Skip to main content
Log in

An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Two difficult situations often occur in the final results of engineering design optimization problems, i.e., final results yielding (1) violated constraints, or (2) no active constraints. In order to avoid these situations, this paper proposes an adaptive approach of dynamically adjusting constraint bounds to address constraint satisfaction issues. Based on the ratio of the true value of the constraint obtained by the analytical formula or finite element analysis, to the corresponding constraint bound used in the current iteration, a new constraint bound is computed and updated automatically for next iteration. By means of controlling the iterative process, this approach is able to make all constraints satisfied at the optimum point. It is implemented successfully and robustly into structural topology optimization problems with a displacement constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barthelemy, J.F.M., Haftka, R.T.: Approximation concepts for optimum structural design—a review. Struct. Multidiscip. Optim. 5, 129–144 (1993)

    Article  Google Scholar 

  2. Grancharova, A., Johansen, T.A.: Computation, approximation and stability of explicit feedback minmax nonlinear model predictive control. Automatica 45, 1134–1143 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Haeser, G., Schuverdt, M.L.: On approximate KKT condition and its extension to continuous variational inequalities. J. Optim. Theory Appl. 149, 528–539 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Keulen, F.V., Haftka, R.T., Kim, N.H.: Review of options for structural design sensitivity analysis. Part 1 linear systems. Comput. Methods Appl. Mech. Eng. 194, 3213–3243 (2005)

    Article  MATH  Google Scholar 

  5. Zhao, X., Lun, P.B., Wang, J.: Surrogate gradient algorithm for Lagrangian relaxation. J. Optim. Theory Appl. 100, 699–712 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rong, J.H., Liu, X.H., Yi, J.J., Yi, J.H.: An efficient structural topological optimization method for continuum structures with multiple displacement constraints. Finite Elem. Anal. Des. 47, 913–921 (2011)

    Article  Google Scholar 

  7. Rojas, A.L.: Method of structural analysis for statically indeterminate beams. Int. J. Innov. Inf. Comput. 8, 5473–5486 (2012)

    Google Scholar 

  8. Sui, Y.K., Ye, H.L.: Continuum Topology Optimization Methods ICM. Science Press, Beijing (2013)

    Google Scholar 

  9. Haftka, R.T., Nachlas, J.A., Watson, L.T., Rizzo, T., Desai, R.: Two-point constraint approximation in structural optimization. Comput. Methods Appl. Mech. Eng. 60, 289–301 (1987)

    Article  MATH  Google Scholar 

  10. Miletics, E., Molnárka, G.: Taylor series method with numerical derivatives for initial value problems. J. Comput. Methods Sci. Eng. 4, 105–114 (2004)

    MATH  Google Scholar 

  11. Miletics, E., Molnárka, G.: Implicit extension of Taylor series method with numerical derivatives for initial value problems. Comput. Math. Appl. 50, 1167–1177 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goenwold, A.A., Etman, L.F.P., Snyman, J.A., Rooda, J.E.: Incomplete series expansion for function approximation. Struct. Multidiscip. Optim. 34, 21–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jensen, H.A., Sepulveda, J.G.: Structural optimization of uncertain dynamical systems considering mixed-design variables. Probab. Eng. Mech. 26, 269–280 (2011)

    Article  Google Scholar 

  14. Wujek, B.A., Renaud, J.E.: New adaptive move-limit management strategy for approximate optimization, parts 1 & 2. AIAA J. 36, 1911–1934 (1998)

    Article  Google Scholar 

  15. Lamberti, L., Pappalettere, C.: Move limits definition in structural optimization with sequential linear programming, parts I & II. Comput. Struct. 81, 197–238 (2003)

    Article  MathSciNet  Google Scholar 

  16. Fujii, D., Kikuchi, N.: Improvement of numerical instabilities in topology optimization using the SLP method. Struct. Multidiscip. Optim. 19, 113–121 (2000)

    Article  Google Scholar 

  17. Gomes, F.A.M., Senne, T.A.: An SLP algorithm and its application to topology optimization. Comput. Appl. Math. 30, 53–89 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Sui, Y.K., Zhang, X., Yu, H.P.: Computation for move-limits with approximate function and its application in structure shape optimization. Chin. J. Comput. Mech. 24, 447–452 (2007)

    Google Scholar 

  19. Amir, O., Bendsøe, M.P., Sigmund, O.: Approximate reanalysis in topology optimization. Int. J. Num. Methods Eng. 78, 1474–1491 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng, G.D., Guo, X.: \(\varepsilon \)-relaxed approach in structural topology optimization. Struct. Optim. 13, 258–266 (1997)

    Article  Google Scholar 

  22. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  23. Sigmund, O.: A 99-line topology optimization code written in Matlab. Struct. Multidiscip. Optim. 21, 120–127 (2001)

    Article  Google Scholar 

  24. Bruns, T.E.: A reevaluation of the SIMP method with filtering and an alternative formulation for solid topology optimization. Struct. Multidiscip. Optim. 30, 428–436 (2005)

    Article  MathSciNet  Google Scholar 

  25. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  26. Sui, Y.K., Yang, D.Q.: A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. Acta Mech. Sin. 14, 179–185 (1998)

    Article  Google Scholar 

  27. Sui, Y.K., Peng, X.R.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Challis, V.J.: A discrete level-set topology optimization code written in Matlab. Struct. Multidiscip. Optim. 41, 453–464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. van Dijk, N.P., Maut, K., Langelaar, M., et al.: Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48, 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  30. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods and Applications. Springer, Berlin (2003)

    MATH  Google Scholar 

  31. Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  32. Deaton, J.D., Grandhi, R.V.: A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  33. Munk, D. J., Vio, G. A., Steven, G. P.: Topology optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. doi:10.1007/s00158-015-1261-9 (2015)

  34. Zhu, J.H., Zhang, W.H., Xia, L.: Topology Optimization in Aircraft and Aerospace Structures Design. Arch. Comput. Methods Eng. doi:10.1007/s11831-015-9151-2 (2015)

  35. Sui, Y.K., Yi, G.L.: A discussion about choosing an objective function and constraints in structural topology optimization. WCSMO-10, Orlando, Florida, USA (2013)

  36. Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was carried out thanks to the support of the Nation Natural Science Foundation of China (11172013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Sui.

Additional information

Communicated by George I.N. Rozvany.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, G.L., Sui, Y.K. An Adaptive Approach to Adjust Constraint Bounds and its Application in Structural Topology Optimization. J Optim Theory Appl 169, 656–670 (2016). https://doi.org/10.1007/s10957-014-0611-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0611-x

Keywords

Mathematics Subject Classification

Navigation