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1 Introduction

Regularity properties of collections of sets play an important role in variational analysis

and optimization, particularly as constraint qualifications in establishing optimality

conditions and coderivative/subdifferential calculus and in analyzing convergence of

numerical algorithms.

The concept of linear regularity was introduced in [1, 2] as a key condition in

establishing linear convergence rates of sequences generated by the cyclic projection

algorithm for finding the projection of a point on the intersection of a collection of

closed convex sets. This property has proved to be an important qualification condition
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in the convergence analysis, optimality conditions, and subdifferential calculus; cf.,

e.g., [3–11].

Recently, when investigating the extremality, stationarity and regularity properties

of collections of sets systematically, several other kinds of regularity properties have

been considered in [12–17]. They have proved to be useful in convergence analysis

[17–23] and are closely related to certain stationarity properties involved in extensions

of the extremal principle [14,15,24–26].

In this study, we aim at providing primal and dual quantitative characterizations

of several regularity properties of collections of sets. We also discuss their relationships

with the corresponding regularity properties of set-valued mappings.

After introducing in the next section some basic notation, we discuss in Section 3

three primal space local regularity properties of collections of sets, namely, semiregular-

ity, subregularity, and uniform regularity as well as their quantitative characterizations.

The main result of this section – Theorem 3.1 – gives equivalent metric characteri-

zations of the three mentioned regularity properties. Section 4 is dedicated to dual

characterizations of the regularity properties. In Theorem 4.1 (i), we give a sufficient

condition of subregularity in terms of Fréchet normals. In Section 5, we present re-

lationships between regularity properties of collections of sets and the corresponding

regularity properties of set-valued mappings.

2 Notation

Our basic notation is standard; cf. [26,27]. For a normed linear space X, its topological

dual is denoted X∗, while ⟨·, ·⟩ denotes the bilinear form defining the pairing between

the two spaces. The closed unit ball in a normed space is denoted B, Bδ(x) stands for

the closed ball with radius δ and centre x. Products of normed spaces will be considered

with the maximum type norms, if not specified otherwise.

The Fréchet normal cone to a set Ω ⊂ X at x ∈ Ω and the Fréchet subdifferential

of a function f : X → R∞ := R ∪ {+∞} at a point x with f(x) < ∞ are defined,

respectively, by

NΩ(x) :=

{
x∗ ∈ X∗ : lim sup

u→x, u∈Ω\{x}

⟨x∗, u− x⟩
∥u− x∥ ≤ 0

}
,

∂f(x) :=

{
x∗ ∈ X∗ : lim inf

u→x, u ̸=x

f(u)− f(x)− ⟨x∗, u− x⟩
∥u− x∥ ≥ 0

}
.

For a given set Ω ⊂ X, the distance function associated with Ω is defined by

d(x,Ω) := inf
ω∈Ω

∥x− ω∥ , ∀x ∈ X.

In the sequel, Ω stands for a collection of m (m ≥ 2) sets Ω1, . . . , Ωm in a normed

linear space X, and we assume the existence of a point x̄ ∈
∩m

i=1 Ωi.



3

3 Regularity Properties of Collections of Sets

In this section, we discuss local primal space regularity properties of finite collections

of sets and their primal space characterizations.

3.1 Definitions

The next definition introduces several regularity properties of Ω at x̄.

Definition 3.1 (i) Ω is semiregular at x̄ iff there exist positive numbers α and δ such

that
m∩
i=1

(Ωi − xi)
∩

Bρ(x̄) ̸= ∅ (1)

for all ρ ∈]0, δ[ and all xi ∈ X (i = 1, . . . ,m) such that max
1≤i≤m

∥xi∥ ≤ αρ.

(ii) Ω is subregular at x̄ iff there exist positive numbers α and δ such that

m∩
i=1

(Ωi + (αρ)B)
∩

Bδ(x̄) ⊆

(
m∩
i=1

Ωi

)
+ ρB (2)

for all ρ ∈]0, δ[.
(iii) Ω is uniformly regular at x̄ iff there exist positive numbers α and δ such that

m∩
i=1

(Ωi − ωi − xi)
∩

(ρB) ̸= ∅ (3)

for all ρ ∈]0, δ[, ωi ∈ Ωi ∩ Bδ(x̄), and all xi ∈ X (i = 1, . . . ,m) such that

max
1≤i≤m

∥xi∥ ≤ αρ.

Remark 3.1 Among the three regularity properties in Definition 3.1, the third one is

the strongest. Indeed, condition (1) corresponds to taking ωi = x̄ in (3). To compare

properties (ii) and (iii), it is sufficient to notice that condition (2) is equivalent to

the following one: for any x ∈ Bδ(x̄), ωi ∈ Ωi, xi ∈ X (i = 1, . . . ,m) such that

max
1≤i≤m

∥xi∥ ≤ αρ, and ωi + xi = x (i = 1, . . . ,m), it holds

m∩
i=1

(Ωi − x)
∩

(ρB) ̸= ∅.

This corresponds to taking ωi+xi = x (i = 1, . . . ,m) in (3) (with x ∈ X) and possibly

choosing a smaller δ > 0. Hence, (iii) =⇒ (i) and (iii) =⇒ (ii).

Remark 3.2 When x̄ ∈ int
∩m

i=1 Ωi, all the properties in Definition 3.1 hold true au-

tomatically.

Remark 3.3 1 When Ω1 = Ω2 = . . . = Ωm, property (ii) in Definition 3.1 is trivially

satisfied (with α = 1).

1 Observed by a reviewer.
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The regularity properties in Definition 3.1 can be equivalently defined using the

following nonnegative constants which provide quantitative characterizations of these

properties:

θ[Ω](x̄) := lim inf
ρ↓0

θρ[Ω](x̄)

ρ
, (4)

ζ[Ω](x̄) := lim
δ↓0

inf
0<ρ<δ

ζρ,δ[Ω](x̄)

ρ
, (5)

θ̂[Ω](x̄) := lim inf
ωi

Ωi→x̄,ρ↓0

θρ[Ω1 − ω1, . . . , Ωm − ωm](0)

ρ
, (6)

where, for ρ > 0 and δ > 0,

θρ[Ω](x̄) := sup

{
r ≥ 0 :

m∩
i=1

(Ωi − xi)
∩

Bρ(x̄) ̸= ∅, ∀xi ∈ rB

}
, (7)

ζρ,δ[Ω](x̄) := sup

{
r ≥ 0 :

m∩
i=1

(Ωi + rB)
∩

Bδ(x̄) ⊆
m∩
i=1

Ωi + ρB

}
. (8)

The next proposition follows immediately from the definitions.

Proposition 3.1 (i) Ω is semiregular at x̄ if and only if θ[Ω](x̄) > 0. Moreover,

θ[Ω](x̄) is the exact upper bound of all numbers α such that (1) is satisfied.

(ii) Ω is subregular at x̄ if and only if ζ[Ω](x̄) > 0. Moreover, ζ[Ω](x̄) is the exact

upper bound of all numbers α such that (2) is satisfied.

(iii) Ω is uniformly regular at x̄ if and only if θ̂[Ω](x̄) > 0. Moreover, θ̂[Ω](x̄) is the

exact upper bound of all numbers α such that (3) is satisfied.

Remark 3.4 Properties (i) and (iii) in Definition 3.1 were discussed in [13] (where they

were called regularity and strong regularity, respectively) and [14] (properties (R)S and

(UR)S) and [15] (regularity and uniform regularity). The current terminology used in

parts (i) and (ii) of Definition 3.1 comes from the standard terminology used for the

corresponding regularity properties of set-valued mappings; cf. Section 5.

Constants (4), (6), and (7) can be traced back to [12, 24, 25, 28–31]. Property (ii)

in Definition 3.1 and constants (5) and (8) are new.

Remark 3.5 If finite, constants ζ[Ω](x̄) and θ̂[Ω](x̄) always take values in [0, 1], while

constant θ[Ω](x̄) can be strictly greater than one (cf. Example 3.4 below). In view of

Remark 3.1, it is not difficult to check that θ̂[Ω](x̄) ≤ min{θ[Ω](x̄), ζ[Ω](x̄)}.

The equivalent representation of constant (7) given in the next proposition can be

useful.

