk; and (ii) t > τk.
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Consider case (i). In this case, t ≤ τk, and thus it follows from (11) that

lim
ǫ→0+

ǫ−1ϕǫ(t) = 0. (40)

In particular, (40) holds when t = τk, thus proving equation (34). If t < τk, then in view of (25),

Λk(t) = 0 = lim
ǫ→0+

ǫ−1ϕǫ(t).

Thus, equation (33) holds for any t < τk.

Now, consider case (ii). In this case, there exists an integer ς ∈ {k+ 1, . . . , p} such that t ∈ (τς−1, τς ].

Let γ ∈ (0, t− τk) be arbitrary but fixed. Furthermore, choose ǫ ∈ Θ such that

0 < ǫ < min{γ, ǫ′}, (41)

where ǫ′ corresponds to δ = γ in (35) and (36). Then τk + ǫ < τk+1 and τk + ǫ < t. Consequently,

ϕǫ(t) =

∫ τk+ǫ

τk

{

f̄k,ǫ(s, 1)− f̄k+1,ǫ(s, 1)
}

ds

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

{

f̄ l,ǫ(s, 1)− f̄ l,ǫ(s, 0)
}

ds.

Using (26) and (27), we obtain

ϕǫ(t) = ρǫk − ρǫk+1 + ǫ
{

f̄k,ǫ(τk, 0)− f̄k+1,ǫ(τk, 0)
}

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

{

f̄ l,ǫ(s, 1)− f̄ l,ǫ(s, 0)
}

ds. (42)

By using the fundamental theorem of calculus, (42) can be written as

ϕǫ(t) = ρǫk − ρǫk+1 + ǫ
{

f̄k,ǫ(τk, 0)− f̄k+1,ǫ(τk, 0)
}

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(
∫ 1

0

∂f̄ l,ǫ(s, η)

∂η
dη

)

ds. (43)
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Substituting (39) into (43) gives

ϕǫ(t) = ρǫk − ρǫk+1 + ǫ{f̄k,ǫ(τk, 0)− f̄k+1,ǫ(τk, 0)}

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(
∫ 1

0

∆l,ǫ
1 (s, η)dη +

∫ 1

0

∆l,ǫ
2 (s, η)dη

+
∂f̄ l,ǫ(s, 0)

∂x
ϕǫ(s) +

m
∑

j=1

∂f̄ l,ǫ(s, 0)

∂x̃j
θǫ,j(s)

)

ds. (44)

Next, integrating the auxiliary system (23)-(25) yields

Λk(t) = f̄k,ǫ(τk, 0)− f̄k+1,ǫ(τk, 0) +

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(

∂f̄ l,ǫ(s, 0)

∂x
Λk(s)

+

m
∑

j=1

∂f̄ l,ǫ(s, 0)

∂x̃j
Λk(s− αj)

)

ds. (45)

Multiplying (44) by ǫ−1, subtracting (45), taking the norm of both sides and then applying (37) with

δ = γ, we obtain

|ǫ−1ϕǫ(t)− Λk(t)| ≤ ǫ−1|ρǫk|+ ǫ−1|ρǫk+1|+ (L3T +mL3T )γ

+

∫ t

τk

N1|ǫ
−1ϕǫ(s)− Λk(s)|ds

+
m
∑

j=1

∫ t

τk

N1|ǫ
−1ϕǫ(s− αj)− Λk(s− αj)|ds. (46)

In view of (11) and (25), the last integral term on the right-hand side of (46) can be simplified as follows:

m
∑

j=1

∫ t

τk

N1|ǫ
−1ϕǫ(s− αj)− Λk(s− αj)|ds =

m
∑

j=1

∫ t−αj

τk−αj

N1|ǫ
−1ϕǫ(s)− Λk(s)|ds

≤

∫ t

τk

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds. (47)

Thus, using Lemma 3 and (47) to simplify (46), we obtain

|ǫ−1ϕǫ(t)− Λk(t)| ≤ 2L4ǫ+ (L3T +mL3T )γ

+ (m+ 1)N1

∫ t

τk

|ǫ−1ϕǫ(s)− Λk(s)|ds.
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Since ǫ < γ and τk + γ < t, this inequality becomes

|ǫ−1ϕǫ(t)− Λk(t)| ≤ 2L4γ + (L3T +mL3T )γ + (m+ 1)N1

∫ τk+γ

τk

|ǫ−1ϕǫ(s)− Λk(s)|ds

+ (m+ 1)N1

∫ t

τk+γ

|ǫ−1ϕǫ(s)− Λk(s)|ds. (48)

