Skip to main content
Log in

Performance Limit of Broadband Beamformer Designs in Space and Frequency

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The design problem of broadband beamformers is to choose the coefficients of the filters such that the difference between the actual spatial directivity pattern and a desired spatial directivity pattern is minimized. There are many factors which can influence the performance of the design. The prominent factors include the filter length and the number of microphones. In the literature, the condition in fitting a desired spatial directivity pattern totally has not been studied properly. We show here that it is essential to use both the filter length and the number of sensors in reducing the cost function to zero, subject to some conditions on the desired response. These conditions are investigated and developed. Numerical examples are used to verify the derived conditions and at the same time to present some optimal beamformer designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liu, W., Weiss, S.: Design of frequency invariant beamformers for broadband arrays. IEEE Trans. Signal Process. 56(2), 855–860 (2008)

    Article  MathSciNet  Google Scholar 

  2. Ng, B.P., Duan, H.P.: Designing amplitude/phase response of the frost beamformer. IEEE Trans. Signal Process. 55(5), 1944–1949 (2007)

    Article  MathSciNet  Google Scholar 

  3. Gannot, S., Burshtein, D., Weinstein, E.: Signal enhancement using beamforming and nonstationarity with applications to speech. IEEE Trans. Signal Process. 49(8), 1614–1626 (2001)

    Article  Google Scholar 

  4. Sawada, H., Araki, S., Mukai, R., Makino, S.: Blind extraction of dominant target sources using ica and time–frequency masking. IEEE Trans. Audio Speech Lang. Process. 14(6), 2165–2173 (2006)

    Article  Google Scholar 

  5. Chan, S.C., Chen, H.H.: Uniform concentric circular arrays with frequency-invariant characteristics: theory, design, adaptive beamforming and DOA estimation. IEEE Trans. Signal Process. 55(1), 165–177 (2007)

    Article  MathSciNet  Google Scholar 

  6. Feng, Z.G., Yiu, K.F.C., Nordholm, S.: A two-stage method for the design of near-field broadband beamformer. IEEE Trans. Signal Process. 59, 3647–3656 (2011)

    Article  MathSciNet  Google Scholar 

  7. Feng, Z.G., Yiu, K.F.C., Nordholm, S.: Placement design of microphone arrays in near-field broadband beamformers. IEEE Trans. Signal Process. 60(3), 1195–1204 (2012)

    Article  MathSciNet  Google Scholar 

  8. Lau, B.K., Leung, Y.H., Teo, K.L., Sreeram, V.: Minimax filters for microphone arrays. IEEE Trans. Circuits Syst. II 46(2), 1522–1525 (1999)

    Article  Google Scholar 

  9. Yiu, K.F.C., Yang, X.Q., Nordholm, S., Teo, K.L.: Near-field broadband beamformer design via multidimensional semi-infinite linear programming techniques. IEEE Trans. Speech Audio Process. 11(6), 725–732 (2003)

    Article  Google Scholar 

  10. Dolco, S., Moonen, M.: Design of far-field and near-field broadband beamformers using eigenfilters. Signal Process. 83, 2641–2673 (2003)

    Article  Google Scholar 

  11. Kennedy, R., Ward, D., Abhayapala, T.: Nearfield beamforming using radial reciprocity. IEEE Trans. Signal Process. 47, 33–40 (1999)

    Article  Google Scholar 

  12. Nordholm, S., Claesson, I., Dahl, M.: Adaptive microphone array employing calibration signals: an analytical evaluation. IEEE Trans. Speech Audio Process. 7, 241–252 (1999)

    Article  Google Scholar 

  13. Yiu, K.F.C., Grbic, N., Teo, K.L., Nordholm, S.: A new design method for broadband microphone arrays for speech input in automobiles. IEEE Signal Process. Lett. 9(7), 222–224 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by the RGC Grant PolyU. (5301/12E). The first author is also supported by the Grant of Chongqing Science and Technology Commission (No. cstc2013jcyjA1407) and the Program of Chongqing Innovation Team Project in University under Grant (No. KJTD201308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Fai Cedric Yiu.