Proposition 3.2 For any ρ > 0,

θρ[Ω](x̄) = sup

r ≥ 0 : rBm ⊆
∪

x∈Bρ(x̄)

m∏
i=1

(Ωi − x)

 , (9)

where
∏m

i=1(Ωi − x) = (Ω1 − x)× . . .× (Ωm − x) and Bm =
∏m

i=1 B.
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Proof It is sufficient to observe that condition

m∩
i=1

(Ωi − xi)
∩

Bρ(x̄) ̸= ∅

in (7) is equivalent to the existence of x ∈ Bρ(x̄) such that xi ∈ Ωi − x for all

i = 1, . . . ,m. This holds true for all xi ∈ rB if and only if

rBm ⊆
∪

x∈Bρ(x̄)

m∏
i=1

(Ωi − x).

⊓⊔

From Propositions 3.1 and 3.2, we immediately obtain equivalent representations

of semiregularity and uniform regularity.

Corollary 3.1 (i) Ω is semiregular at x̄ if and only if there exist positive numbers α

and δ such that

(αρ)Bm ⊆
∪

x∈Bρ(x̄)

m∏
i=1

(Ωi − x) (10)

for all ρ ∈]0, δ[. Moreover, θ[Ω](x̄) is the exact upper bound of all numbers α such

that (10) is satisfied.

(ii) Ω is uniformly regular at x̄ if and only if there exist positive numbers α and δ such

that

(αρ)Bm ⊆
∩

ωi∈Ωi∩Bδ(x̄)
(i=1,...,m)

∪
x∈ρB

m∏
i=1

(Ωi − ωi − x) (11)

for all ρ ∈]0, δ[. Moreover, θ̂[Ω](x̄) is the exact upper bound of all numbers α such

that (11) is satisfied.

Remark 3.6 The definition of subregularity in Definition 3.1 (ii) is already of inclusion

type in the setting of the original space X. There is no need to consider the product

space Xm.

3.2 Examples

We next present examples illustrating that properties (i) and (ii) in Definition 3.1

are in general independent and none of these two properties implies property (iii) in

Definition 3.1.

Example 3.1 In the real plane R2 with the Euclidean norm, consider two sets

Ω1 = Ω2 := R× {0}

and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2. The collection {Ω1, Ω2} is subregular at x̄, while

it is not semiregular at this point.
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Proof In view of Remark 3.3, {Ω1, Ω2} is subregular at x̄. Observe also that

(Ω1 − (0,−ε)) ∩ (Ω2 − (0, ε)) = ∅ for any ε > 0. Hence, by (7) and (4), {Ω1, Ω2}
is not semiregular at x̄. ⊓⊔

Example 3.2 In the real plane R2 with the Euclidean norm, consider two sets

Ω1 :=
{
(u, v) ∈ R2 : u ≤ 0 or v ≥ u2

}
, Ω2 :=

{
(u, v) ∈ R2 : u ≤ 0 or v ≤ 0

}
and the point x̄ = (0, 0) ∈ Ω1 ∩Ω2. The collection {Ω1, Ω2} is semiregular at x̄, while

it is not subregular at this point.

Proof We first show that {Ω1, Ω2} is semiregular at x̄. For any number ρ > 0, we set

xρ := (−ρ, 0). Then Bρ(xρ) ⊆ Ωi, i.e., xρ + xi ∈ Ωi for any xi ∈ ρB (i = 1, 2), and

consequently

xρ ∈ (Ω1 − x1) ∩ (Ω2 − x2) ∩Bρ(x̄), ∀xi ∈ ρB (i = 1, 2).

Hence, θρ[{Ω1, Ω2}](x̄) ≥ ρ and θ[{Ω1, Ω2}](x̄) ≥ 1. (One can show that these are

actually equalities.) Thus, {Ω1, Ω2} is semiregular at x̄.

Suppose that inclusion (2) holds for some positive numbers α and δ and all ρ ∈]0, δ[.
Set ρn := 1

n and xn :=
(√

αρn, αρn
)
. Then xn ∈ (Ω1 + (αρn)B)

∩
(Ω2 + (αρn)B),

d(xn, Ω1
∩

Ω2) =
√
αρn and, for sufficiently large n, ρn < δ and xn ∈ Bδ(x̄). It

follows from (2) that
√
αρn ≤ ρn, and consequently α ≤ ρn. This yields α ≤ 0 which

contradicts the assumptions. Hence, {Ω1, Ω2} is not subregular at x̄. ⊓⊔

Example 3.3 In the real plane R2 with the Euclidean norm, consider two sets

Ω1 = Ω2 :=
{
(u, v) ∈ R2 : u ≤ 0 or v = 0

}
and the point x̄ = (0, 0) ∈ Ω1 ∩ Ω2. The collection {Ω1, Ω2} is both semiregular and

subregular at x̄, while it is not uniformly regular at this point.

Proof In view of Remark 3.3, {Ω1, Ω2} is subregular at x̄. Using the arguments from

the first part of Example 3.2, it is easy to check that the collection is semiregular at

x̄. We next show that {Ω1, Ω2} is not uniformly regular at this point. Indeed, for any

given numbers δ, α > 0, we find positive numbers ρ < r < δ and take

ωi = (r, 0)∈ Ωi ∩Bδ(x̄) (i = 1, 2), a1 = (0, αρ), a2 = (0,−αρ) ∈ αρB.

We have

(Ω1 − ω1 − a1)
∩

(Ω2 − ω2 − a2)
∩

(ρB) = {(u, v) ∈ R2 : u ≤ −r}
∩

(ρB) = ∅.

⊓⊔

The following example demonstrates that the constant θ[Ω](x̄) can take values

greater than one.
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Example 3.4 In the real plane R2 with the Euclidean norm, consider two sets

Ω1 := R2, Ω2 :=
{
(u, v) ∈ R2 : u−

√
3v ≥ 0 or u+

√
3v ≥ 0

}
and the point x̄ = (0, 0) ∈ Ω1 ∩Ω2. Then, θ[Ω](x̄) = 2 > 1.

Proof By the structure of the sets, we have

θρ[Ω](x̄) = sup{r ≥ 0 : (Ω2 − x)
∩

(ρB) ̸= ∅, ∀x ∈ rB}

= sup{r ≥ 0 : d(0, Ω2 − x) ≤ ρ, ∀x ∈ rB}

= sup{r ≥ 0 : d(x,Ω2) ≤ ρ, ∀x ∈ rB}

= sup{r ≥ 0 : max{d(x,Ω2) : x ∈ rB} ≤ ρ}

= sup{r ≥ 0 :
r

2
≤ ρ} = 2ρ.

The second last equality holds true since for any r > 0,

max{d(x,Ω2) : x ∈ rB} = d(xr, Ω2) =
r

2
,

where xr := (−r, 0).

Hence, by definition,

θ[Ω](x̄) = lim inf
ρ↓0

θρ[Ω](x̄)

ρ
= 2.

⊓⊔

3.3 Metric characterizations

The regularity properties of collections of sets in Definition 3.1 can also be characterized

in metric terms. The next proposition provides equivalent metric representations of

constants (4) – (6).

Proposition 3.3

θ[Ω](x̄) = lim inf
xi→0 (1≤i≤m)
x̄/∈

∩m
i=1(Ωi−xi)

max1≤i≤m ∥xi∥

d
(
x̄,
∩m

i=1(Ωi − xi)
) , (12)

ζ[Ω](x̄) = lim inf
x→x̄

x/∈
∩m

i=1 Ωi

max1≤i≤m d(x,Ωi)

d
(
x,
∩m

i=1 Ωi

) (13)

= lim inf
x→x̄

ωi
Ωi→x̄ (1≤i≤m)
x/∈

∩m
i=1 Ωi

max1≤i≤m ∥ωi − x∥

d
(
x,
∩m

i=1 Ωi

) ,

θ̂[Ω](x̄) = lim inf
x→x̄

xi→0 (1≤i≤m)
x/∈

∩m
i=1(Ωi−xi)

max1≤i≤m d(x+ xi, Ωi)

d
(
x,
∩m

i=1(Ωi − xi)
) (14)

= lim inf
x→x̄

xi→0, ωi
Ωi→x̄ (1≤i≤m)

x/∈
∩m

i=1(Ωi−xi)

max1≤i≤m ∥x+ xi − ωi∥

d
(
x,
∩m

i=1(Ωi − xi)
) .
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Proof Equality (12). Let ξ stand for the right-hand side of (12). Suppose that ξ > 0

and fix an arbitrary number γ ∈]0, ξ[. Then there is a number δ > 0 such that

γd

(
x̄,

m∩
i=1

(Ωi − xi)

)
≤ max

1≤i≤m
∥xi∥ , ∀xi ∈ δB (i = 1, . . . ,m). (15)

Choose a number α ∈]0, γ[ and set δ′ = δ
α . Then, for any ρ ∈]0, δ′[ and xi ∈ (αρ)B

(i = 1, . . . ,m), it holds max1≤i≤m ∥xi∥ ≤ αρ ≤ αδ′ = δ. Hence, (15) yields

d

(
x̄,

m∩
i=1

(Ωi − xi)

)
≤ 1

γ
max

1≤i≤m
∥xi∥ ≤ α

γ
ρ < ρ.