Using (13), we have

|ǫ−1ϕǫ(s)− Λk(s)| ≤ ǫ−1|ϕǫ(s)|+ |Λk(s)| ≤ L3 +N2, s ∈ [τk, τk + γ], (49)

where N2 > 0 is an upper bound for |Λk| (recall that Λk is piecewise continuous and therefore bounded

on [0, T ]). Substituting (49) into (48) gives

|ǫ−1ϕǫ(t)− Λk(t)| ≤ N3γ + (m+ 1)N1

∫ t

τk+γ

|ǫ−1ϕǫ(s)− Λk(s)|ds,

where N3 = 2L4+L3T +mL3T +(m+1)N1(L3+N2). This inequality holds for all ǫ ∈ Θ satisfying (41),

uniformly with respect to t ∈ [τk + γ, T ]. Thus, by the Gronwall-Bellman Lemma [32], it follows that

|ǫ−1ϕǫ(t)− Λk(t)| ≤ N3γ exp((m+ 1)N1T ),

whenever 0 < ǫ < min{γ, ǫ′}. Since γ > 0 was arbitrary, this shows that (33) holds when t > τk.

3.3 Left State Variation with Respect to the Switching Times

The left state variation at time t with respect to τk is defined by

lim
ǫ→0−

x(t|τ + ǫek, ζ)− x(t|τ, ζ)

ǫ
= lim

ǫ→0−

xǫ(t)− x(t)

ǫ
.

We will now establish the existence of the left state variation.

For each ǫ ∈ Θ ∩ (−∞, 0], define

ρǫk :=

∫ τk

τk+ǫ

{

fk(s, x(s), x̃(s), ζ) − fk(τk, x(τk), x̃(τk), ζ)
}

ds, (50)

ρǫk+1 :=

∫ τk

τk+ǫ

{

fk+1(s, xǫ(s), x̃ǫ(s), ζ) − fk+1(τk, x(τk), x̃(τk), ζ)
}

ds. (51)
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By using similar arguments as in the proof of Lemma 3, we obtain the following result.

Lemma 4 There exists a constant L5 > 0 such that for all ǫ ∈ Θ ∩ (−∞, 0],

|ρǫk|, |ρ
ǫ
k+1| ≤ L5ǫ

2.

The following theorem shows that the left state variation coincides exactly with the solution of the

auxiliary switched system (23)-(25).

Theorem 3 Let k ∈ {1, 2, . . . , p− 1} and (τ, ζ) ∈ S × Z. Then for all time points t ∈ [0, T ],

lim
ǫ→0−

ǫ−1ϕǫ(t) = Λk(t|τ, ζ), (52)

where Λk(·|τ, ζ) is the unique right-continuous solution of the auxiliary system (23)-(25).

Proof Let f̄ i,ǫ, ∆i,ǫ
1 , and ∆i,ǫ

2 be as defined in the proof of Theorem 1. Recall that for each δ > 0, there

exists a corresponding ǫ′ > 0 such that for all ǫ ∈ Θ satisfying |ǫ| < ǫ′,

|∆i,ǫ
1 (s, η)| ≤ δL3|ǫ|, |∆i,ǫ

2 (s, η)| ≤ δmL3|ǫ|, i = 1, 2, . . . , p, (53)

where L3 is as defined in Lemma 2.

Let t ∈ [0, T ] be a fixed time point. We consider two cases: (i) t < τk; and (ii) t ≥ τk.

For case (i), it follows from (11) that

lim
ǫ→0−

ǫ−1ϕǫ(t) = 0.

Thus, in view of (25),

Λk(t) = 0 = lim
ǫ→0−

ǫ−1ϕǫ(t),

which proves equation (52) for t < τk.

For case (ii), there exists an integer ς ∈ {k + 1, . . . , p} such that t ∈ [τς−1, τς) if ς ≤ p − 1, and

t ∈ [τp−1, τp] if ς = p. Let δ > 0 be arbitrary and choose ǫ ∈ Θ such that

−min{ǫ′, δ} < ǫ < 0. (54)
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Then τk−1 < τk + ǫ < τk. As a result,

ϕǫ(t) =

∫ τk

τk+ǫ

{

f̄k+1,ǫ(s, 1)− f̄k,ǫ(s, 0)
}

ds

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

{

f̄ l,ǫ(s, 1)− f̄ l,ǫ(s, 0)
}

ds.

Therefore, from (50) and (51),

ϕǫ(t) = ρǫk+1 − ρǫk − ǫ
{

f̄k+1,ǫ(τk, 0)− f̄k,ǫ(τk, 0)
}

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

{

f̄ l,ǫ(s, 1)− f̄ l,ǫ(s, 0)
}

ds. (55)

Using the fundamental theorem of calculus, (55) can be written as

ϕǫ(t) = ρǫk+1 − ρǫk − ǫ
{

f̄k+1,ǫ(τk, 0)− f̄k,ǫ(τk, 0)
}

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

∂f̄ l,ǫ(s, 0)

∂x
ϕǫ(s)ds+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

m
∑

j=1

∂f̄ l,ǫ(s, 0)