Additional information

Communicated by Mark J. Balas.

Appendix

Appendix

1.1 Proof of Lemma 3.1

Proof

Since the basis \( \{1, \cos k\omega ,\sin k\omega ,\;\; k=1,\ldots ,\infty \}\) are orthogonal and complete in \([-\pi ,\pi ]\), and \(u(\omega )\) and \(v(\omega )\) are periodic, continuous, absolute integrable, and both right-hand and left-hand derivatives exist, then, their Fourier series are given by

$$\begin{aligned} u(\omega )= a_{0}+\sum _{k=1}^{+\infty }a_{k}\cos k\omega ,\quad v(\omega )= \sum _{k=1}^{+\infty }b_{k}\sin k\omega . \end{aligned}$$

Define \(x_{k}\) by

$$\begin{aligned} x_{k}:=a_{0},\;\; x_{k}:=\left\{ \begin{array}{l@{\quad }l} (a_{k}-b_{k})/2, &{} \text {if }k>0\\ (a_{-k}+b_{-k})/2, &{} \text {if }k<0 \end{array}\right. \end{aligned}$$

Then, we have

$$\begin{aligned} \sum _{k=-\infty }^{+\infty }x_{k}e^{-j k\omega }&= a_{0}+\sum _{k=1}^{+\infty }x_{-k}e^{-j (-k)\omega } +\sum _{k=1}^{\infty }x_{k}e^{-j k\omega } \\&= a_{0}+\sum _{k=1}^{+\infty }\frac{a_{k}+b_{k}}{2}(\cos k\omega +j \sin k\omega )\\&+\sum _{k=1}^{+\infty }\frac{a_{k}-b_{k}}{2}(\cos k\omega -j \sin k\omega ) \\&= a_{0}+\sum _{k=1}^{+\infty }a_{k}\cos k\omega +j\sum _{k=1}^{+\infty }b_{k}\sin k\omega =u(\omega )+jv(\omega ). \end{aligned}$$

This completes the proof. \(\square \)

1.2 Proof of Lemma 4.1

Proof

Since the basis \( \{1, \cos k\omega ,\sin k\omega ,\;\; k=1,\ldots ,\infty \}\) are orthogonal and complete in \([-\pi ,\pi ]\), and \(u(\omega )\) and \(v(\omega )\) are periodic, continuous, absolute integrable, and both right-hand and left-hand derivatives exist, then, their Fourier series are given by

$$\begin{aligned} \begin{aligned}&u(\omega )= a_{0}+\sum _{k=1}^{+\infty }a_{k}\cos k\omega + \sum _{k=1}^{+\infty }b_{k}\sin k\omega , \\&v(\omega )= c_{0}+\sum _{k=1}^{+\infty }c_{k}\cos k\omega + \sum _{k=1}^{+\infty }d_{k}\sin k\omega . \end{aligned} \end{aligned}$$

Define \(x_{k}\) and \(y_{k}\) by

$$\begin{aligned} \begin{aligned}&x_{0}:=a_{0},\;\;y_{0}:=c_{0},\\&x_{k}:=\left\{ \begin{array}{l@{\quad }l} (a_{k}-d_{k})/2, &{} \text {if }k>0\\ (a_{-k}+d_{-k})/2, &{} \text {if }k<0 \end{array}\right. \\&y_{k}:=\left\{ \begin{array}{l@{\quad }l} (c_{k}+b_{k})/2, &{} \text {if }k>0\\ (c_{-k}-b_{-k})/2, &{} \text {if }k<0 \end{array}\right. \end{aligned} \end{aligned}$$