This implies (1) and consequently θ[Ω](x̄) ≥ α. Taking into account that α can be

arbitrarily close to ξ, we obtain θ[Ω](x̄) ≥ ξ.

Conversely, suppose that θ[Ω](x̄) > 0 and fix an arbitrary number α ∈]0, θ[Ω](x̄)[.

Then there is a number δ > 0 such that (1) is satisfied for all ρ ∈]0, δ[ and xi ∈ (αρ)B
(i = 1, . . . ,m). Choose a positive δ′ < αδ. For any xi ∈ δ′B (i = 1, . . . ,m), it holds

max1≤i≤m ∥xi∥ < αδ. Pick up a ρ ∈]0, δ[ such that max1≤i≤m ∥xi∥ = αρ. Then (1)

yields

αd

(
x̄,

m∩
i=1

(Ωi − xi)

)
≤ αρ = max

1≤i≤m
∥xi∥ .

This implies ξ ≥ α. Since α can be arbitrarily close to θ[Ω](x̄), we deduce ξ ≥ θ[Ω](x̄).

Equality (13). Let ξ stand for the right-hand side of (13). Suppose that ξ > 0 and

fix an arbitrary number α ∈]0, ξ[. Then there is a number δ > 0 such that

αd

(
x,

m∩
i=1

Ωi

)
≤ max

1≤i≤m
d(x,Ωi), ∀x ∈ Bδ(x̄).

If x ∈
∩m

i=1 (Ωi + (αρ)B)
∩

Bδ(x̄) for some ρ ∈]0, δ[, then max1≤i≤m d(x,Ωi) ≤ αρ,

and consequently d
(
x,
∩m

i=1 Ωi

)
≤ ρ, i.e., ζρ,δ[Ω](x̄) ≥ αρ. Hence, ζ[Ω](x̄) ≥ α. Since

α can be arbitrarily close to ξ, we obtain ζ[Ω](x̄) ≥ ξ.

Conversely, suppose that ζ[Ω](x̄) > 0 and fix any α ∈]0, ζ[Ω](x̄)[. Then there is

a number δ > 0 such that (2) is satisfied for all ρ ∈]0, δ[. Choose a positive number

δ′ < min{αδ, δ}. For any x ∈ Bδ′(x̄), it holds

max
1≤i≤m

d(x,Ωi) ≤ ∥x− x̄∥ ≤ δ′ < αδ.

Choose a ρ ∈]0, δ[ such that max1≤i≤m d(x,Ωi) = αρ. Then, by (2),

αd

(
x,

m∩
i=1

Ωi

)
≤ αρ = max

1≤i≤m
d(x,Ωi).

Hence, α ≤ ξ. By letting α → ζ[Ω](x̄), we obtain ζ[Ω](x̄) ≤ ξ.

Equality (14) has been proved in [12, Theorem 1]. ⊓⊔
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Propositions 3.1 and 3.3 imply equivalent metric characterizations of the regularity

properties of collections of sets.

Theorem 3.1 (i) Ω is semiregular at x̄ if and only if there exist positive numbers γ

and δ such that

γd

(
x̄,

m∩
i=1

(Ωi − xi)

)
≤ max

1≤i≤m
∥xi∥ , ∀xi ∈ δB (i = 1, . . . ,m). (16)

Moreover, θ[Ω](x̄) is the exact upper bound of all numbers γ such that (16) is

satisfied.

(ii) Ω is subregular at x̄ if and only if there exist positive numbers γ and δ such that

γd

(
x,

m∩
i=1

Ωi

)
≤ max

1≤i≤m
d(x,Ωi), ∀x ∈ Bδ(x̄). (17)

Moreover, ζ[Ω](x̄) is the exact upper bound of all numbers γ such that (17) is

satisfied.

(iii) Ω is uniformly regular at x̄ if and only if there exist positive numbers γ and δ such

that

γd

(
x,

m∩
i=1

(Ωi − xi)

)
≤ max

1≤i≤m
d(x+ xi, Ωi) (18)

for any x ∈ Bδ(x̄), xi ∈ δB (i = 1, . . . ,m). Moreover, θ̂[Ω](x̄) is the exact upper

bound of all numbers γ such that (18) is satisfied.

Remark 3.7 Property (17) in the above theorem (also known as local linear regularity,

linear coherence, ormetric inequality) has been around for more than 20 years; cf. [1–11,

32–37]. It has been used as a key condition when establishing linear convergence rates

of sequences generated by cyclic projection algorithms and a qualification condition

for subdifferential and normal cone calculus formulae. The stronger property (18) is

sometimes referred to as uniform metric inequality [12–14]. Property (16) seems to be

new.

4 Dual Characterizations

This section discusses dual characterizations of regularity properties of a collection

of sets Ω := {Ω1, . . . , Ωm} at x̄ ∈
∩m

i=1 Ωi. We are going to use the notation

Ω̂ := Ω1 × . . .×Ωm ⊂ Xm.

Recall that the (normalized) duality mapping [38, Definition 3.2.6] J between a

normed space Y and its dual Y ∗ is defined as

J(y) :=
{
y∗ ∈ SY ∗ : ⟨y∗, y⟩ = ∥y∥

}
, ∀y ∈ Y.

Note that J(−y) = −J(y).

The following simple fact of convex analysis is well known (cf., e.g., [39, Corol-

lary 2.4.16]).
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Lemma 4.1 Let (Y, ∥ · ∥) be a normed space.

(i) ∂∥ · ∥(y) = J(y) for any y ̸= 0.

(ii) ∂∥ · ∥(0) = B∗.

Making use of the convention that the topology in Xm is defined by the maximum

type norm, it is not difficult to establish a representation of the duality mapping on

Xm.

Proposition 4.1 For each (x1, . . . , xm) ∈ Xm,

J(x1, . . . , xm) =

{
(x∗1, . . . , x

∗
m) ∈ (X∗)m :

m∑
i=1

∥x∗i ∥ = 1; either x∗i = 0

or

(
∥xi∥ = max

1≤j≤m
∥xj∥, x∗i ∈ ∥x∗i ∥J(xi)

)
(i = 1, . . . ,m)

}
.

Proof Let x̂ := (x1, . . . , xm) ∈ Xm, x̂∗ := (x∗1, . . . , x
∗
m) ∈ (X∗)m. Then

∥x̂∥ = max
1≤i≤m

∥xi∥, ∥x̂∗∥ =

m∑
i=1

∥x∗i ∥, ⟨x̂∗, x̂⟩ =
m∑
i=1

⟨x∗i , xi⟩.

Suppose ∥x̂∗∥ = 1, i.e.,
∑m

i=1 ∥x
∗
i ∥ = 1. Then x̂∗ ∈ J(x̂) if and only

if
∑m

i=1⟨x
∗
i , xi⟩ = ∥x̂∥. In its turn, the last equality holds true if and only if

⟨x∗i , xi⟩ = ∥x∗i ∥ · ∥x̂∥ for all i = 1, . . . ,m.

Indeed, if ⟨x∗i , xi⟩ = ∥x∗i ∥ · ∥x̂∥ for all i = 1, . . . ,m, then adding these m

equalities, we obtain
∑m

i=1⟨x
∗
i , xi⟩ = ∥x̂∥. Conversely, if ⟨x∗i , xi⟩ ̸= ∥x∗i ∥ · ∥x̂∥, i.e.,

⟨x∗i , xi⟩ < ∥x∗i ∥ · ∥x̂∥ for some i ∈ {1, . . . ,m}, then

m∑
j=1

⟨x∗j , xj⟩ = ⟨x∗i , xi⟩+
∑
j ̸=i

⟨x∗j , xj⟩ < ∥x∗i ∥ · ∥x̂∥+ ∥x̂∥
∑
j ̸=i

∥x∗j∥ = ∥x̂∥.

