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Abstract

We extend Robust Optimization to fractional programming, where both the objec-
tive and the constraints contain uncertain parameters. Earlier work did not consider
uncertainty in both the objective and the constraints, or did not use Robust Optimiza-
tion. Our contribution is threefold. First, we provide conditions to guarantee that
either a globally optimal solution, or a sequence converging to the globally optimal
solution, can be found by solving one or more convex optimization problems. Sec-
ond, we identify two cases for which an exact solution can be obtained by solving a
single optimization problem: (1) when uncertainty in the numerator is independent
from the uncertainty in the denominator, and (2) when the denominator does not con-
tain an optimization variable. Third, we show that the general problem can be solved
with an (iterative) root finding method. The results are demonstrated on a return-
on-investment maximization problem, data envelopment analysis, and mean-variance
optimization. We find that the robust optimal solution is only slightly more robust
than the nominal solution. As a side-result, we use Robust Optimization to show that
two existing methods for solving fractional programs are dual to each other.

This is an author-created, un-copyedited version of an article published in Journal of Optimization Theory
and Applications DOI:10.1007/s10957-014-0633-4.

1 Introduction

A fractional program (FP) is an optimization problem, where the objective is a fraction of two
functions. It can be used for an economical trade-off such as maximizing return/investment,
maximizing return/risk or minimizing cost/time (Schaible and Ibaraki, 1983). A comprehen-
sive overview of FP papers, containing over 550 references which include many applications,
is given by Schaible (1982). More up-to-date references can be found in (Stancu-Minasian,
2013), which also refers to six preceding bibliographies by the same author.

More often than not, the parameters in an optimization problem are affected by uncer-
tainty. Robust Optimization (RO) is about solving optimization problems with uncertain
data in a computationally tractable way (see, e.g., Ben-Tal et al. (2009); Bertsimas et al.
(2011a)). The key concept is that a solution has to be feasible for all realizations of the
uncertain parameters, which are assumed to reside in convex uncertainty regions.
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Sometimes, the objective is the maximum of finitely many fractions, and the feasible
region is a convex set. This is called a generalized FP (see, e.g., Barros et al. (1996);
Crouzeix and Ferland (1991) for solution methods). A generalized FP with infinitely many
fractions in the objective was solved by Lin and Sheu (2005) using a cutting plane method,
that uses a set of finitely many fractions that is extended in each step. They do not men-
tion that their method can be used to deal with uncertain data, and do not use existing
results from RO. Our work can be seen as an alternative approach, where we also deal with
uncertainty in the constraints.

The Lagrange dual of a robust FP was studied by Jeyakumar et al. (2013), extending a
result by Beck and Ben-Tal (2009). They assume that the uncertainty in the numerator of
the objective is independent from the uncertainty in the denominator. The dual is tractable
when the numerator, denominator and constraints are linear, and the uncertainty regions
are ellipsoidal or finite sets of scenarios. In this paper, we focus on the primal problem.
Nevertheless, in Section 4.2, we obtain and extend the list of tractable duals.

The aim of this paper is to combine FP and RO, to provide a comprehensive overview
of the solution methods, and to investigate the improvement of RO on numerical examples.
First, we provide conditions that guarantee that a globally optimal solution, or a sequence
that converges to the globally optimal solution can be found by solving one or more convex
problems. The importance of these conditions is illustrated with a numerical example from
literature. Second, we identify two cases for which an exact solution can be obtained by
solving a single optimization problem. Third, we show that the general problem can be
solved with an (iterative) root finding method.

In Section 2, we outline two existing solution methods for FPs, and present a new result
showing that the two approaches are each others duals. In Section 3, we present existing
results in RO, that will be used for FPs as well. Our main contribution is given in Section
4. The results are demonstrated on a return-on-investment maximization problem, data
envelopment analysis, and mean-variance optimization in Section 5.

2 Solving Nonrobust Fractional Programs

In this section, we present two existing methods to solve FPs, and show that these methods
are dual to each other. To the best of our knowledge, this duality result is new. Consider
the following general formulation of an FP:

(FP) min
x∈Rn

f(x)
g(x)

s.t. hi(x) ≤ 0, ∀i ∈ I.