∂x̃j
θǫ,j(s)ds

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(
∫ 1

0

∆l,ǫ
1 (s, η)dη +

∫ 1

0

∆l,ǫ
2 (s, η)dη

)

ds. (56)

Now, the right-continuous solution of the auxiliary system (23)-(25) is

Λk(t) = f̄k,ǫ(τk, 0)− f̄k+1,ǫ(τk, 0) +

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(

∂f̄ l,ǫ(s, 0)

∂x
Λk(s)

+
m
∑

j=1

∂f̄ l,ǫ(s, 0)

∂x̃j
Λk(s− αj)

)

ds. (57)

From (56) and (57), we obtain

|ǫ−1ϕǫ(t)− Λk(t)| ≤ |ǫ|−1|ρǫk|+ |ǫ|−1|ρǫk+1|+

∫ t

τk

N1|ǫ
−1ϕǫ(s)− Λk(s)|ds

+

m
∑

j=1

∫ t

τk

N1|ǫ
−1θǫ,j(s)− Λk(s− αj)|ds

+

ς
∑

l=k+1

∫ min{τl,t}

τl−1

(
∫ 1

0

|ǫ|−1|∆l,ǫ
1 (s, η)|dη

+

∫ 1

0

|ǫ|−1|∆l,ǫ
2 (s, η)|dη

)

ds,
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where N1 is the upper bound for |∂f̄ i,ǫ/∂x| and |∂f̄ i,ǫ/∂x̃j | defined in the proof of Theorem 2. By

Lemma 4, (10) and (53), we see that for all ǫ ∈ Θ satisfying inequality (54),

|ǫ−1ϕǫ(t)− Λk(t)| ≤ 2L5|ǫ|+ (m+ 1)δL3T +

∫ t

τk

N1|ǫ
−1ϕǫ(s)− Λk(s)|ds

+

m
∑

j=1

∫ t

τk

N1|ǫ
−1ϕǫ(s− αj)− Λk(s− αj)|ds. (58)

The last integral term in (58) can be simplified as

m
∑

j=1

∫ t

τk

N1|ǫ
−1ϕǫ(s− αj)− Λk(s− αj)|ds =

m
∑

j=1

∫ t−αj

τk−αj

N1|ǫ
−1ϕǫ(s)− Λk(s)|ds

≤

∫ t

−αmax

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds. (59)

Since ǫ ∈ Θ ∩ (−∞, 0], we have −αmax < τk + ǫ < τk, and thus

∫ t

−αmax

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds =

∫ τk+ǫ

−αmax

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds

+

∫ τk

τk+ǫ

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds

+

∫ t

τk

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds. (60)

Furthermore, using (13), we have

|ǫ−1ϕǫ(s)− Λk(s)| ≤ |ǫ|−1|ϕǫ(s)|+ |Λk(s)| ≤ L3 +N2, s ∈ [τk + ǫ, τk], (61)

where N2 is as defined in the proof of Theorem 2. Substituting (61) into (60) and then using (11) gives

∫ t

−αmax

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds ≤ (mL3N1 +mN2N1)|ǫ|

+

∫ t

τk

mN1|ǫ
−1ϕǫ(s)− Λk(s)|ds. (62)
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Combining (58), (59) and (62), we obtain

|ǫ−1ϕǫ(t)− Λk(t)| ≤ (2L5 +mL3N1 +mN2N1)|ǫ|+ (m+ 1)L3Tδ

+

∫ t

τk

(m+ 1)N1|ǫ
−1ϕǫ(s)− Λk(s)|ds.

Recall from (54) that |ǫ| < δ. Thus, by the Gronwall-Bellman Lemma [32],

|ǫ−1ϕǫ(t)− Λk(t)| ≤ (2L5 +mL3N1 +mN2N1 + (m+ 1)L3T )δ exp((m+ 1)N1T ),

which holds whenever ǫ ∈ Θ satisfies (54). Since δ > 0 is arbitrary, this shows that (52) holds when

t ≥ τk.

3.4 State Variation with Respect to the Switching Times

Combining Theorems 2 and 3 yields the following fundamental result, which gives the full state variation

with respect to each switching time.

Theorem 4 Let k ∈ {1, 2, . . . , p− 1} and (τ, ζ) ∈ S × Z. Then for all time points t 6= τk,

∂x(t|τ, ζ)

∂τk
:= lim

ǫ→0

x(t|τ + ǫek, ζ)− x(t|τ, ζ)

ǫ
= lim

ǫ→0
ǫ−1ϕǫ(t) = Λk(t|τ, ζ).