Finally, ⟨x∗i , xi⟩ = ∥x∗i ∥·∥x̂∥ for some i ∈ {1, . . . ,m} if and only if either ∥xi∥ = ∥x̂∥
and x∗i ∈ ∥x∗i ∥J(xi) or x

∗
i = 0. ⊓⊔

In this section, along with the maximum type norm on Xm+1 = X ×Xm, we are

going to use another one depending on a parameter ρ > 0 and defined as follows:

∥(x, x̂)∥ρ := max {∥x∥ , ρ ∥x̂∥} , x ∈ X, x̂ ∈ Xm. (19)

It is easy to check that the corresponding dual norm has the following representation:∥∥(x∗, x̂∗)∥∥
ρ
= ∥x∗∥+ ρ−1∥x̂∗∥, x∗ ∈ X∗, x̂∗ ∈ (Xm)∗. (20)

Note that if, in (19) and (20), x̂ = (x1, . . . , xm) and x̂∗ = (x∗1, . . . , x
∗
m) with xi ∈ X

and x∗i ∈ X∗ (i = 1, 2, . . . ,m), then ∥x̂∥ = max1≤i≤m ∥xi∥ and ∥x̂∗∥ =
∑m

i=1 ∥x
∗
i ∥.

The next few facts of subdifferential calculus are used in the proof of the main

theorem below.
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Lemma 4.2 Let X be a normed space and φ(u, û) = ∥(u − u1, . . . , u − um)∥,
u ∈ X, û := (u1, . . . , um) ∈ Xm. Suppose x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, and

v̂ := (x− x1, . . . , x− xm) ̸= 0. Then

∂φ(x, x̂) ⊆
{(

x∗, x̂∗ = (x∗1, . . . , x
∗
m)
)
∈X∗ × (X∗)m :

− x̂∗ ∈ J(v̂), x∗ = −(x∗1 + . . .+ x∗m)
}
.

Proof Let (x∗, x̂∗ = (x∗1, . . . , x
∗
m)) ∈ ∂φ(x, x̂), i.e.,

∥(u− u1, . . . , u− um)∥ − ∥(x− x1, . . . , x− xm)∥ ≥ ⟨x∗, u− x⟩+
m∑
i=1

⟨x∗i , ui − xi⟩

for any u ∈ X and û := (u1, . . . , um) ∈ Xm. In particular, with u = x and ui = xi−x′i
(i = 1, . . . ,m) for an arbitrary x̂′ := (x′1, . . . , x

′
m) ∈ Xm, we have

∥v̂ + x̂′∥ − ∥v̂∥ ≥ −⟨x̂∗, x̂′⟩,

i.e., −x̂∗ ∈ J(v̂). Similarly, with u = x + x′ and ui = xi + x′ (i = 1, . . . ,m) for an

arbitrary x′ ∈ X, we have ⟨
x∗ +

m∑
i=1

x∗i , x
′
⟩

≤ 0,

and consequently x∗ + x∗1 + . . .+ x∗m = 0. ⊓⊔

Lemma 4.3 Let X be a normed space and ω̂ := (ω1, . . . , ωm) ∈ Ω̂. Then

N
Ω̂
(ω̂) = NΩ1

(ω1)× . . .×NΩm
(ωm).

Proof follows directly from the definition of the Fréchet normal cone. ⊓⊔

The proof of the main theorem of this section relies heavily on two fundamental

results of variational analysis: the Ekeland variational principle (Ekeland [40]; cf., e.g.,

[24, Theorem 2.1], [26, Theorem 2.26]) and the fuzzy (approximate) sum rule (Fabian

[41]; cf., e.g., [24, Rule 2.2], [26, Theorem 2.33]). Below we provide these results for

completeness.

Lemma 4.4 (Ekeland variational principle) Suppose X is a complete metric

space, and f : X → R∞ is lower semicontinuous and bounded from below, ε > 0, λ > 0.

If

f(v) < inf
X

f + ε,

then there exists x ∈ X such that

(a) d(x, v) < λ,

(b) f(x) ≤ f(v),

(c) f(u) + (ε/λ)d(u, x) ≥ f(x) for all u ∈ X.
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Lemma 4.5 (Fuzzy sum rule) Suppose X is Asplund, f1 : X → R is Lipschitz

continuous and f2 : X → R∞ is lower semicontinuous in a neighbourhood of x̄

with f2(x̄) < ∞. Then, for any ε > 0, there exist x1, x2 ∈ X with ∥xi − x̄∥ < ε,

|fi(xi)− fi(x̄)| < ε (i = 1, 2) such that

∂(f1 + f2)(x̄) ⊂ ∂f1(x1) + ∂f2(x2) + εB∗.

The next theorem gives dual sufficient conditions for regularity of collections of

sets.

Theorem 4.1 Let X be an Asplund space and Ω1, . . . , Ωm be closed.

(i) Ω is subregular at x̄ if there exist positive numbers α and δ such that, for any

ρ ∈]0, δ[, x ∈ Bρ(x̄), ωi ∈ Ωi ∩ Bρ(x) (i = 1, . . . ,m) with ωi ̸= x for some

i ∈ {1, . . . ,m}, there is an ε > 0 such that, for any x′ ∈ Bε(x), ω
′
i ∈ Ωi ∩ Bε(ωi),

x∗i ∈ NΩi
(ω′

i) + ρB∗ (i = 1, . . . ,m) satisfying

x∗i = 0 if
∥∥x′ − ω′

i

∥∥ < max
1≤j≤m

∥∥x′ − ω′
j

∥∥ ,
⟨x∗i , x′ − ω′

i⟩ ≥ ∥x∗i ∥(∥x′ − ω′
i∥ − ε),

m∑
i=1

∥x∗i ∥ = 1, (21)

it holds ∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ > α. (22)

(ii) Ω is uniformly regular at x̄ if and only if there are positive numbers α and δ such

that (22) holds true for all ωi ∈ Ωi ∩ Bδ(x̄) and x∗i ∈ NΩi
(ωi) (i = 1, . . . ,m)

satisfying (21).

The proof of Theorem 4.1 (i) consists of a series of propositions providing lower

estimates for constant (13) and, thus, sufficient conditions for subregularity of Ω which

can be of independent interest. Observe that constant (13) can be rewritten as

ζ[Ω](x̄) = liminf
x→x̄, ωi→x̄ (1≤i≤m)

ω̂=(ω1,...,ωm)
x/∈

∩m
i=1 Ωi

f(x, ω̂)

d
(
x,
∩m

i=1 Ωi

) (23)

with function f : Xm+1 → R∞ := R ∪ {+∞} defined as

f(x, x̂) = max
1≤i≤m

∥x− xi∥+ δ
Ω̂
(x̂), x ∈ X, x̂ := (x1, . . . , xm) ∈ Xm, (24)

where δ
Ω̂

is the indicator function of Ω̂: δ
Ω̂
(x̂) = 0 if x̂ ∈ Ω̂ and δ

Ω̂
(x̂) = +∞ otherwise.

Proposition 4.2 Let X be a Banach space and Ω1, . . . , Ωm be closed.
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(i) ζ̂[Ω](x̄) ≤ ζ[Ω](x̄), where

ζ̂[Ω](x̄) := lim
ρ↓0

inf
∥x−x̄∥<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
∥x−ωi∥<ρ

ζρ[Ω](x, ω̂) (25)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζρ[Ω](x, ω̂) := lim sup
(u,v̂)→(x,ω̂)
(u,v̂)̸=(x,ω̂)

v̂=(v1,...,vm)∈Ω̂

(
max

1≤i≤m
∥x− ωi∥ − max

1≤i≤m
∥u− vi∥

)
+

∥(u, v̂)− (x, ω̂)∥ρ
. (26)

(ii) If ζ̂[Ω](x̄) > 0, then Ω is subregular at x̄.

Proof (i) Let ζ[Ω](x̄) < α < ∞. Choose a ρ ∈]0, 1[ and set

η := min
{
ρ

2
,
ρ

α
, ρ

2
ρ

}
. (27)

By (23), there are x′ ∈ Bη(x̄) and ω̂′ = (ω′
1, . . . , ω

′
m) ∈ Ω̂ such that

0 < f(x′, ω̂′) < αd

(
x′,

m∩
i=1

Ωi

)
. (28)

Denote ε := f(x′, ω̂′) and µ := d
(
x′,
∩m

i=1 Ωi

)
. Then µ ≤

∥∥x′ − x̄
∥∥ ≤ η ≤ ρ

2 < 1.