We will assume that the constraint index set I is finite, that f is convex and non-negative
and that g is concave and positive over the feasible region. When the functions f , g and hi

are affine, (FP) is a linear fractional program:

(LFP) min
x∈Rn

b0 + b
⊤

x

c0 + c
⊤

x
s.t. d0i + d

⊤

i x ≤ 0, i ∈ I.
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Charnes and Cooper show that (LFP) can be reformulated as an (equivalent) LP, by making
the substitutions y = x/(c0 + c

⊤
x) and t = 1/(c0 + c

⊤
x) (Charnes and Cooper, 1962):

(CC-LFP) min
t∈R+,y∈Rn

b0t + b
⊤

y s.t. d0it + d
⊤

i y ≤ 0, ∀i ∈ I, c0t + c
⊤

y = 1.

An optimal solution of (LFP) is obtained from an optimal solution of (CC-LFP) by comput-
ing x = y/t. Schaible (1974) shows that a similar substitution (y = x/g(x), t = 1/g(x))
transforms (FP) into an equivalent convex programming problem:

(Schaible-FP) min
t∈R++,y∈Rn

tf
(

y

t

)

s.t. tg
(

y

t

)

≥ 1, thi

(

y

t

)

≤ 0, ∀i ∈ I.

This is indeed a convex problem, since the perspective function p(y, t) := tf (y/t) is jointly
convex on R

n × R+ when f is convex on R
n. Furthermore, an optimal x is obtained from

x = y/t. Schaible also shows that, if the constraint tg(y/t) ≥ 1 is formulated as an equality
constraint: tg(y/t) = 1, it is not necessary to require f to be positive (Schaible, 1974).

A different solution approach uses the auxiliary parameterized optimization problem
F (α), defined as minx∈Rn{f(x) − αg(x) : hi(x) ≤ 0 ∀i ∈ I}. The objective value of (FP) is
at least α if and only if F (α) ≥ 0 (Dinkelbach, 1967). So, the objective of (FP) equals the
largest α such that F (α) ≥ 0:

(P-FP) max
α∈R+

{α : min
x∈X

{f(x) − αg(x)} ≥ 0},

where X denotes the feasible region {x ∈ R
n : hi(x) ≤ 0, ∀i ∈ I}. The usual way of solving

this problem is by finding the root of F , since the corresponding x is optimal for (FP)
(Dinkelbach, 1967). This is usually done with a Newton-like algorithm, where there is some
freedom in choosing the next iteration point (Chen et al., 2009). The root of F is unique,
since F is monotonically decreasing in α. The parameteric program F (α) is convex when
g is affine or when f is non-negative on the feasible region (since then, only non-negative
values for α needs to be considered). For these cases, the Newton method to find the root of
F was described by Dinkelbach (1967), which creates a monotonically decreasing sequence,
that converges superlinearly and often (local) quadratically to a root of F (Schaible, 1976).

We now show that these approaches are dual to each other when f is non-negative. The
proof for affine g and possibly negative f is similar.

Theorem 2.1 Assume that f is convex and non-negative on X, g is concave on X, X
is closed and convex, and the optimal value of (FP) is attained. Then (Schaible-FP) and
(P-FP) are dual to each other, and strong duality holds.

Proof. First note that the following reformulation is equivalent to (P-FP):

(RP-FP) max
α∈R+

{α : f(x) − αg(x) ≥ 0, ∀x ∈ X}.

The remainder of the proof is based on the theory “primal worst is dual best” introduced
by Beck and Ben-Tal (2009). They assume that X is compact and convex. Since we have
assumed X to be closed and convex and since an optimal solution of (FP) is attained,
compactness can be achieved by intersecting X with a box that includes the optimal solution.
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Additionally, Beck and Ben-Tal assume that the constraint in (RP-FP) is convex in α and
concave in x, which indeed holds. For fixed x, (RP-FP) is an LP with the following dual:

(D-LP) min
t∈R+

{tf(x) : tg(x) ≥ 1}.

While (RP-FP) is robust since the constraint has to hold for all x in X, the constraint in
the optimistic counterpart of (D-LP) has to hold for a single x:

(OD-LP) min
t∈R+,x∈X

{tf(x) : tg(x) ≥ 1}.

(RP-FP) and (OD-LP) are dual to each other (Beck and Ben-Tal, 2009). Strong duality
holds, since (x, t) is a Slater point for (OD-LP) for sufficiently large t. It is obvious that
(OD-LP) and (Schaible-FP) are equivalent, since t = 0 is infeasible for (OD-LP).

