Skip to main content
Log in

Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Under the assumption that the sectional curvature of the manifold is bounded from below, we establish convergence result about the cyclic subgradient projection algorithm for convex feasibility problem presented in a paper by Bento and Melo on Riemannian manifolds (J Optim Theory Appl 152, 773–785, 2012). If, additionally, we assume that a Slater type condition is satisfied, then we further show that, without changing the step size, this algorithm terminates in a finite number of iterations. Clearly, our results extend the corresponding ones due to Bento and Melo and, in particular, we solve partially the open problem proposed in the paper by Bento and Melo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Combettes, P.L., Kruk, S.G.: Extrapolation algorithm for affine–convex feasibility problems. Numer. Algorithms 41, 239–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Censor, Y.: Mathematical Optimization for the Inverse Problem of Intensity-Modulated Radiation Therapy. Medical Physics Publisher, Madison (2003)

    Google Scholar 

  4. Censor, Y., Altschuler, M.D., Powlis, W.D.: On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 4, 607–623 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  6. Combettes, P.L.: The foundations of set theoretic estimation. Proc. IEEE 81, 182–208 (1993)

    Article  Google Scholar 

  7. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  8. Combettes, P.L.: Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections. IEEE Trans. Image Process. 6(4), 493–506 (1997)

    Article  Google Scholar 

  9. Herman, G.: Image Reconstruction from Projections. The Fundamentals of Computerized Tomography. Academic Press, New York (1980)

    MATH  Google Scholar 

  10. Marks, L.D., Sinkler, W., Landree, E.: A feasible set approach to the crystallographic phase problem. Acta Crystallogr. 55(4), 601–612 (1999)

    Article  Google Scholar 

  11. Censor, Y., Lent, A.: A Cyclic Subgradient Projections Method for the Convex Feasibility Problems. Technical Report. University of Haifa, Israel (1980)

    Google Scholar 

  12. Butnariu, D., Censor, Y., Gurfil, P., Hadar, E.: On the behavior of subgradient projections methods for convex feasibility problems in Euclidean spaces. SIAM J. Optim. 19, 786–807 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kiwiel, K.C.: The efficiency of subgradient projection. SIAM J. Control Optim. 34, 677–697 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kiwiel, K.C.: The efficiency of subgradient projection methods for convex optimization I: General level methods. SIAM J. Control Optim. 34, 660–676 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  15. dos Santos, L.T.: A parallel subgradient method for the convex feasibility problem. J. Comput. Appl. Math. 18, 307–320 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, C., Mordukhovich, B.S., Wang, J.H., Yao, J.C.: Weak sharp minima on Riemannian manifolds. SIAM J. Optim. 21(4), 1523–1560 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rapcsák, T.: Smooth Nonlinear Optimization in \({\mathbb{R}}^n\). Nonconvex Optimization and its Applications, vol. 19. Kluwer, Dordrecht (1997)

    Book  Google Scholar 

  18. Adler, R., Dedieu, J.P., Margulies, J., Martens, M., Shub, M.: Newton’s method on Riemannian manifolds and a geometric model for the human spine. IMA J. Numer. Anal. 22, 359–390 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Burke, J.V., Lewis, A., Overton, M.: Optimal stability and eigenvalue multiplicity. Found. Comput. Math. 1, 205–225 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ferreira, O.P., Pérez, L.R.L., Nemeth, S.Z.: Singularities of monotone vector fields and an extragradient-type algorithm. J. Glob. Optim. 31(1), 133–151 (2005)

    Article  MATH  Google Scholar 

  21. Greene, R., Wu, H.: On the subharmonicity and plurisubharmonicity of geodesically convex functions. Indiana Univ. Math. J. 22, 641–653 (1972)

    Article  MathSciNet  Google Scholar 

  22. Mahony, R.E.: The constrained Newton method on a Lie group and the symmetric eigenvalue problem. Linear Algebr. Appl. 248, 67–89 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among U-Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104, 609–633 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Smith, S.T.: Geometric Optimization Methods for Adaptive Filtering. Division of Applied Sciences. PhD Thesis, Harvard University, Cambridge, MA (1993)

  25. Udriste, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Mathematics and Its Applications, vol. 297. Kluwer, Dordrecht (1994)

    Book  Google Scholar 

  26. Absil, P.A., Baker, C.G., Gallivan, K.A.: Trust-region methods on Riemannian manifolds. Found. Comput. Math. 7(3), 303–330 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  28. Ferreira, O.P., Oliveira, P.R.: Subgradient algorithm on Riemannian manifolds. J. Optim. Theory Appl. 97(1), 93–104 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Ferreira, O.P., Oliveira, P.R.: Proximal point algorithm on Riemannian Manifold. Optimization 51(2), 257–270 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gabay, D.: Minimizing a differentiable function over a differential manifold. J. Optim. Theory Appl. 37(2), 177–219 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  31. Li, C., López, G., Martín-Márquez, V.: Monotone vector fields and the proximal point algorithm on Hadamard manifolds. J. Lond. Math. Soc. 79, 663–683 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Li, C., Wang, J.H.: Newton’s method for sections on Riemannian manifolds: generalized covariant \(\alpha \)-theory. J. Complex. 24, 423–451 (2008)

    Article  MATH  Google Scholar 

  33. Li, C., Yao, J.C.: Variational inequalities for set-valued vector fields on Riemannian manifolds: convexity of the solution set and the proximal point algorithm. SIAM J. Control Optim. 50(4), 2486–2514 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Luenberger, D.G.: The gradient projection method along geodesics. Manag. Sci. 18, 620–631 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, J.H., Huang, S.C., Li, C.: Extended Newton’s algorithm for mappings on Riemannian manifolds with values in a cone. Taiwan J. Math. 13, 633–656 (2009)

    MATH  MathSciNet  Google Scholar 

  36. Wang, J.H., López, G., Martín-Márquez, V., Li, C.: Monotone and accretive vector fields on Riemannian manifolds. J. Optim. Theory Appl. 146, 691–708 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Yang, Y.: Globally convergent optimization algorithms on Riemannian manifolds: uniform framework for unconstrained and constrained optimization. J. Optim. Theory Appl. 132(2), 245–265 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Bento, G.C., Melo, J.G.: Subgradient algorithm for convex feasibility on Riemannian manifolds. J. Optim. Theory Appl. 152(3), 773–785 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. da Cruz Neto, J.X., de Lima, L., Oliverira, P.R.: Geodesic algorithms in Riemannian geometry. Balkan J. Geom. Appl. 3, 89–100 (1998)

    MATH  Google Scholar 

  40. Sakai, T.: Riemannian Geometry. Translations of Mathematical Monographs, vol. 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  41. do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

Research of the second author is supported in part by the National Natural Science Foundation of China (Grants 11171300, 11371325) and by Zhejiang Provincial Natural Science Foundation of China (Grant LY13A010011). Research of the third author was partially supported by the National Science Council of Taiwan under Grant NSC 99-2115-M-037-002-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Yao.

Additional information

Communicated by Sándor Zoltán Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.M., Li, C. & Yao, J.C. Subgradient Projection Algorithms for Convex Feasibility on Riemannian Manifolds with Lower Bounded Curvatures. J Optim Theory Appl 164, 202–217 (2015). https://doi.org/10.1007/s10957-014-0568-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0568-9

Keywords

Mathematics Subject Classification

Navigation