Observe that f is lower semicontinuous. Applying to f Lemma 4.4 with ε as above and

λ := µ(1− µ
ρ

2−ρ ), (29)

we find points x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Xm such that∥∥(x, ω̂)− (x′, ω̂′)
∥∥
ρ
< λ, f(x, ω̂) ≤ f(x′, ω̂′), (30)

and

f(u, v̂) +
ε

λ
∥(u, v̂)− (x, ω̂)∥ρ ≥ f(x, ω̂), (31)

for all (u, v̂) ∈ X ×Xm. Thanks to (30), (29), (27), and (28), we have∥∥x− x′
∥∥ < λ < µ ≤

∥∥x′ − x̄
∥∥ ,

d

(
x,

m∩
i=1

Ωi

)
≥ d

(
x′,

m∩
i=1

Ωi

)
−
∥∥x− x′

∥∥ ≥ µ− λ = µ
2

2−ρ , (32)

∥x− x̄∥ ≤
∥∥x− x′

∥∥+ ∥∥x′ − x̄
∥∥ < 2

∥∥x′ − x̄
∥∥ ≤ 2η ≤ ρ, (33)

f(x, ω̂) ≤ f(x′, ω̂′) < αµ ≤ αη ≤ ρ. (34)

It follows from (32), (33), and (34) that

∥x− x̄∥ < ρ, ω̂ ∈ Ω̂, 0 < max
1≤i≤m

∥x− ωi∥ < ρ.
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Observe that µ
ρ

2−ρ ≤ η
ρ

2−ρ < η
ρ
2 ≤ ρ, and consequently, by (28) and (29),

ε

λ
<

αµ

λ
=

α

1− µ
ρ

2−ρ

<
α

1− ρ
.

Thanks to (31) and (24), we have

max
1≤i≤m

∥x− ωi∥ − max
1≤i≤m

∥u− vi∥ ≤ α

1− ρ
∥(u, v̂)− (x, ω̂)∥ρ

for all u ∈ X and v̂ = (v1, . . . , vm) ∈ Ω̂. It follows that ζρ[Ω](x, ω̂) ≤ α

1− ρ
and

consequently

inf
∥x−x̄∥<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
∥x−ωi∥<ρ

ζρ[Ω](x, ω̂) ≤ α

1− ρ
.

Taking limits in the last inequality as ρ ↓ 0 and α → ζ[Ω](x̄) yields the claimed

inequality.

(ii) follows from (i) and Proposition 3.1 (ii). ⊓⊔

Proposition 4.3 Let X be an Asplund space and Ω1, . . . , Ωm be closed.

(i) ζ̂∗1 [Ω](x̄) ≤ ζ̂[Ω](x̄), where ζ̂[Ω](x̄) is given by (25),

ζ̂∗1 [Ω](x̄) := lim
ρ↓0

inf
∥x−x̄∥<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
∥x−ωi∥<ρ

ζ∗ρ,1[Ω](x, ω̂) (35)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂,

ζ∗ρ,1[Ω](x, ω̂) := inf
(x∗,ŷ∗)∈∂f(x,ω̂)

∥ŷ∗∥<ρ

∥∥x∗∥∥ (36)

(with the convention that the infimum over the empty set equals +∞).

(ii) If ζ̂∗1 [Ω](x̄) > 0, then Ω is subregular at x̄.

Proof Let ζ̂[Ω](x̄) < α < ∞. Choose a β ∈]ζ̂[Ω](x̄), α[ and an arbitrary ρ > 0.

Set ρ′ = min{1, α−1}ρ. By (25) and (26), one can find points x ∈ X and

ω̂ = (ω1, . . . , ωm) ∈ Ω̂ such that ∥x− x̄∥ < ρ′, 0 < max1≤i≤m ∥ωi − x∥ < ρ′, and

max
1≤i≤m

∥x− ωi∥ − max
1≤i≤m

∥u− vi∥ ≤ β ∥(u, v̂)− (x, ω̂)∥ρ′

for all (u, v̂) with v̂ = (v1, . . . , vm) ∈ Ω̂ near (x, ω̂). In other words, (x, ω̂) is a local

minimizer of the function

(u, v̂) 7→ max
1≤i≤m

∥u− vi∥+ β ∥(u, v̂)− (x, ω̂)∥ρ′

subject to v̂ = (v1, . . . , vm) ∈ Ω̂. By definition (24), this means that (x, ω̂) minimizes

locally the function

(u, v̂) 7→ f(u, v̂) + β ∥(u, v̂)− (x, ω̂)∥ρ′ ,
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and consequently its Fréchet subdifferential at (x, ω̂) contains zero. Take an

ε ∈
]
0,min{ρ− ∥x− x̄∥ , ρ− max

1≤i≤m
∥x− ωi∥ , α− β}

[
.

Applying Lemma 4.5 and Lemma 4.1 (ii), we can find points x′ ∈ X,

ω̂′ = (ω′
1, . . . , ω

′
m) ∈ Ω̂, and (x∗, ŷ∗) ∈ ∂f(x′, ω̂′) such that∥∥x′ − x

∥∥ < ε, 0 < max
1≤i≤m

∥∥x′ − ω′
i

∥∥ ≤ max
1≤i≤m

∥x− ωi∥+ ε,

and
∥∥(x∗, ŷ∗)∥∥

ρ′ = ∥x∗∥+ ∥ŷ∗∥/ρ′ < β + ε.

It follows that∥∥x′ − x̄
∥∥ < ρ, 0 < max

1≤i≤m

∥∥x′ − ω′
i

∥∥ < ρ,
∥∥x∗∥∥ < α, and

∥∥ŷ∗∥∥ < ρ′α ≤ ρ.

Hence, ζ∗ρ,1[Ω](x′, ω̂′) < α, and consequently ζ̂∗1 [Ω](x̄) < α. By letting α → ζ̂[Ω](x̄),

we obtain the claimed inequality.

(ii) follows from (i) and Proposition 4.2 (ii). ⊓⊔

Proposition 4.4 Let X be an Asplund space and Ω1, . . . , Ωm be closed.

(i) ζ̂∗2 [Ω](x̄) ≤ ζ̂∗1 [Ω](x̄), where ζ̂∗1 [Ω](x̄) is given by (35),

ζ̂∗2 [Ω](x̄) := lim
ρ↓0

inf
∥x−x̄∥<ρ

ω̂=(ω1,...,ωm)∈Ω̂
0< max

1≤i≤m
∥x−ωi∥<ρ

lim
ε↓0

inf
∥x′−x∥<ε

ω̂′∈Ω̂
∥ω̂′−ω̂∥<ε

ζ∗ρ,ε,2[Ω](x′, ω̂′) (37)

and, for x ∈ X and ω̂ = (ω1, . . . , ωm) ∈ Ω̂ with (x− ω1, . . . , x− ωm) ̸= 0,

ζ∗ρ,ε,2[Ω](x, ω̂) := inf

{∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥ :x∗i ∈ NΩi
(ωi) + ρB∗ (i = 1, . . . ,m),

x∗i = 0 if ∥x− ωi∥ < max
1≤j≤m

∥∥x− ωj

∥∥ ,
⟨x∗i , x− ωi⟩ ≥ ∥x∗i ∥(∥x− ωi∥ − ε),

m∑
i=1

∥x∗i ∥ = 1

}
. (38)

(ii) If ζ̂∗2 [Ω](x̄) > 0, then Ω is subregular at x̄.

Proof (i) Let ρ > 0, x ∈ X, ω̂ := (ω1, . . . , ωm) ∈ Ω̂ with ∥x − x̄∥ < ρ,

0 < max1≤i≤m ∥x− ωi∥ < ρ, (u∗, v̂∗) ∈ ∂f(x, ω̂), where f is given by (24), and

∥v̂∗∥ < ρ. Denote v̂ := (x−ω1, . . . , x−ωm). Then 0 < ∥v̂∥ < ρ. Observe that function

f is the sum of two functions on Xm+1:

(x, x̂) 7→ φ(x, x̂) := ∥(x− x1, . . . , x− xm)∥ and (x, x̂) 7→ δ
Ω̂
(x̂),

where x̂ := (x1, . . . , xm) and δ
Ω̂

is the indicator function of Ω̂. The first function

is Lipschitz continuous while the second one is lower semicontinuous. One can apply
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Lemma 4.5. For any ε > 0, there exist points x′ ∈ X, x̂ := (x1, . . . , xm) ∈ Xm,

ω̂′ := (ω′
1, . . . , ω

′
m) ∈ Ω̂, (x∗, ŷ∗) ∈ ∂φ(x′, x̂), and ω̂∗ ∈ N

Ω̂
(ω̂′) such that

∥x′ − x∥ < ε, ∥x̂− ω̂∥ <
ε

4
, ∥ω̂′ − ω̂∥ <

ε

4
,

∥(u∗, v̂∗)− (x∗, ŷ∗)− (0, ω̂∗)∥ < ε. (39)

Taking a smaller ε if necessary, one can ensure that v̂′ := (x′ − ω′
1, . . . , x