From Theorems 2 and 3, we see that the left and right state variations differ at t = τk, and thus the full

state variation does not exist at this point. This is why t = τk is excluded from Theorem 4. Thus, the

state variation with respect to a given switching time exists at all time points except for the switching

time in question. This is different to the state variations with respect to the system parameters, which

exist at every point in the time horizon (see Theorem 1).
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4 Gradient Formulae

By using Theorems 1 and 4, it is possible to express the gradient of the cost function in Problem (P) in

terms of the solution of the auxiliary switched systems as follows:

∂J(τ, ζ)

∂ζq
=

∂Φ(x(T |τ, ζ), ζ)

∂ζq
+

∂Φ(x(T |τ, ζ), ζ)

∂x
Γ q(T |τ, ζ), q = 1, 2, . . . , v,

∂J(τ, ζ)

∂τk
=

∂Φ(x(T |τ, ζ), ζ)

∂x
Λk(T |τ, ζ), k = 1, 2, . . . , p− 1.

However, to compute these gradient formulae, a large number of auxiliary systems need to be solved

(there is one auxiliary system for each system parameter and each switching time). To overcome this

challenge, we now derive new gradient formulae using the so-called costate method, which is a commonly-

used technique in the optimal control domain [32].

Define

∂f̃ i(t|τ, ζ)

∂x
:=

∂f i(t, x(t|τ, ζ), x̃(t|τ, ζ), ζ)

∂x
, t ∈ [0, T ], i = 1, 2, . . . , p,

∂f̃ i(t|τ, ζ)

∂x̃j
:=

∂f i(t, x(t|τ, ζ), x̃(t|τ, ζ), ζ)

∂x̃j
, t ∈ [0, T ], i = 1, 2, . . . , p, j = 1, 2, . . . ,m,

and

∂f̃ i(t|τ, ζ)

∂ζq
:=

∂f i(t, x(t|τ, ζ), x̃(t|τ, ζ), ζ)

∂ζq
, t ∈ [0, T ], i = 1, 2, . . . , p, q = 1, 2, . . . , v.

For each (τ, ζ) ∈ T × Z, consider the following costate system:

λ̇(t) = −

p
∑

i=1

(

∂f̃ i(t|τ, ζ)

∂x

)⊤

λ(t)χ[τi−1,τi)(t)

−

p
∑

i=1

m
∑

j=1

(

∂f̃ i(t+ αj |τ, ζ)

∂x̃j

)⊤

λ(t+ αj)χ[τi−1−αj ,τi−αj)(t), t ∈ [0, T ], (63)

with the terminal conditions

λ(T ) =

(

∂Φ(x(T |τ, ζ), ζ)

∂x

)⊤

, (64)

λ(t) = 0, t > T, (65)
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where, for a given interval I, χI denotes the indicator function of I defined by

χI(t) :=















1, if t ∈ I,

0, otherwise.

(66)

Note that if t > T − αj , then t+ αj > T , and thus the value of
∂f̃ i(t+ αj |τ, ζ)

∂x̃j is undefined. However,

this value has no effect on the costate dynamics (63) because λ(t+αj) = 0 when t > T −αj (see equation

(65)).

Let λ(·|τ, ζ) denote the solution of system (63)-(65) corresponding to the given pair (τ, ζ) ∈ T × Z.

We now express the gradients of the cost function with respect to the system parameters in terms of

λ(·|τ, ζ).

Theorem 5 Let q ∈ {1, 2, . . . , v} and (τ, ζ) ∈ T × Z. Then

∂J(τ, ζ)

∂ζq
=

∂Φ(x(T ), ζ)

∂ζq
+

p
∑

i=1

∫ τi

τi−1

λ(s)⊤
∂f̃ i(s|τ, ζ)

∂ζq
ds+ λ(0+)⊤

∂φ(0, ζ)

∂ζq

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

λ(s+ αj)
⊤ ∂f̃ i(s+ αj |τ, ζ)

∂x̃j

∂φ(s, ζ)

∂ζq
χ(−∞,0)(s)ds,

where x(·) = x(·|τ, ζ), λ(·) = λ(·|τ, ζ) and χ(−∞,0) is as defined in (66).

Proof Let w : [0,∞) → R
n be an arbitrary function that is continuous and differentiable almost every-

where. Then we may express the cost function J as follows:

J(τ, ζ) = Φ(x(T ), ζ) +

p
∑

i=1

∫ τi

τi−1

(

w(s)⊤f i(s, x(s), x̃(s), ζ) − w(s)⊤ẋ(s)
)

ds

= Φ(x(T ), ζ) +

p
∑

i=1

∫ τi

τi−1

w(s)⊤f i(s, x(s), x̃(s), ζ)ds −

∫ T

0

w(s)⊤ẋ(s)ds,

where we have omitted the arguments τ and ζ in x(·|τ, ζ) for simplicity.