3 Robust Optimization

There are currently two generic methods that deal with an infinite number of constraints.
The first method is applicable to both linear and nonlinear constraints, while the second
method can only be applied to robust LPs.

The first (“constraint wise”) approach uses conic duality (Ben-Tal et al., 2009) or Fenchel
duality (Ben-Tal et al., 2015). The vector x in R

n satisfies the following infinite number of
constraints:

hi(ai, x) ≤ 0, ∀ai ∈ R
L : τij(ai) ≤ 0, ∀j ∈ J,

if and only if there exists uij ∈ R+ and vij ∈ R
L (j ∈ J , J being a finite set), such that x

satisfies the following convex constraint:

∑

j∈J

uijτ
∗
ij

(

vij

uij

)

− (hi)∗





∑

j∈J

vij , x



 ≤ 0, (1)

where τ ∗
ij(s) = supai∈RL{s

⊤
ai − τij(ai)} and (hi)∗(s, x) = infai∈RL{s

⊤
ai − hi(ai, x)} are

the convex and concave conjugates of τij and hi, respectively. This approach requires the
constraint to be concave in ai, the functions τij to be convex, and ri(dom hi(·, x)) ∩ ri(Ui)
6= ∅ for all x ∈ R

n, where Ui := {ai ∈ R
L : τij(ai) ≤ 0, ∀j ∈ J}. This approach yields a

tractable formulation for many constraints and many uncertainty sets (see Tables 1 and 2 in
(Ben-Tal et al., 2015)), even if the conjugates do not have closed-form expressions. To give
an impression of the broad applicability of this method, let us cite some examples, for which
it provides a tractable reformulation. For uncertainty sets, one could have a norm-bounded
(e.g., box or ball), polyhedral or conic representable set, or a generic set defined by (convex)
power functions, exponential functions, negative logarithms, or any function for which the
convex conjugate exists. Constraints could be linear or quadratic in the uncertain parameter.
There are some operations on functions that preserve the availability of a tractable expression
of the conjugate. One is multiplication with a non-negative scalar: the concave conjugate of
tf(a0, y/t) (with respect to a0) for t ≥ 0, is the perspective of the concave conjugate of f :
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tf∗(s/t, y/t). Another one is when hi is the sum of two functions: hi = hi1 + hi2. Suppose
closed-form conjugates exist for hi1 and hi2 separately; then:

(hi)∗(s, x) = max
s1∈RL,s2∈RL

{(hi1)∗(s1, x) + (hi2)∗(s2, x) : s1 + s2 = s} . (2)

When substituting (2) into (1), the max operator in (2) may be omitted, since if the resulting
constraint holds for some s1 and s2, then it surely holds for the maximum. This example
shows that a closed-form expression for the conjugate is indeed not always required.

The second method solves any robust LP with a convex uncertainty region via its La-
grange dual (Gorissen et al., 2014). The transformation from the primal to the dual is a
three step procedure. First, the dual of the nonrobust LP is formulated, where the uncertain
parameters are assumed to be known. Second, instead of enforcing the constraints for all
realizations of the uncertain parameters (“robust counterpart”), the constraints of the dual
have to hold for a single realization of the uncertain parameters (“optimistic counterpart”).
So, the uncertain parameters are added to the set of optimization variables. The last step is
to reformulate the nonconvex optimistic counterpart to an equivalent convex optimization
problem. The optimal solution of the resulting problem can be translated to an optimal
solution of the original robust LP via the KKT vector.

In the remainder, we provide reformulations based on (1), but the reader should be aware
that the other approach may be useful when all functions involved are linear.

4 Solving Robust Fractional Programs

In this section, we show how to solve (R-FP). It is our aim to obtain Robust Counterparts
(RCs), that can be solved with existing Robust Optimization methods. First, we formu-
late conditions that give raise to convex optimization problems. Under these conditions,
a globally optimal solution can be found by solving a single convex optimization problem
(Sections 4.2 and 4.3). These conditions also guarantee that, in the general case (Section
4.4), a root finding method produces a sequence of convex optimization problems, whose
solutions converge to a globally optimal solution. The results of this section are summarized
in Tables 1-3.