′ − ω′
m) ̸= 0,

v̂′′ := (x′ − x1, . . . , x
′ − xm) ̸= 0, ∥v̂∗∥ + ε < ρ and, for any i = 1, . . . ,m,∥∥x′ − xi

∥∥ < max1≤j≤m

∥∥x′ − xj
∥∥ if and only if

∥∥x′ − ω′
i

∥∥ < max1≤j≤m

∥∥x′ − ω′
j

∥∥. By
Lemma 4.2,

x̂∗ := −ŷ∗ ∈ J(v̂′′) and x∗ = x∗1 + . . .+ x∗m,

where x̂∗ = (x∗1, . . . , x
∗
m). By Proposition 4.1,

m∑
i=1

∥x∗i ∥ = 1,

x∗i = 0 if
∥∥x′ − ω′

i

∥∥ < max
1≤j≤m

∥∥x′ − ω′
j

∥∥ ,
⟨x∗i , x

′ − ω′
i⟩ ≥ ⟨x∗i , x

′ − xi⟩ − ∥x∗i ∥ ∥xi − ω′
i∥ = ∥x∗i ∥(∥x

′ − xi∥ − ∥xi − ω′
i∥)

≥ ∥x∗i ∥(∥x
′ − ω′

i∥ − 2∥xi − ω′
i∥) ≥ ∥x∗i ∥(∥x

′ − ω′
i∥ − ε) (i = 1, . . . ,m).

Inequality (39) yields the estimates: ∥u∗∥ > ∥x∗∥ − ε, ∥x̂∗ − ω̂∗∥ < ∥v̂∗∥+ ε < ρ, and

consequently

∥u∗∥ >

∥∥∥∥∥
m∑
i=1

x∗i

∥∥∥∥∥− ε, x̂∗ ∈ N
Ω̂
(ω̂′) + ρB∗

m.

It follows from Lemma 4.3 and definitions (36) and (38) that

ζ∗ρ,1[Ω](x, ω̂) ≥ ζ∗ρ,ε,2[Ω](x′, ω̂′)− ε.

The claimed inequality is a consequence of the last one and definitions (35) and (37).

(ii) follows from (i) and Proposition 4.3 (ii). ⊓⊔

Proof of Theorem 4.1 (i) follows from Proposition 4.4 (ii) and definitions (37) and (38).

(ii) is a consequence of [14, Theorem 4]. ⊓⊔

Remark 4.1 One of the main tools in the proof of Theorem 4.1 is the fuzzy sum rule

(Lemma 4.5) for Fréchet subdifferentials in Asplund spaces. The statements can be

extended to general Banach spaces. For that, one has to replace Fréchet subdifferentials

(and normal cones) with some other kind of subdifferentials satisfying a certain set of

natural properties including the sum rule (not necessarily fuzzy) – cf. [15, p. 345].

If the sets Ω1, . . .Ωm are convex or the norm of X is Fréchet differentiable away

from 0, then the fuzzy sum rule can be replaced in the proof by either the convex sum

rule (Moreau–Rockafellar formula) or the simple (exact) differentiable rule (see, e.g.,

[24, Corollary 1.12.2]), respectively, to produce dual sufficient conditions for regularity

of collections of sets in general Banach spaces in terms of either normals in the sense

of convex analysis or Fréchet normals.
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Remark 4.2 Since uniform regularity is a stronger property than subregularity (Re-

mark 3.1), the criterion in part (ii) of Theorem 4.1 is also sufficient for the subregularity

of the collection of sets in part (i).

The next example illustrates application of Theorem 4.1 (i) for detecting subregu-

larity of collections of sets.

Example 4.1 Consider the collection {Ω,Ω} of two copies of the set Ω := R× {0}
in the real plane R2 with the Euclidean norm (cf. Example 3.1) and the point

x̄ = (0, 0) ∈ Ω.

Obviously NΩ(ω) = {0} ×R for any ω ∈ Ω. If x∗1 := (a1, b1) ∈ NΩ(ω′
1) + ρB∗ and

x∗2 := (a2, b2) ∈ NΩ(ω′
2) + ρB∗ for some ω′

1, ω
′
2 ∈ Ω, then |a1| ≤ ρ and |a2| ≤ ρ.

Take any positive numbers α and δ such that α2 + 2δ2 < 1 and any ρ ∈]0, δ[. Let
ω1, ω2 ∈ Ω, x ∈ R2, v̂ := (ω1 − x, ω2 − x) ∈ R4 \ {0}. Because of the definition of Ω, v̂

has the following representation: v̂ = (v1, v, v3, v).

If v = 0, then ξ := v21 + v23 > 0. Choose an ε > 0 such that

(max{|v1| − ε, 0})2 + (max{|v3| − ε, 0})2 > ξ/2 and 4ε2/ξ < α2.

There are no pairs x∗1, x∗2 satisfying the conditions of Theorem 4.1 (i). Indeed, if

v̂′ := (v′1, v
′
2, v

′
3, v

′
4) ∈ Bε(v̂), then |v′2| ≤ ε, |v′4| ≤ ε, and ∥v̂′∥2 ≥ |v′1|2 + |v′3|2 > ξ/2.

If (x∗1, x
∗
2) ∈ J(v̂′), then (x∗1, x

∗
2) = v̂′/∥v̂′∥. Hence, b21 + b22 ≤ 2ε2/∥v̂′∥2 < 4ε2/ξ < α2

and consequently ∥(x∗1, x∗2)∥ < α2 + 2δ2 < 1; a contradiction.

If v ̸= 0, then we choose an ε ∈ (0, |v|). If v̂′ ∈ Bε(v̂) and (x∗1, x
∗
2) ∈ J(v̂′), then b1

and b2 have the same sign as v and b21 + b22 ≥ 1− 2δ2. Hence,

∥x∗1 + x∗2∥2 = (a1 + a2)
2 + (b1 + b2)

2 ≥ (b1 + b2)
2 ≥ b21 + b22 > α2.

By Theorem 4.1 (i), the collection {Ω,Ω} is subregular at x̄.

5 Regularity of Set-Valued Mappings

In this section, we present relationships between regularity properties of collections

of sets and the corresponding properties of set-valued mappings, which have been

intensively investigated; cf., e.g., [14,26,27,33,42–45].

Consider a set-valued mapping F : X ⇒ Y between metric spaces and a point

(x̄, ȳ) ∈ gphF := {(x, y) ∈ X × Y : y ∈ F (x)}.

Definition 5.1 (i) F ismetrically semiregular at (x̄, ȳ) iff there exist positive numbers

γ and δ such that

γd
(
x̄, F−1(y)

)
≤ d(y, ȳ), ∀y ∈ Bδ(ȳ). (40)

The exact upper bound of all numbers γ such that (40) is satisfied will be denoted

by θ[F ](x̄, ȳ).
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(ii) F is metrically subregular at (x̄, ȳ) iff there exist positive numbers γ and δ such

that

γd
(
x, F−1(ȳ)

)
≤ d(ȳ, F (x)), ∀x ∈ Bδ(x̄). (41)

The exact upper bound of all numbers γ such that (41) is satisfied will be denoted

by ζ[F ](x̄, ȳ).

(iii) F is metrically regular at (x̄, ȳ) iff there exist positive numbers γ and δ such that

γd
(
x, F−1(y)

)
≤ d (y, F (x)) , ∀(x, y) ∈ Bδ(x̄, ȳ). (42)

The exact upper bound of all numbers γ such that (42) is satisfied will be denoted

by θ̂[F ](x̄, ȳ).

Remark 5.1 Property (ii) and especially property (iii) in Definition 5.1 are very well

known and widely used in variational analysis; see, e.g., [14,26,27,33,42–48]. Property

(i) was introduced in [14]. In [49,50], it is referred to as metric hemiregularity.

For a collection of sets Ω := {Ω1, . . . , Ωm} in a normed linear space X, one can

consider set-valued mapping F : X ⇒ Xm defined by (cf. [33, Proposition 5], [12,

Theorem 3], [13, Proposition 8], [21, p. 491], [19, Proposition 33])

F (x) := (Ω1 − x)× . . .× (Ωm − x), ∀x ∈ X.

It is easy to check that, for x ∈ X and u = (u1, . . . , um) ∈ Xm, it holds

x ∈
m∩
i=1

Ωi ⇐⇒ 0 ∈ F (x), F−1(u) =

m∩
i=1

(Ωi − ui).

The next proposition is a consequence of Theorem 3.1.

Proposition 5.1 Consider Ω and F as above and a point x̄ ∈
∩m

i=1 Ωi.

(i) Ω is semiregular at x̄ if and only if F is metrically semiregular at (x̄, 0). Moreover,

θ[Ω](x̄) = θ[F ](x̄, 0).