Applying integration by parts to the last integral term gives

J(τ, ζ) = Φ(x(T ), ζ) +

p
∑

i=1

∫ τi

τi−1

w(s)⊤f i(s, x(s), x̃(s), ζ)ds − w(T )⊤x(T )

+ w(0+)⊤φ(0, ζ) +

∫ T

0

ẇ(s)⊤x(s)ds. (67)
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Differentiating (67) with respect to ζq gives

∂J(τ, ζ)

∂ζq
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂ζq
+

∂Φ(x(T ), ζ)

∂ζq
+ w(0+)⊤

∂φ(0, ζ)

∂ζq

+

p
∑

i=1

∫ τi

τi−1

w(s)⊤
∂f̃ i(s)

∂ζq
ds+

p
∑

i=1

∫ τi

τi−1

(

w(s)⊤
∂f̃ i(s)

∂x
+ ẇ(s)⊤

)

∂x(s)

∂ζq
ds

+

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂ζq
ds, (68)

where we have omitted the arguments τ and ζ in
∂f̃ i(s|τ, ζ)

∂x
and

∂f̃ i(s|τ, ζ)
∂x̃j . Performing a change of

variable in the last term on the right-hand side of (68) yields

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂ζq
ds

=

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s + αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂ζq
ds. (69)

Since x(s) = φ(s, ζ) for all s ≤ 0, equation (69) can be rewritten as follows:

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂ζq
ds

=

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂ζq
χ[0,+∞)(s)ds

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s + αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂φ(s, ζ)

∂ζq
χ(−∞,0)(s)ds, (70)

where χ[0,+∞) and χ(−∞,0) are as defined in (66). Substituting (70) into (68) yields

∂J(τ, ζ)

∂ζq
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂ζq
+

∂Φ(x(T ), ζ)

∂ζq
+ w(0+)⊤

∂φ(0, ζ)

∂ζq

+

p
∑

i=1

∫ τi

τi−1

w(s)⊤
∂f̃ i(s)

∂ζq
ds+

p
∑

i=1

∫ τi

τi−1

(

w(s)⊤
∂f̃ i(s)

∂x
+ ẇ(s)⊤

)

∂x(s)

∂ζq
ds

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂ζq
χ[0,+∞)(s)ds

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂φ(s, ζ)

∂ζq
χ(−∞,0)(s)ds.
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This equation can be rewritten as follows:

∂J(τ, ζ)

∂ζq
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂ζq
+

∂Φ(x(T ), ζ)

∂ζq
+ w(0+)⊤

∂φ(0, ζ)

∂ζq

+

p
∑

i=1

∫ τi

τi−1

w(s)⊤
∂f̃ i(s)

∂ζq
ds+

∫ T

0

(

ẇ(s)⊤ +

p
∑

i=1

w(s)⊤
∂f̃ i(s)

∂x
χ[τi−1,τi)(s)

+

p
∑

i=1

m
∑

j=1

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j
χ[τi−1−αj ,τi−αj)(s)

)

∂x(s)

∂ζq
ds

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂φ(s, ζ)

∂ζq
χ(−∞,0)(s)ds.

Choosing w(·) = λ(·|τ, ζ) and substituting (63)-(65) into the above equation completes the proof.

The following theorem gives the gradients of the cost function with respect to the switching times.

Theorem 6 Let k ∈ {1, 2, . . . , p− 1} and (τ, ζ) ∈ T × Z. Then

∂J(τ, ζ)

∂τk
= λ(τk)

⊤fk(τk, x(τk), x̃(τk), ζ) − λ(τk)
⊤fk+1(τk, x(τk), x̃(τk), ζ),

where x(τk) = x(τk|τ, ζ), x̃(τk) = x̃(τk|τ, ζ) and λ(τk) = λ(τk|τ, ζ).

Proof Let w(·) be as defined in the proof of Theorem 5. Recall from equation (67) that

J(τ, ζ) = Φ(x(T ), ζ) +

p
∑

i=1

∫ τi

τi−1

w(s)⊤f i(s, x(s), x̃(s), ζ)ds − w(T )⊤x(T )

+ w(0+)⊤φ(0, ζ) +

∫ T

0

ẇ(s)⊤x(s)ds, (71)

where, as in the proof of Theorem 5, we have omitted the arguments τ and ζ for clarity.

Differentiating (71) with respect to τk yields

∂J(τ, ζ)

∂τk
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂τk
+ w(τk)

⊤fk(τk, x(τk), x̃(τk), ζ)

− w(τk)
⊤fk+1(τk, x(τk), x̃(τk), ζ) +

p
∑

i=1

∫ τi

τi−1

(

w(s)⊤
∂f̃ i(s)

∂x

+ ẇ(s)⊤
)

∂x(s)

∂τk
ds+

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂τk
ds, (72)
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where, as in the proof of Theorem 5, we omit the arguments τ and ζ in
∂f̃ i(s|τ, ζ)

∂x
and

∂f̃ i(s|τ, ζ)

∂x̃j .

