Skip to main content
Log in

Description of the Attainable Sets of One-Dimensional Differential Inclusions

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

The role played by the attainable set of a differential inclusion, in the study of dynamic control systems and fuzzy differential equations, is widely acknowledged. A procedure for estimating the attainable set is rather complicated compared to the numerical methods for differential equations. This article addresses an alternative approach, based on an optimal control tool, to obtain a description of the attainable sets of differential inclusions. In particular, we obtain an exact delineation of the attainable set for a large class of nonlinear differential inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For more details about continuity of multivalued maps see [33].

  2. Observe that \(t\) is fixed and \(g\) is being evaluated at \(\underline{x}^*(t)\).

References

  1. Aubin, J.P., Cellina, A.: Differential Inclusions. Springer, New York (1984)

    Book  MATH  Google Scholar 

  2. Aubin, J.P., Franskowska, H.: Introduction: set-valued analysis in control theory. Set-valued Anal. 8, 1–9 (2000)

    Article  MATH  Google Scholar 

  3. Blagodatskikh, V.I., Filippov, A.F.: Differential inclusions and optimal control. Proc. Steklov Inst. Math. 169, 199–259 (1986)

    MATH  Google Scholar 

  4. Abbasbandy, S., Nieto, J.J., Alavi, M.: Tuning of reachable set in one dimensional fuzzy differential inclusions. Chaos Solitons Fractals 26, 1337–1341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions. Taylor & Francis, New York (2003)

    Book  MATH  Google Scholar 

  6. Majumdar, K.K., Majumder, D.D.: Fuzzy differential inclusions in atmospheric and medical cybernetics. IEEE Trans. Syst. Man Cybern. Part B 34, 877–887 (2004)

    Article  Google Scholar 

  7. Hüllermeier, E.: An approach to modeling and simulation of uncertain dynamical systems. Int. J. Unc. Fuzz. Knowl. Based Syst. 5, 117–137 (1997)

    Article  MATH  Google Scholar 

  8. Hüllermeier, E.: Numerical methods for fuzzy initial value problems. Int. J. Unc. Fuzz. Knowl. Based Syst. 7, 1–23 (1999)

    Article  Google Scholar 

  9. Rzeimageuchowski, T., Wimagesowski, J.: Differential equations with fuzzy parameters via differential inclusions. J. Math. Anal. Appl. 225, 177–194 (2001)

    Article  Google Scholar 

  10. Diamond, P.: Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Trans. Fuzzy Syst. 7, 734–740 (1999)

    Article  MathSciNet  Google Scholar 

  11. Lodwick, W.A.: An overview of flexibility and generalized uncertainty in optimization. Comput. Appl. Math. 31, 539–558 (2012)

    Article  MathSciNet  Google Scholar 

  12. Botchkarev, O., Tripakis, S.: Verification of hybrid systems with linear differential inclusions using ellipsoidal approximations. In: Proceedings of the third international workshop on hybrid systems: computation and control. HSCC ’00, pp. 73–88. Springer, London (2000)

  13. Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  14. Kurzhanski, A., Varaiya, P.: Dynamic optimization for reachability problems. J. Optim. Theory Appl. 108, 227–251 (2001)

    Article  MathSciNet  Google Scholar 

  15. Kurzhanski, A., Varaiya, P.: On reachability under uncertainty. SIAM J. Control Optim. 41, 181–216 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurzhanski, A., Varaiya, P.: Reachability analysis for uncertain systems, the ellipsoidal technique. Dyn. Contin. Discrete Impuls. Syst. Ser. B 9, 347–367 (2002)

    MATH  MathSciNet  Google Scholar 

  17. Filippova, T.: On the generalized solutions for uncertain systems with applications to optimal control and estimation problems. WSEAS Trans. Syst. 5, 481–486 (2005)

    MathSciNet  Google Scholar 

  18. Filippova, T.: Estimates of trajectory tubes in control problems under uncertainty. In: 4th International Conference on Physics and Control (PhysCon 2009). Catania, Italy (2009).