Then, we have

$$\begin{aligned} \begin{aligned} \sum _{k=-\infty }^{+\infty }(x_{k}\!+\!jy_{k})e^{-j k\omega }&=(x_{0}\!+\!jy_{0}) \!+\!\sum _{k=1}^{+\infty }(x_{-k}\!+\!jy_{-k})e^{-j (-k)\omega } \!+\!\!\sum _{k=1}^{\infty }(x_{k}\!+\!jy_{k})e^{-j k\omega } \\&=(a_{0}+jc_{0})\!+\!\sum _{k=1}^{+\infty } \left( \!\frac{a_{k}\!+\!d_{k}}{2}\!+\!j\frac{c_{k}\!-\!b_{k}}{2}\!\right) (\cos k\omega +j \sin k\omega ) \\& +\sum _{k=1}^{+\infty }\left( \frac{a_{k}-d_{k}}{2}+j\frac{c_{k}+b_{k}}{2}\right) (\cos k\omega -j \sin k\omega ) \\&= a_{0}+\sum _{k=1}^{+\infty }a_{k}\cos k\omega + \sum _{k=1}^{+\infty }b_{k}\sin k\omega \\& +j\left( c_{0}+\sum _{k=1}^{+\infty }c_{k}\cos k\omega + \sum _{k=1}^{+\infty }d_{k}\sin k\omega \right) \\&=u(\omega )+jv(\omega ). \end{aligned} \end{aligned}$$

This completes the proof. \(\square \)

1.3 Proof of Theorem 4.1

Proof

For any \(f\in [0,f_\mathrm{{s}}/2]\), take a transform \(\varphi =\nu (f)\phi \). Denote \(\mathcal {A}^{0}_{k}(f,\phi )\) and \(R(f,\phi )\) by \(\bar{\mathcal {A}}_{k}(f,\varphi )\) and \(\bar{R}(f,\varphi )\), respectively, with \(\phi \) being replaced by \(\varphi \). Then, it follows from (24) that \(\bar{\mathcal {A}}_{k}(f,\varphi )\) is given by

$$\begin{aligned} \bar{\mathcal {A}}_{k}(f,\varphi )=e^{-j2\pi k\varphi }= e^{-j2\pi k\nu (f)\phi }. \end{aligned}$$
(a)

Then, \(\bar{\mathcal {A}}_{k}(f,\varphi )\in \left\{ e^{-j2\pi k\varphi }, k=-\infty ,\ldots ,+\infty \right\} \).

For the definition of \(\bar{R}(f,\varphi )\), note that the transform \(\phi \rightarrow \varphi \) is a bijection and maps \([-1,1]\) to \([-\nu (f),\nu (f)]\subset [-1/2,1/2]\), if \(f>0\). We define \(\bar{R}(f,\varphi )=R(f,\phi /\nu (f))\), \(\forall \varphi \in [-\nu (f),\nu (f)]\). If \(f=0\), then \(\nu (f)=0\) and the transform \(\phi \rightarrow \varphi \) maps \([-1,1]\) to a point \(0\). Note that \(R(0,\phi )\) is a real constant number, and then define \(\bar{R}(0,0)=R(0,0)\). Hence, \(\bar{R}(f,\varphi )\) is well defined.

The definition domain of \(\bar{\mathcal {A}}_{k}(f,\varphi )\) and \(\bar{R}(f,\varphi )\) is \(\Omega =\{(f,\varphi ):f\in [0,f_\mathrm{{s}}/2],\varphi \in [-\nu (f),\nu (f)]\}\). Since the real part and the imaginary part of \(R(f,\phi )\) are continuous, absolute integrable, and both right-hand and left-hand derivatives exist in \([0,f_\mathrm{{s}}/2]\times [-1,1]\), then the real part and the imaginary part of \(\bar{R}(f,\varphi )\) are also continuous, absolute integrable, and both right-hand and left-hand derivatives exist in \(\Omega \).

Then, the problem (30) is equivalent to find a sequence of complex functions \(\{\mathcal {X}^{0}_{k}(f)\in \Gamma _{0},k=-\infty ,\ldots ,+\infty \}\), such that

$$\begin{aligned} \bar{R}(f,\varphi )=\sum _{k=-\infty }^{+\infty } \mathcal {X}^{0}_{k}(f)\bar{\mathcal {A}}_{k}(f,\varphi ) =\sum _{k=-\infty }^{+\infty } \mathcal {X}^{0}_{k}(f)e^{-j2\pi k\varphi }, \quad \forall (f,\varphi )\in \Omega . \end{aligned}$$
(b)

To prove (b), we extend the definition of \(\bar{R}(f,\varphi )\) from \(\Omega \) to \([0,f_\mathrm{{s}}/2]\times \mathbb {R}\). The extended definition of \(\bar{G}_\mathrm{{d}}(f,\varphi ,\eta ,\bar{\eta })\) should keep some conditions:

  1. (i)

    \(\bar{R}(0,\varphi )\) are real constant numbers.