(ii) Ω is subregular at x̄ if and only if F is metrically subregular at (x̄, 0). Moreover,

ζ[Ω](x̄) = ζ[F ](x̄, 0).

(iii) Ω is uniformly regular at x̄ if and only if F is metrically regular at (x̄, 0). Moreover,

θ̂[Ω](x̄) = θ̂[F ](x̄, 0).

Remark 5.2 Assertion (iii) was proved in [13, Proposition 8] (see also [12, Theorem

3] and [21, p. 491]). The equivalence of subregularity of Ω and metric subregularity

of F has been established by Hesse and Luke in Proposition 33 (ii) of their recent

preprint [19]. This proposition has not been included in the final version of their article

which appeared in [20].
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Conversely, regularity properties of set-valued mappings between normed linear

spaces can be treated as realizations of the corresponding regularity properties of cer-

tain collections of two sets.

For a given set-valued mapping F : X ⇒ Y between normed linear spaces and a

point (x̄, ȳ) ∈ gphF , one can consider the collection Ω of two sets Ω1 = gphF and

Ω2 = X × {ȳ} in X × Y . It is obvious that (x̄, ȳ) ∈ Ω1 ∩Ω2.

Theorem 5.1 Consider F and Ω as above.

(i) F is metrically semiregular at (x̄, ȳ) if and only if Ω is semiregular at (x̄, ȳ). More-

over,
θ[F ](x̄, ȳ)

θ[F ](x̄, ȳ) + 2
≤ θ[Ω](x̄, ȳ) ≤ θ[F ](x̄, ȳ)/2. (43)

(ii) F is metrically subregular at (x̄, ȳ) if and only if Ω is subregular at (x̄, ȳ). Moreover,

ζ[F ](x̄, ȳ)

ζ[F ](x̄, ȳ) + 2
≤ ζ[Ω](x̄, ȳ) ≤ min{ζ[F ](x̄, ȳ)/2, 1}. (44)

(iii) F is metrically regular at (x̄, ȳ) if and only if Ω is uniformly regular at (x̄, ȳ).

Moreover,

θ̂[F ](x̄, ȳ)

θ̂[F ](x̄, ȳ) + 2
≤ θ̂[Ω](x̄, ȳ) ≤ min{θ̂[F ](x̄, ȳ)/2, 1}. (45)

Proof (i) Suppose F is metrically semiregular at (x̄, ȳ), i.e., θ[F ](x̄, ȳ) > 0. Fix a

γ ∈]0, θ[F ](x̄, ȳ)[. Then there exists a number δ′ > 0 such that (40) is satisfied for all

y ∈ Bδ′(ȳ). Take any α > 0 satisfying 2α/γ + α < 1, and a δ := δ′

2α . We are going to

check that

(Ω1 − (u1, v1))
∩

(Ω2 − (u2, v2))
∩

Bρ(x̄, ȳ) ̸= ∅ (46)

for all ρ ∈]0, δ[ and (u1, v1), (u2, v2) ∈ (αρ)B. Indeed, take any ρ ∈]0, δ[ and

(u1, v1), (u2, v2) ∈ (αρ)B. We need to find a point (x, y) ∈ Bρ(x̄, ȳ) satisfying{
(x, y) + (u1, v1) ∈ gphF,

y = ȳ − v2.

We set y′ := ȳ − v2 + v1, so y′ ∈ Bδ′(ȳ) as ∥y′ − ȳ∥ = ∥v1 − v2∥ ≤ 2αρ < 2αδ = δ′.

Then there is, by (40), an x′ ∈ F−1(y′) such that

∥x̄− x′∥ ≤ 1

γ
∥ȳ − y′∥.

Put y := y′ − v1 = ȳ − v2 and x := x′ − u1. Then it holds

(x, y) + (u1, v1) = (x′, y′) ∈ gphF, ∥y − ȳ∥ = ∥v2∥ ≤ αρ < ρ,

and

∥x− x̄∥ ≤ ∥x− x′∥+ ∥x′ − x̄∥ ≤ ∥u1∥+
1

γ
∥ȳ − y′∥

= ∥u1∥+
1

γ
∥v1 − v2∥ ≤ (2α/γ + α)ρ < ρ.
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Hence, (46) is proved.

The above reasoning also yields the first inequality in (43).

To prove the inverse implication, we suppose Ω is semiregular at (x̄, ȳ), i.e.,

θ[Ω](x̄, ȳ) > 0. Fix an α ∈]0, θ[Ω](x̄, ȳ)[. Then there exists a δ′ > 0 such that

(46) holds true for all ρ ∈]0, δ′[ and (u1, v1), (u2, v2) ∈ (αρ)B. Set γ := 2α and

δ < αδ′. We are going to check that (40) is satisfied. Take any y ∈ Bδ(ȳ), i.e.,

∥y − ȳ∥ ≤ δ < αδ′. Set r ∈]0, δ′[ such that ∥y − ȳ∥ = αr. Then, applying (46) for

(u1, v1) :=
(
0, y−ȳ

2

)
, (u2, v2) =:

(
0, ȳ−y

2

)
∈
(
α r

2

)
B, we can find (x1, y1) ∈ gphF and

(x2, ȳ) ∈ Ω2 satisfying

(x1, y1)− (u1, v1) = (x2, ȳ)− (u2, v2) ∈ B r
2
(x̄, ȳ).

This implies that y1 = y, x1 ∈ F−1(y) and

∥x1 − x̄∥ ≤ r

2
=

1

2α
∥y − ȳ∥ =

1

γ
∥y − ȳ∥.

Hence, (40) holds true.

The last reasoning also yields the second inequality in (43).

(ii) Suppose F is metrically subregular at (x̄, ȳ), i.e., ζ[F ](x̄, ȳ) > 0. Fix a

γ ∈]0, ζ[F ](x̄, ȳ)[. Then there exists δ′ > 0 such that (41) is satisfied for all x ∈ Bδ′(x̄).

Take an α > 0 satisfying 2α/γ + α < 1, and a δ := δ′

α+1 . We are going to check that

(Ω1 + (αρ)B)
∩

(Ω2 + (αρ)B)
∩

Bδ(x̄, ȳ) ⊆ Ω1 ∩Ω2 + ρB (47)

for all ρ ∈]0, δ[. Indeed, take any

(x, y) ∈ (Ω1 + (αρ)B)
∩

(Ω2 + (αρ)B)
∩

Bδ(x̄, ȳ).

Then (x, y) = (x1, y1)+(u1, v1) = (x2, ȳ)+(u2, v2) for some (x1, y1) ∈ gphF , x2 ∈ X,

and (u1, v1), (u2, v2) ∈ (αρ)B. Since

∥x1 − x̄∥ ≤ ∥u1∥+ ∥x− x̄∥ ≤ αρ+ δ < (α+ 1)δ = δ′,

by (41), there exists an x′ ∈ F−1(ȳ) such that ∥x1 − x′∥ ≤ 1
γ d(ȳ, F (x1)) ≤ 1

γ ∥ȳ− y1∥.
Then ∥∥x1 − x′ + u1

∥∥ ≤ 1

γ
∥ȳ − y1∥+ ∥u1∥ =

1

γ
∥v1 − v2∥+ ∥u1∥

≤2αρ

γ
+ αρ =

(
2

γ
+ 1
)
αρ < ρ,

∥v2∥ ≤αρ < ρ.

Hence, (x, y) = (x′, ȳ) + (x1 − x′ + u1, v2) ∈ Ω1 ∩Ω2 + ρB.
The above reasoning also yields the first inequality in (44).

To prove the inverse implication, we suppose that Ω is subregular at (x̄, ȳ), i.e.,

ζ[Ω](x̄, ȳ) > 0. Fix an α ∈]0, ζ[Ω](x̄, ȳ)[. Then there exists a δ′ > 0 such that (47) holds

true for all ρ ∈]0, δ′[. Set γ := 2α > 0 and δ := min
{
δ′, γδ′, 2δ

′

γ

}
. We are going to
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check that (41) holds true. Take any x ∈ Bδ(x̄). Because d(x, F−1(ȳ)) ≤ ∥x− x̄∥ ≤ δ,

it is sufficient to consider the case 0 < d(ȳ, F (x)) < γδ. We choose a y ∈ F (x) such

that d(ȳ, F (x)) ≤ ∥y − ȳ∥ := r < γδ. Then(
x,

y + ȳ

2

)
= (x, y) +

(
0,

ȳ − y

2

)
= (x, ȳ) +

(
0,

y − ȳ

2

)
,
∥∥∥ ȳ − y

2

∥∥∥ =
r

2
< δ′,

and consequently(
x,

y + ȳ

2

)
∈
(
Ω1 +

r

2
B
)∩(

Ω2 +
r

2
B
)∩

Bδ′(x̄, ȳ). (48)

Take ρ := r
2α < δ ≤ δ′. Then r

2 = αρ, and it follows from (47) and (48) that(
x,

y + ȳ

2

)
∈ Ω1 ∩Ω2 +

r

2α
B = F−1(ȳ)× {ȳ}+ ∥y − ȳ∥

γ
B.