  19. Filippova, T.F., Berezina, E.V.: On state estimation approaches for uncertain dynamical systems with quadratic nonlinearity: Theory and computer simulations. Large-scale scientific computing, pp. 326–333, Lecture Notes in Comput. Sci. 4818, Springer, Berlin (2008)

  20. Kostousova, E.K.: State estimation for dynamic systems via parallelotopes: optimization and parallel computations. Optim. Methods Softw. 9, 269–306 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hwang, I., Balakrishnan, H., Ghosh, R., Tomlin, C.: Reachability analysis of delta-notch lateral inhibition using predicate abstraction. In: Proceedings of High Performance Computing, HiPC 2002, pp. 715–724. Springer, New York (2002)

  22. Hwang, I., Stipanović, D.M., Tomlin, C.J.: Polytopic approximations of reachable sets applied to linear dynamic games and a class of nonlinear systems. In: Abed, E.H. (ed.): Advances in Control, Communication Networks, and Transportation Systems, Systems and Control: Foundations & Applications, pp. 3–19. Birkhäuser, Boston (2005)

  23. Lygeros, J., Tomlin, C.J., Sastry, S.: Controllers for reachability specifications for hybrid systems. Automatica J. IFAC 35, 349–370 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tomlin, C.J., Lygeros, J., Sastry, S.: A game theoretic approach to controller design for hybrid systems. Proc. IEEE 88, 949–969 (2000)

    Article  Google Scholar 

  25. Wolenski, P.R.: The exponential formula for the reachable set of a lipschitz differential inclusion. SIAM J. Control Optim. 28, 1148–1161 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wolenski, P.R.: A uniqueness theorem for differential inclusions. J. Differ. Equ. 24, 165–182 (1990)

    Article  MathSciNet  Google Scholar 

  27. Pereira, F.L., de Sousa, J.B.: On the approximation of the reachable set boundary. In: Controlo’2000: 4th Portuguese Conference on Automatic, Control, pp. 642–646 (2000)

  28. Raczynski, S.: On the determination of the reachable sets and optimal control by the random method. In: Proceedings of the Symposium IFAC on Optimization Methods. Varna, Bulgaria (1974)

  29. Raczynski, S.: Continuous simulation, differential inclusions, uncertainty and traveling in time. Simulation 80, 87–100 (2004)

    Article  Google Scholar 

  30. Varaiya, P.: Reach set computation using optimal control. In: Proceedings of the KIT Workshop on Verification of Hybrid Systems, pp. 377–383. Grenoble (1998)

  31. Frankowska, H.: Contingent cones to reachable sets of control systems. SIAM J. Control Optim. 27, 170–198 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  32. Deimling, K.: Multivalued Differential Equations. W. de Gruyter, New York (1992)

    Book  MATH  Google Scholar 

  33. Berge, C.: Topological spaces. Including a treatment of multi-valued functions, vector spaces and convexity, Translated from the French original by E. M. Patterson, Reprint of the 1963 translation. Dover Publications Inc., Mineola (1997)

  34. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic, Dordrecht (1988)

    Book  MATH  Google Scholar 

  35. Vinter, R.: Optimal Control. Birkhäuser, Boston (2000)

    MATH  Google Scholar 

  36. Robinson, S.M., Day, R.H.: A sufficient condition for continuity of optimal sets in mathematical programming. J. Math. Anal. Appl. 45(2), 506–511 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  37. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Springer, New York (1998)

    MATH  Google Scholar 

  38. Folland, G.B.: Real Analysis, Pure and Applied Mathematics. Modern Techniques and their Applications, 2nd edn. Wiley, New York (1999)

    Google Scholar 

Download references

Acknowledgments

This paper has been supported by Fondecyt-Chile through project 1120665, by Sao Paulo State Foundation—FAPESP-Brazil under Grants (11/01977-2, 11/13985-0, and 2013/07375-0) and by CNPq under Grant 309335/2012-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldo N. Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalco-Cano, Y., de Oliveira, V.A. & Silva, G.N. Description of the Attainable Sets of One-Dimensional Differential Inclusions. J Optim Theory Appl 164, 138–153 (2015). https://doi.org/10.1007/s10957-014-0563-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0563-1

Keywords

Mathematics Subject Classification(2000)

Navigation