4.1 Robust Formulation and Assumptions

The uncertain parameters, denoted by ai, are assumed to lie in sets Ui ⊂ R
L, which we

define using functions τij : RL → R:

Ui := {ai ∈ R
L : τij(ai) ≤ 0, ∀j ∈ J}, (3)

where J is a finite set. In the RC of (FP), the constraints have to be satisfied by all
realizations of the uncertain parameters:

(R-FP) min
α∈R,x∈Rn

(α) s.t.
f(a0, x)
g(a0, x)

− α ≤ 0, ∀a0 ∈ U0

hi(ai, x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I. (4)
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Note that the uncertainty is specified constraint-wise, which is possible even if the parameters
in different constraints are correlated (Ben-Tal et al., 2009, p. 12). We make the following
assumptions:

(a) τij are convex and the sets Ui are convex and compact,

(b) f and hi are convex in x for every fixed value of ai in Ui,

(c) g is concave in x for every fixed value of ai in Ui,

(d) f and hi are concave in ai for every feasible x,

(e) g is convex in ai for every feasible x,

(f) g(a0, x) > 0 for every a0 in U0 and every feasible x, and

(g) f(a0, x) ≥ 0 for at least one a0 ∈ U0 and for every feasible x.

The last assumption is not necessary if g is biaffine, i.e., when g is affine in each parameter
when the other parameter is fixed, of which we show the consequences in Section 4.5. In
robust linear programming, the assumption that Ui is compact and convex is made without
any loss of generality (Ben-Tal et al., 2009, p. 12). For robust FP, compactness is not a
restriction since the functions hi are continuous and the constraints do not contain strict
inequalities. So, the problem remains unchanged if the uncertainty region is replaced with
its closure. However, requiring Ui to be convex is a restriction (unless f , g and h are affine
in ai), that is necessary for using existing results in RO.

Assumptions (d) and (e) are made solely because they are required by generic methods
to derive a tractable RC. There are some examples where the RC can be derived even
though these conditions are not fulfilled, e.g., if the uncertainty region is the convex hull
of a limited number of points and the constraint is convex in the uncertain parameter, for
a conic quadratic program with implementation error, or when the S-lemma or a sums of
squares result can be applied (Ben-Tal et al., 2009, 2015; Ben-Tal and den Hertog, 2014;
Bertsimas et al., 2011b). In these cases, assumptions (d) and (e) are not necessary.

In literature, a problem is solved, that does not satisfy these requirements (Lin and Sheu,
2005). While the authors claim that this did not affect their computations, and that they
find the global optimum, in Appendix A we show that their solution is suboptimal.

4.2 Special Case: Uncertainty in the Numerator is Independent
of the Uncertainty in the Denominator

Suppose that the uncertainty in the numerator of the objective is decoupled from the uncer-
tainty in the denominator:

(R-S1) min
α∈R+,x∈Rn

(α) s.t.
f(a0, x)
g(a′

0, x)
− α ≤ 0, ∀a0 ∈ U0, ∀a′

0
∈ U ′

0

hi(ai, x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I.
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We claim that (R-S1) is equivalent to the RC of the Schaible reformulation:

(R-Schaible-S1) min
α∈R+,t∈R++,y∈Rn

(α) s.t. tf
(

a0,
y

t

)

− α ≤ 0, ∀a0 ∈ U0

tg
(

a′
0
,
y

t

)

≥ 1, ∀a′
0

∈ U ′
0 (5)

thi

(

ai,
y

t

)

≤ 0, ∀ai ∈ Ui, ∀i ∈ I.

Clearly, an optimal solution of (R-Schaible-S1) exists, for which t = supa′
0

∈U ′
0
1/g(a′

0
, y/t).

Equivalence between (R-S1) and (R-Schaible-S1) readily follows from the substition x = y/t,
that converts a feasible solution of one problem to a feasible solution of the other problem.

This result extends (Jeyakumar et al., 2013). They provide the dual of (R-S1), and
show that strong duality holds. In case f , g and hi are linear, they show that the dual
of (R-S1) is tractable, when the uncertainty region is ellipsoidal, or consists of a finite set
of scenarios. The resulting problems can also be obtained from our work, by applying the
solution method by Gorissen et al. (2014) to (R-Schaible-S1). In addition to ellipsoids or
scenarios, our method works with any convex uncertainty region, such as a polyhedral set
or a conic quadratic representable set. A similar result was found by Kaul et al. (1986), but
that result is wrong (see Appendix B).