Performing a change of variable in the last term on the right-hand side of (72) gives

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂τk
ds

=

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s + αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂τk
ds. (73)

Recall that x(s) = φ(s, ζ) for all s ≤ 0. Then equation (73) can be rewritten as follows:

p
∑

i=1

∫ τi

τi−1

m
∑

j=1

w(s)⊤
∂f̃ i(s)

∂x̃j

∂x(s− αj)

∂τk
ds

=

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s + αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂τk
χ[0,+∞)(s)ds, (74)

where χ[0,+∞) is as defined in (66). Substituting (74) into (72) gives

∂J(τ, ζ)

∂τk
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂τk
+ w(τk)

⊤fk(τk, x(τk), x̃(τk), ζ)

− w(τk)
⊤fk+1(τk, x(τk), x̃(τk), ζ) +

p
∑

i=1

∫ τi

τi−1

(

w(s)⊤
∂f̃ i(s)

∂x
+ ẇ(s)⊤

)

∂x(s)

∂τk
ds

+

p
∑

i=1

m
∑

j=1

∫ τi−αj

τi−1−αj

w(s + αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j

∂x(s)

∂τk
χ[0,+∞)(s)ds.

This equation can be rearranged as follows:

∂J(τ, ζ)

∂τk
=

(

∂Φ(x(T ), ζ)

∂x
− w(T )⊤

)

∂x(T )

∂τk
+ w(τk)

⊤fk(τk, x(τk), x̃(τk), ζ)

− w(τk)
⊤fk+1(τk, x(τk), x̃(τk), ζ) +

∫ T

0

( p
∑

i=1

w(s)⊤
∂f̃ i(s)

∂x
χ[τi−1,τi)(s)

+ ẇ(s)⊤ +

p
∑

i=1

m
∑

j=1

w(s+ αj)
⊤ ∂f̃ i(s+ αj)

∂x̃j
χ[τi−1−αj ,τi−αj)(s)

)

∂x(s)

∂τk
ds. (75)

Choosing w(·) = λ(·|τ, ζ) and substituting (63)-(65) into (75) completes the proof.

On the basis of Theorems 5 and 6, we can compute the cost function J(τ, ζ) and its gradient at a

given pair (τ, ζ) ∈ T × Z using the following computational procedure.

Step 1. Solve the switched system (1) from t = 0 to t = T to obtain x(·|τ, ζ).
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Step 2. Using x(T |τ, ζ), compute J(τ, ζ).

Step 3. Using x(·|τ, ζ), solve the costate system (63)-(65) from t = T to t = 0 to obtain λ(·|τ, ζ).

Step 4. Using x(·|τ, ζ) and λ(·|τ, ζ), compute
∂J(τ, ζ)
∂ζq

, q = 1, 2, . . . , v, and
∂J(τ, ζ)
∂τk

, k = 1, 2, . . . , p− 1,

via the formulae in Theorems 5 and 6.

This computational procedure can be integrated with a standard gradient-based optimization method

(e.g., sequential quadratic programming) to solve Problem (P) as a nonlinear programming problem. In

the next section, we use this approach to solve three numerical examples.

5 Numerical Examples

We consider three example problems. To solve these problems, we wrote a Fortran program that com-

bines the gradient computation procedure in Section 4 with the optimization software NLPQLP [33].

This program invokes the differential equation software LSODA [34] to solve the state and costate sys-

tems. Lagrange interpolation [35] is used when LSODA requires the value of the state or costate at an

intermediate time between two adjacent knot points.

5.1 Example 1

Consider the following switched system as formulated in reference [27]:

subsystem 1:











ẋ1(t) = 2x1(t)x2(t) + x2(t− 0.1),

ẋ2(t) = 3x1(t) + 4x2(t− 0.1),
(76)

subsystem 2:











ẋ1(t) = −2x1(t)x2(t) + sin(x2(t− 0.1)),

ẋ2(t) = x1(t)x2(t) + x1(t− 0.1)x2(t− 0.1),
(77)

subsystem 3:











ẋ1(t) = t2 − 2x1(t) + 3x2(t− 0.1),

ẋ2(t) = −x2(t) + x1(t− 0.1)x2(t− 0.1),
(78)

with the initial conditions

x1(t) = t− 1, x2(t) = t2 + 1, t ≤ 0. (79)
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As in [27], we assume that the switching sequence is 1 → 2 → 3. Let τ1 denote the time at which the

system switches from subsystem 1 to subsystem 2, and let τ2 denote the time at which the system switches

from subsystem 2 to subsystem 3. The time horizon for this system is [τ0, τ3] = [0, 1].

We suppose that 0.01 ≤ τ1 ≤ 0.2 and 0.21 ≤ τ2 ≤ 0.9. Our goal is to choose the switching times τ1

and τ2 such that the cost function

J(τ1, τ2) = (x1(1)− 0.5)2 + (x2(1)− 0.25)2 (80)

is minimized subject to the constraints τ1 ∈ [0.01, 0.2] and τ2 ∈ [0.21, 0.9].