  2. (ii)

    The real part and the imaginary part of \(\bar{R}(f_\mathrm{{s}}/2,\varphi )\) are even and odd, respectively.

  3. (iii)

    For each \(f\in [0,f_\mathrm{{s}}/2]\), \(\bar{R}(f,\varphi )\) is periodic with period \(1\).

  4. (iv)

    The real part and the imaginary part of \(\bar{R}(f,\varphi )\) are continuous, absolute integrable, and both right-hand and left-hand derivatives exist.

It remains to extend the definition domain from \(\Omega \) to \([0,f_\mathrm{{s}}/2]\times [-1/2,1/2]\) with the terminal condition \(\bar{R}(f,-1/2)=\bar{R}(f,1/2)\). Then, the function will be periodic with period \(1\).

Note that if \(r=c/f_\mathrm{{s}}\), \(\nu (f_\mathrm{{s}}/2)=1\). It is not necessary to extend the definition of \(\bar{R}(f,\varphi )\) when \(f=f_\mathrm{{s}}/2\), since \(\bar{R}(f_\mathrm{{s}}/2,x)=R(f_\mathrm{{s}}/2,x/2)\), \(\forall x\in [-1,1]\). It follows from the conditions (A2)–(A4) in Theorem 4.1 that the conditions (ii)–(iv) are satisfied in the case of \(f=f_\mathrm{{s}}/2\).

There are many kinds of methods for the extension. A simple method is the linear interpolation. For each \(f\in [0,f_\mathrm{{s}}/2]\), we extend the definition of \(\bar{R}(f,\varphi )\) as

$$\begin{aligned} \bar{R}(f,\varphi )=&\left\{ \begin{array}{l@{\quad }l} \frac{1-\nu (f)+\varphi }{1-2\nu (f)}\bar{R}(f,-\nu (f)) +\frac{-\nu (f)-\varphi }{1-2\nu (f)}\bar{R}(f,\nu (f)), &{} \varphi \in [-1/2,-\nu (f)] \\ \frac{-\nu (f)+\varphi }{1-2\nu (f)}\bar{R}(f,-\nu (f)) +\frac{1-\nu (f)-\varphi }{1-2\nu (f)}\bar{R}(f,\nu (f)), &{} \varphi \in [\nu (f),1/2] \end{array}\right. \nonumber \\ =&\left\{ \begin{array}{l@{\quad }l} \frac{1-\nu (f)+\varphi }{1-2\nu (f)}R(f,-1) +\frac{-\nu (f)-\varphi }{1-2\nu (f)}R(f,1), &{} \varphi \in [-1/2,-\nu (f)] \\ \frac{-\nu (f)+\varphi }{1-2\nu (f)}R(f,-1) +\frac{1-\nu (f)-\varphi }{1-2\nu (f)}R(f,1), &{} \varphi \in [\nu (f),1/2] \end{array}\right. \end{aligned}$$
(c)

Then, by this interpolation, it can be verified directly that the conditions (i)-(iv) are satisfied.

By Lemma (4.1), for each \(f\in [0,f_\mathrm{{s}}/2]\), there exists a sequence of \(\{\mathcal {X}^{0}_{k}(f)=x_{k}(f)+jy_{k}(f):k=-\infty ,\ldots ,+\infty \}\) such that the equality (b) holds in \([0,f_\mathrm{{s}}/2]\times [-1/2,1/2]\). Hence, it also holds in the subset \(\Omega \).