We provide a reformulation of (R-Schaible-S1) if the RO method using conjugates is used
(eq. (1)). The resulting equivalent problem becomes:

min (α) s.t.
∑

j∈J

u0jτ
∗
0j

(

v0j

u0j

)

− tf∗

(
∑

j∈J v0j

t
,
y

t

)

− α ≤ 0

∑

j∈J

u0′jτ
∗
0′j

(

v0
′j

u0′j

)

− tg∗

(
∑

j∈J v0
′j

t
,
y

t

)

≥ 1

∑

j∈J

uijτ
∗
ij

(

vij

uij

)

− t(hi)∗

(
∑

j∈J vij

t
,
y

t

)

≤ 0, ∀i ∈ I

α ∈ R+, t ∈ R++, u ∈ R
(|I|+2)×|J |, v ∈ R

(|I|+2)×|J |×L, y ∈ R
n.

4.3 Special Case: the Denominator Does Not Depend on the Op-

timization Variable x

If the optimization variables do not appear in the denominator, (R-FP) is equivalent to (cf.
Ben-Tal et al., 2015, Ex. 30):

(R-S2) min
α∈R+,x∈Rn

(α) s.t. f(a0, x) − αg(a0) ≤ 0, ∀a0 ∈ U0

hi(ai, x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I.

Note that g indeed does not depend on x. (R-S2) can be solved via the following equivalent
convex reformulation using (1), and standard techniques for the conjugate of the sum of two
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functions:

min (α) s.t.
∑

j∈J

t0jτ
∗
0j

(

v0j

t0j

)

− f∗



s +
∑

j∈J

v0j, x



+ αg∗
(

s

α

)

≤ 0

∑

j∈J

tijτ
∗
ij

(

vij

tij

)

− (hi)∗





∑∑∑

j∈J

vij , x



 ≤ 0, ∀i ∈ I

α ∈ R+, t ∈ R
(|I|+1)×|J |
+ , s ∈ R

L, v ∈ R
(|I|+1)×|J |×L, x ∈ R

n.

4.4 General Case

We now show how to solve the general problem (R-FP) using the following parametric
problem:

F (α) := min
x,w

(w) s.t. f(a0, x) − αg(a0, x) ≤ w, ∀a0 ∈ U0 (6)

hi(ai, x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I,

which is a convex optimization problem, since we only have to solve it for α ∈ R+. Let α∗

be a root of F . Lin and Sheu show that an optimal solution of (R-FP) is the minimizer
x of F (α∗), if the feasible region for x is compact (Lin and Sheu, 2005). We assume from
now on that the constraint functions hi define a compact feasible region. Moreover, they
show that F (α) < 0 if and only if α > α∗. Lin and Sheu do not use results from RO to
arrive at the deterministic reformulation (7). Instead, they replace the set U0 with a finite
set, approximate F (α) with an entropic regularization method, and iteratively generate a
sequence α̃k that converges to α∗. The approximation becomes more accurate as the root
of F is approached. The reason why they approximate F (α) is because they claim that
computing its value is difficult. Our approach is to solve F (α) using RO, which inherently
produces tractable problems. The following convex reformulation using (1) is equivalent:

F (α) = min (w) s.t.
∑

j∈J

t0jτ
∗
0j

(

v0j

t0j

)

− f∗



s +
∑

j∈J

v0j, x



+ αg∗
(

s

α
, x

)

≤ w (7)

∑

j∈J

tijτ
∗
ij

(

vij

tij

)

− (hi)∗





∑

j∈J

vij , x



 ≤ 0, ∀i ∈ I

t ∈ R
(|I|+1)×|J |
+ , s ∈ R

L, v ∈ R
(|I|+1)×|J |×L, w ∈ R, x ∈ R

n.