Hence, there is an x′ ∈ F−1(ȳ) such that

∥x− x′∥ ≤ 1

γ
∥y − ȳ∥.

Taking infimum in the last inequality over x′ ∈ F−1(ȳ) and y ∈ F (x), we arrive at

(41).

The last reasoning together with ζ[Ω](x̄, ȳ) ≤ 1, in view of (13), yields the second

inequality in (44).

(iii) Suppose F is metrically regular at (x̄, ȳ), i.e., θ̂[F ](x̄, ȳ) > 0. Fix a

γ ∈]0, θ̂[F ](x̄, ȳ)[. Then there exists a δ′ > 0 such that (42) is satisfied for all

(x, y) ∈ Bδ′(x̄, ȳ). Take an α > 0 satisfying 2α/γ + α < 1, and a δ := δ′

2α+1 . We

are going to check that

(Ω1 − (x1, y1)− (u1, v1))
∩

(Ω2 − (x2, ȳ)− (u2, v2))
∩

(ρB) ̸= ∅ (49)

for all ρ ∈]0, δ[, (x1, y1) ∈ Ω1 ∩ Bδ(x̄, ȳ), x2 ∈ Bδ(x̄), and (u1, v1), (u2, v2) ∈ (αρ)B.
Take any such ρ, (x1, y1), x2, (u1, v1), and (u2, v2). We need to find (a, b) ∈ ρB satisfying{

(x1, y1) + (u1, v1) + (a, b) ∈ gphF,

b = −v2.

We set y′ = y1 − v2 + v1, so y′ ∈ Bδ′(ȳ) as

∥y′ − ȳ∥ ≤ ∥y′ − y1∥+ ∥y1 − ȳ∥ ≤ ∥v1 − v2∥+ δ ≤ 2αρ+ δ < (2α+ 1)δ = δ′.

Then, applying (42) for (x1, y
′) ∈ Bδ′(x̄, ȳ), we find x′ ∈ F−1(y′) such that

∥x1 − x′∥ ≤ 1

γ
d(y′, F (x1)) ≤

1

γ
∥y′ − y1∥ =

1

γ
∥v1 − v2∥ ≤ 2αρ

γ
.

Put a = x′ − x1 − u1 and b = −v2. Then ∥a∥ ≤ ∥x′ − x1∥+ ∥u1∥ ≤ (2α/γ + α)ρ < ρ,

∥b∥ ≤ αρ < ρ, and it holds (x1, y1) + (u1, v1) + (a, b) = (x′, y′) ∈ gphF .

Hence, (49) is proved.

The above reasoning also yields the first inequality in (45).
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To prove the inverse implication, we suppose that Ω is uniformly regular at (x̄, ȳ),

i.e., θ̂[Ω](x̄, ȳ) > 0. Fix an α ∈]0, θ̂[Ω](x̄, ȳ)[. Then there exists a δ′ > 0 such that

(49) holds true for all ρ ∈]0, δ′[, (x1, y1) ∈ Ω1 ∩ Bδ′(x̄, ȳ), x2 ∈ Bδ′(x̄), and (u1, v1),

(u2, v2) ∈ (αρ)B. Set γ := 2α > 0. Because θ[Ω](x̄, ȳ) ≥ θ̂[Ω](x̄, ȳ) (see Remark 3.5), as-

sertion (i) implies that there exists a δ∗ > 0 such that (40) is satisfied for all y ∈ Bδ∗(ȳ).

Set

δ := min

{
δ∗,

δ′

2α+ 2
,

αδ′

2α+ 1

}
> 0. (50)

Now take any (x, y) ∈ Bδ(x̄, ȳ). We are going to check that (42) is satisfied. Because

(40) implies

γd(x, F−1(y)) ≤ γ∥x− x̄∥+ γd(x̄, F−1(y)) ≤ γδ + ∥y − ȳ∥ ≤ (γ + 1)δ,

it suffices to consider the case d(y, F (x)) < (γ + 1)δ ≤ αδ′. Choose a y′ ∈ F (x) such

that

d(y, F (x)) ≤ ∥y − y′∥ < (γ + 1)δ,

and set r ∈]0, δ′[ such that ∥y − y′∥ = αr < αδ′. Then

∥y′ − ȳ∥ ≤ ∥y′ − y∥+ ∥y − ȳ∥ < (2α+ 2)δ ≤ δ′

due to (50). Applying (49) with

(x1, y1) := (x, y′) ∈ gphF ∩Bδ′(x̄, ȳ), (x2, y2) := (x̄, ȳ),

(u1, v1) :=

(
0,

y − y′

2

)
, (u2, v2) =:

(
0,

y′ − y

2

)
∈
(
α
r

2

)
B,

we can find (x̃, ỹ) ∈ gphF and (z, ȳ) ∈ Ω2 satisfying

(x̃, ỹ)− (x1, y1)− (u1, v1) = (z, ȳ)− (x2, ȳ)− (u2, v2) ∈
r

2
B.

This implies x̃− x1 ∈ r
2B and ỹ = y1 + v1 − v2 = y, so x̃ ∈ F−1(y). Then we obtain

d(x, F−1(y)) ≤ ∥x− x̃∥ ≤ r

2
=

1

2α
∥y − y′∥ =

1

γ
∥y − y′∥.

Taking infimum in the last inequality over y′ ∈ F (x), we arrive at (42).

The last reasoning together with θ̂[Ω](x̄, ȳ) ≤ 1, in view of (14), yields the second

inequality in (45). ⊓⊔

Remark 5.3 The equivalences stated in Theorem 5.1 (i) and (iii) has been proved in [14,

Theorem 7] by using some auxiliary set-valued mapping. The first inequalities in (43)

and (45) improve the corresponding estimates given in the aforementioned reference

because it is always true that

1

2
min{θ[F ](x̄, ȳ)/2, 1} ≤ θ[F ](x̄, ȳ)

θ[F ](x̄, ȳ) + 2
,

1

2
min{θ̂[F ](x̄, ȳ)/2, 1} ≤ θ̂[F ](x̄, ȳ)

θ̂[F ](x̄, ȳ) + 2
.

Statement (ii) in Theorem 5.1 seems to be new.
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6 Conclusions

In this article, we continue investigating regularity properties of collections of sets in

normed linear spaces.

We systematically examine three closely related primal space local regularity prop-

erties: semiregularity, subregularity, and uniform regularity and their quantitative char-

acterizations. In Theorem 3.1, we establish equivalent metric characterizations of the

three mentioned properties and demonstrate, in particular, the equivalence of subreg-

ularity and another important property, usually referred to as local linear regularity.

In Theorem 4.1 (i), in the Asplund space setting, we give a new dual space sufficient

condition of subregularity in terms of Fréchet normals. The proof of this theorem

consists of a series of propositions providing other (primal and dual space) sufficient

conditions of subregularity which can be of independent interest.

We present also relationships between the mentioned regularity properties of collec-

tions of sets and the corresponding regularity properties of set-valued mappings which,

in particular, explain the terminology adopted in this article.

The definitions and characterizations of the regularity properties of collections of

sets discussed in this article can be extended to the more general Hölder type setting

– cf. [51].
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9. Ngai H. V., Théra M.: Metric inequality, subdifferential calculus and applications. Set-

Valued Anal. 9, 187–216 (2001)



24

10. Zheng X. Y., Ng K. F.: Linear regularity for a collection of subsmooth sets in Banach

spaces. SIAM J. Optim. 19, 62–76 (2008)

11. Zheng X. Y., Wei Z., Yao J.-C.: Uniform subsmoothness and linear regularity for a collec-

tion of infinitely many closed sets. Nonlinear Anal. 73, 413–430 (2010)

12. Kruger A. Y.: Stationarity and regularity of set systems. Pac. J. Optim. 1, 101–126 (2005)

13. Kruger A. Y.: About regularity of collections of sets. Set-Valued Anal. 14, 187–206 (2006)

14. Kruger A. Y.: About stationarity and regularity in variational analysis. Taiwanese J. Math.

13, 1737–1785 (2009)
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