It remains to verify that \(\mathcal {X}^{0}_{k}(f)\in \Gamma _{0}\), \(\forall k=-\infty ,\ldots ,+\infty \). Since the coefficients exist, they can be computed directly by

$$\begin{aligned} \mathcal {X}^{0}_{k}(f)=\int _{-1/2}^{1/2}\bar{R}(f,\varphi )e^{j2\pi k\varphi }\mathrm{{d}}\varphi ,\quad \forall k=-\infty ,\ldots ,+\infty . \end{aligned}$$
(d)

Then, we verify that \(\mathcal {X}^{0}_{k}(f)\in \Gamma _{0}\). From (i), \(\bar{R}(0,\varphi )\) is a real constant number. Suppose that the constant is denoted by \(\alpha \). Then, we have

$$\begin{aligned} \mathcal {X}^{0}_{k}(0)=\int _{-1/2}^{1/2}\alpha (\cos 2\pi k\varphi +j\sin 2\pi k\varphi ) \mathrm{{d}}\varphi =\int _{-1/2}^{1/2}\alpha \cos 2\pi k\varphi \mathrm{{d}}\varphi . \end{aligned}$$

Hence, \(\mathcal {X}^{0}_{k}(0)\) is a real number.

From (ii), the real part and the imaginary part of \(\bar{R}(f_\mathrm{{s}}/2,\varphi )\) are even and odd, respectively. Suppose that the real part and the imaginary part of \(\bar{R}(f_\mathrm{{s}}/2,\varphi )\) are denoted by \(\alpha (\varphi )\) and \(\beta (\varphi )\). Then, we have

$$\begin{aligned} \mathcal {X}^{0}_{k}(f_\mathrm{{s}}/2)=\int _{-1/2}^{1/2} (\alpha (\varphi )+j\beta (\varphi ))(\cos 2\pi k\varphi +j\sin 2\pi k\varphi ) \mathrm{{d}}\varphi . \end{aligned}$$
(e)

The imaginary part of (e) is computed by

$$\begin{aligned} \mathcal {X}^{0}_{k}(f_\mathrm{{s}}/2)&= \int _{-1/2}^{1/2} (\alpha (\varphi )\sin 2\pi k\varphi +\beta (\varphi )\cos 2\pi k\varphi ) \mathrm{{d}}\varphi \\&= \int _{-1/2}^{0} (\alpha (\varphi )\sin 2\pi k\varphi +\beta (\varphi )\cos 2\pi k\varphi ) \mathrm{{d}}\varphi \\&\quad + \int _{0}^{1/2} (\alpha (\varphi )\sin 2\pi k\varphi +\beta (\varphi )\cos 2\pi k\varphi ) \mathrm{{d}}\varphi \\&= \int _{0}^{1/2} (\alpha (-\varphi ')\sin 2\pi k(-\varphi ')+\beta (-\varphi ')\cos 2\pi k(-\varphi ')) \mathrm{{d}}\varphi ' \\&\quad +\int _{0}^{1/2} (\alpha (\varphi )\sin 2\pi k\varphi +\beta (\varphi )\cos 2\pi k\varphi ) \mathrm{{d}}\varphi \\&= 0. \end{aligned}$$

Hence, \(\mathcal {X}^{0}_{k}(f_\mathrm{{s}}/2)\) is a real number.

Since both the real part and the imaginary part of \(\bar{R}(f,\varphi )\) are continuous, absolute integrable, and their right-hand and left-hand derivatives exist, if follows from the equation (d) that the real part and the imaginary part of \(\mathcal {X}^{0}_{k}(f)\) are continuous, absolute integrable, and their right-hand and left-hand derivatives exist.

Thus, the function \(\mathcal {X}^{0}_{k}(f_\mathrm{{s}}/2)\), which is given in (d), belonging to \(\Gamma _{0}\). Then, equation (30) is true. This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Z.G., Yiu, K.F.C. & Nordholm, S.E. Performance Limit of Broadband Beamformer Designs in Space and Frequency. J Optim Theory Appl 164, 316–341 (2015). https://doi.org/10.1007/s10957-014-0543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0543-5

Keywords

Mathematics Subject Classification

Navigation