Since F is monotonically decreasing in α, as for FPs and generalized FPs, existing root-
finding methods can be used. We mention a few of these that produce a sequence {αk}
which converges to α∗:

(a) The bisection method. Bounds on the interval that contain α∗ are:

αLB := min
x∈Rn

{f(ā0, x)/g(ā0, x) : hi(ai, x) ≤ 0, ∀ai ∈ Ui, ∀i ∈ I} (8)

αUB := sup
a0∈U0

f(a0, x)/g(a0, x), (9)
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where (8) is computed for a fixed ā0 from U0, and (9) is computed for some x that
is (robust) feasible, i.e., for an x that satisfies (4). These bounds can be computed
relatively easily using the Schaible reformulation. If the lower bound (8) is hard to
compute due to the “for all” quantifier in the constraints, it may be computed for fixed
āi from Ui. Since F (αLB) ≥ 0 and F (αUB) ≤ 0, and since F is clearly nonincreasing,
α∗ lies in [αLB, αUB]. The middle point of this interval is αk := 0.5(αLB + αUB).
By evaluating F (αk), the width of the interval that contains α∗ can be halved: if
F (αk) > 0, then set αLB = αk, otherwise set αUB = αk. By increasing k by 1 and
repeating this procedure, a series {αk} is constructed, that converges to α∗.

(b) The Dinkelbach type algorithm by Crouzeix et al. (1985), adjusted for infinitely many
ratios. The method starts with k = 0 and αk = supa0∈U0

f(a0, x)/g(a0, x) for some
feasible x. Then F (αk) is computed, with maximizer xk. If F (αk) < 0, then the next
α is determined by αk+1 := maxa0∈U0

f(a0, xk)/g(a0, xk). Computing αk+1 requires
solving an FP. The method proceeds by increasing k by 1, and again computing F (αk).
If the feasible region for x is compact, then the series {αk} converges linearly to αk.

(c) The same as method (b), except that the right-hand side of (6) is multiplied with
g(a0, xk): f(a0, x) − αg(a0, x) ≤ wg(a0, xk). This may increase the speed of conver-
gence for the same complexity of computation (Crouzeix et al., 1986).

(d) The same as method (b) or (c), except that the a0 that maximizes F (αk) is used to
compute αk+1, instead of solving a new optimization problem. The worst case a0 in
the computation of F (αk) can be recovered without much computational effort. Thus,
αk+1 = f(a0, xk)/g(a0, xk) is computed more efficiently than in the method (b) or (c).
Additional work is required to ensure convergence of {αk} to α∗ (Crouzeix and Ferland,
1991, Section 5).

Let xk be the maximizer of F (αk). If a root finding method finds the root in a finite number
of steps, then an exact solution of (R-FP) is found. Otherwise, Crouzeix et al. show that, if
the sequence {αk} converges to α∗, then any convergent subsequence of {xk} converges to
the optimal solution x∗ of (R-FP) (Crouzeix et al., 1985, Theorem 4.1c).

4.5 Consequences when the Denominator is Biaffine

The assumption that the numerator is positive, ensures that the objective value of (R-FP) is
positive over the feasible region. Consequently, we could assume α ∈ R+; this would produce
a convex optimization problems. If g is biaffine, then the resulting problems are also convex
for α < 0. We shall discuss the results to each of the three aforementioned cases separately.
For the first special case (Section 4.2), the restriction that the numerator is positive may be
dropped only if the denominator does not contain an uncertain parameter. Then, (R-S1)
and (R-Schaible-S1) are equivalent if α ∈ R+ is replaced with α ∈ R and (5) is stated as
an equality (cf. Schaible (1974)). The reason why the denominator may not contain an
uncertain parameter, is because t = 1/g(x, a01) is not possible for multiple a01.

For the second special case (Section 4.3), the denominator only depends on a0, so “bi-
affine” in the title of this subsection should be read as “affine”. When (R-S2) is solved for
α ∈ R, the restriction that the numerator is positive, may be dropped.
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For the general case (Section 4.4), no changes need to be made to drop the restriction
that the numerator is positive.

Table 1: Tractable cases when uncertainty in the numerator is independent
of the uncertainty in the denominator. ℓ denotes an affine function.

f g hi sgn(f) (R-Schaible-S1)

f(a0, x) g(a′
0
, x) hi(ai, x) ≥ 0 no modifications

f(a0, x) ℓ(x) hi(ai, x) any α ∈ R, (5) as an equality

Table 2: Tractable cases when the denominator does not depend on x. ℓ
denotes an affine function.

f g hi sgn(f) (R-S2)

f(a0, x) g(a0) hi(ai, x) ≥ 0 no modifications
f(a0, x) ℓ(a0) hi(ai, x) any α ∈ R

Table 3: Tractable cases for the general case. ℓ denotes a biaffine function.

f g hi sgn(f)

f(a0, x) g(a0, x) hi(ai, x) ≥ 0
f(a0, x) ℓ(a0, x) hi(ai, x) any

5 Numerical Examples

In this section, we test our method on three examples: a multi-item newsvendor problem
(Section 5.1), mean-variance optimization (Section 5.2), and data envelopment analysis (Sec-
tion 5.3).