Starting from the initial guesses τ1 = 0.2 and τ2 = 0.9, our program computes the optimal switching

times τ1 = 0.01 and τ2 = 0.4739 after 7 optimization iterations. The optimal cost obtained by our program

is J = 4.537 × 10−3, which is much better than the optimal cost of J = 0.0128 obtained in [27]. The

corresponding state trajectory is shown in Fig. 1.
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Fig. 1 The optimal state trajectories for Example 1.
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5.2 Example 2

Consider the following nonlinear switched system with 2 time-delays:

subsystem 1:























ẋ1(t) = −5x1(t)− 4x2(t)− 3x1(t− 0.5) + 2x2(t− 0.1)

+u1(t) + 0.1 tanh(x1(t)),

ẋ2(t) = 0.1x1(t)− 7x2(t) + 0.5u1(t)− sin(x2(t− 0.1)),

(81)

subsystem 2:











ẋ1(t) = −4x1(t) + 0.5x2(t) + 0.2 sin(x2(t)) + t2 + 8,

ẋ2(t) = 5x1(t)− 5x2(t) + 0.5 sin(x1(t− 0.1))− u2(t),
(82)

with the initial conditions

x1(t) = 6, x2(t) = t2 + 2, t ≤ 0. (83)

The time horizon here is [0, 1.5]. We assume that the system switches once during the time horizon from

subsystem 1 to subsystem 2. Let τ1 denote the switching point. The functions u1 and u2 are feedback

controllers of the form u1(t) = ζ1x1(t) + ζ2x2(t) and u2(t) = ζ3x1(t) + ζ4x2(t), where 0.1 ≤ ζ1 ≤ 1.5

and 0.1 ≤ ζ2, ζ3, ζ4 ≤ 1.0. Our goal is to find an optimal switching time τ1 and an optimal feedback gain

parameter vector ζ = (ζ1, ζ2, ζ3, ζ4)
⊤ such that the cost function

J(τ1, ζ) = (x1(1.5)− 2)2 + (x2(1.5)− 1)2 (84)

is minimized subject to the constraints ζ1 ∈ [0.1, 1.5] and ζ2, ζ3, ζ4 ∈ [0.1, 1.0].

The gradient of the cost function (84) with respect to ζ is calculated using the formulae in Section 4,

with the extended Simpson’s rule [35] used to compute the integrals. Starting from the initial guesses

τ1 = 0.1 and ζ = (0.7, 0.5, 0.5, 0.8)⊤, our program computes the optimal switching time as τ1 = 1.3304

and the optimal parameter vector as ζ = (1.3149, 0.5635, 0.3256, 0.6672)⊤ after 22 optimization iterations.

Moreover, the corresponding optimal cost is 3.9943× 10−30, which can be regarded as zero in numerical

computation. The optimal feedback control and the optimal state trajectory are shown in Fig. 2.
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Fig. 2 (a). Feedback controls for Example 2. (b). State trajectories for Example 2.

5.3 Example 3

Our final example involves the fed-batch fermentation process for converting glycerol to 1,3-propanediol

(1,3-PD) using the microorganism Klebsiella pneumoniae. This process oscillates between two modes:

batch mode and feeding mode. In batch mode, no substrate is added to the fermentor. In feeding mode,

substrates are added with constant feeding rates to provide nutrition and maintain a suitable environment

for cell growth. Since nutrient metabolization does not immediately lead to the production of new biomass

[36], time-delays exist in the fermentation process.

Based on our previous work [37], the dynamic model for batch mode is given by



































ẋ1(t) = µ(x2(t))x1(t− 0.16),

ẋ2(t) = −q2(x2(t))x1(t− 0.16),

ẋ3(t) = q3(x2(t))x1(t− 0.16),

ẋ4(t) = 0,

(85)

where x1(t), x2(t), x3(t) and x4(t) are, respectively, the extracellular concentrations of biomass, glycerol,

1,3-PD and the volume of culture fluid at time t in the fermentor; µ(x2(t)) is the specific growth rate of

cells; q2(x2(t)) is the specific consumption rate of substrate; and q3(x2(t)) is the specific formation rate
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of 1,3-PD. The functions µ(x2(t)), q2(x2(t)) and q3(x2(t)) are given by

µ(x2(t)) =
∆1x2(t)

x2(t) + k1
,

q2(x2(t)) = m2 + Y2µ(x2(t)) +
∆2x2(t)

x2(t) + k2
,

q3(x2(t)) = −m3 + Y3µ(x2(t)) +
∆3x2(t)

x2(t) + k3
,

where ∆1, k1,m2, Y2, ∆2, k2,m3, Y3, ∆3 and k3 are model parameters whose values are given in [37].

The dynamic model for feeding mode is given by



































ẋ1(t) = µ(x2(t))x1(t− 0.16)−D(x4(t), ζ)x1(t),

ẋ2(t) = D(x4(t), ζ)((1 + r)−1cs0 − x2(t))− q2(x2(t))x1(t− 0.16),

ẋ3(t) = q3(x2(t))x1(t− 0.16)−D(x4(t), ζ)x3(t),

ẋ4(t) = (1 + r)ζ,

(86)

where r = 0.75 is the velocity ratio of adding alkali to glycerol; cs0 = 10762mmolL−1 is the concentration

of the initial feed of glycerol; ζ is the feeding rate of the glycerol; and D(x4(t), ζ) is the dilution rate at

time t defined as

D(x4(t), ζ) :=
(1 + r)ζ

x4(t)
. (87)

The fed-batch fermentation process switches between the batch and feeding modes during the time

horizon.

The initial function φ for the system (85) and (86) is obtained by applying cubic spline interpolation

to the experimental data before the zero time point. The total number of switching times is 1355 and the

terminal time is T = 24.16h. The entire fermentation process consists of the first batch mode followed by

nine phases, each of which consists of multiple fed-batch pairs (feeding mode followed by batch mode) of

100 seconds duration. In each phase, the durations of the feeding modes are the same. As a result, the

end moment of the first batch mode (denoted by τ1) and the end moment of the first feeding mode in

each phase (denoted by τi, i = 2, . . . , 10,) are to be optimized. Furthermore, the feeding rate of glycerol

ζ also needs to be optimally chosen. Let τ = (τ1, . . . , τ10)
⊤. The aim of the fermentation control is to
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Table 1 Optimal values, initial guesses, and lower and upper bounds for the switching times in Example 3.

Switching times τ1 τ2 τ3 τ4 τ5

Optimal values 5.4096 5.4112 6.1894 7.2174 8.9117
Initial guesses 5.3300 5.3314 6.1097 7.1378 8.8319
Lower bounds 5.3000 5.3014 6.0797 7.1078 8.8019
Upper bounds 5.5000 5.5022 6.2800 7.3078 9.0022

Switching times τ6 τ7 τ8 τ9 τ10

Optimal values 12.2172 15.9110 18.1602 19.9101 23.9101
Initial guesses 12.1372 15.8311 18.0808 19.8306 23.8303
Lower bounds 12.1072 15.8011 18.0503 19.8003 23.8003
Upper bounds 12.3078 16.0022 18.2511 20.0011 24.0011

obtain high concentration of 1,3-PD at the terminal time. Thus, the cost function in this example is

J(τ, ζ) = −x3(T |τ, ζ). (88)

The optimal control problem is: choose the switching time vector τ and the system parameter ζ such that

the cost function (88) is minimized subject to ζ ∈ [0.7954, 1.1009] and the switching time bounds given

in Table 1.

The gradient of the cost function (88) with respect to ζ is calculated using the formulae in Section 4,

with the extended Simpson’s rule [35] used to compute the integrals. By choosing the initial guess of the

feeding rate ζ = 8.1211Lh−1 and the initial guesses of switching times as in Table 1, our program obtains

the optimal feeding rate ζ∗ = 0.8867Lh−1 and the optimal switching times listed in Table 1. Our program

took 15 optimization iterations to obtain this optimal solution. The corresponding optimal durations of

the feeding modes in the nine phases are, respectively, 5.75s, 7.28s, 8.00s, 7.76s, 7.51s, 5.13s, 2.22s, 1.98s

and 1.73s. Moreover, the optimal 1,3-PD concentration at the terminal time is 932.2mmolL−1. This is a

16.96% improvement over the experimental results in [38], which are obtained using a non-optimal control

scheme. The optimal states of biomass and 1,3-PD are shown in Fig. 3. The curves in Fig. 3 also confirm

that 1,3-PD concentration at the terminal time is increased compared with the results in [38].

6 Conclusions

In this paper, we investigated the optimal control of switched systems with multiple time-delays and

multiple system parameters. We first established the existence of the partial derivatives of the system



Optimal Control of Nonlinear Switched Systems with Multiple Time-delays 33

0 5 10 15 20 25
0

1

2

3

4

5

6
(a)

B
io

m
as

s 
(g

L−
1 )

Fermentation time (h)

 

 

Optimal state.
Experimental result.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000
(b)

1,
3−

P
D

 (
m

m
ol

L−
1 )

Fermentation time (h)

 

 

Optimal state.
Experimental result.

Fig. 3 Optimal state trajectories for Example 3.

state with respect to the system parameters and switching times. We then used this result to derive the

gradient of the cost function in terms of the solutions of the state system and an auxiliary system called

the costate system. On this basis, a new gradient-based optimization algorithm was developed to solve

the optimal control problem. The effectiveness and applicability of this algorithm was verified using three

numerical examples.
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