5.1 Multi-item Newsvendor Example

In Gorissen et al. (2014), a multi-item newsvendor problem is solved by minimizing the
investment cost under the condition that at least a certain expected profit is made.

We show how to directly optimize the expected return on investment for this example. Let
us first recapitulate the problem. The newsvendor buys Qi units of item i at the beginning
of the day. Each item has its associated ordering cost ci, selling price vi, salvage price ri,
and unsatisfied demand loss li. We assume ri ≤ vi + li. During the day the newsvendor faces
a demand di, resulting in a profit of min{viQi + li(Qi − di) − ciQi, vidi + ri(Qi − di) − ciQi}.
The demand is not known in advance, but there are finitely many demand scenarios dis (s
in S) that occur with (uncertain) probability pis, independently of other items.
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The problem of maximizing expected return on investment can be formulated as:

(R-NV) max
Q∈R

|I|
+

,u∈R|I|×|S|

min
pi∈Ui

∑

i∈I

∑

s∈S pisuis
∑

i∈I ciQi

s.t. uis + (ci − ri) Qi ≤ dis (vi − ri) , ∀i ∈ I, ∀s ∈ S

uis + (ci − vi − li) Qi ≤ −disli, ∀i ∈ I, ∀s ∈ S,

where uis is the contribution to the profit of item i in scenario s, and the convex and compact
uncertainty regions Ui are defined using the Matusita distance, which is a φ–divergence
measure (Ben-Tal et al., 2013):

Ui =

{

pi ∈ R
|S|
+ :

∑

s∈S

pis = 1,
∑

s∈S

|(p̂is)
α − (pis)

α|
1/α

≤ ρ, ∀i ∈ I

}

.

Note that the assumptions (a)-(e) and (g) are always fulfilled, and that assumption (e) is
fulfilled if at least one item is bought. (R-NV) can be classified under the first special case
(Section 4.2). Since all functions are affine and the denominator is certain, the Schaible
reformulation and the Charnes-Cooper reformulation are equivalent. (R-NV) is therefore
equivalent to:

(R-CC-NV)

max
Q∈R

|I|
+

,t∈R+,u∈R|I|×|S|

min
pi∈Ui

∑

i∈I

∑

s∈S

pisuis

s.t. uis + (ci − ri) Qi ≤ dis (vi − ri) t, ∀i ∈ I, ∀s ∈ S

uis + (ci − vi − li) Qi ≤ −dislit, ∀i ∈ I, ∀s ∈ S
∑

i∈I

ciQi = 1,

where Q and u in (R-CC-NV) have to be divided by t to obtain the Q and u in (R-NV).
(R-CC-NV) is a linear program with a convex uncertainty region that we solve via its dual,
as outlined in the introduction. The last of the reformulation steps, a substitution, is not
necessary since the uncertainty only appears in the objective. Let xis, yis and z be the dual
variables of (CC-NV); then the optimistic dual (OD-CC-NV) is given by:

(OD-CC-NV) min z

s.t. xis + yis = pis, ∀i ∈ I, ∀s ∈ S
∑

s∈S

{(ci − ri)xis + (ci − vi − li)yis} + ciz ≥ 0, ∀i ∈ I (10)

∑

i∈I

∑

s∈S

−dis(vi − ri)xis + disliyis ≥ 0 (11)

∑

s∈S

pis = 1, ∀i ∈ I

∑

s∈S

|(p̂is)
α − (pis)

α|
1/α

≤ ρ, ∀i ∈ I

p ∈ R
|S|
+ , x ∈ R

|I|×|S|
+ , y ∈ R

|I|×|S|
+ , z ∈ R.
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The optimal value of (OD-CC-NV) is the robust expected return on investment. The corre-
sponding optimal order quantities Q can be derived from the KKT vector of (OD-CC-NV),
by dividing its elements associated with (10) by the element corresponding to (11). This is
the same as dividing Q by t in (R-CC-NV) to undo the Charnes-Cooper transformation.

We solve the problem for the same data as Gorissen et al. (2014) with AIMMS 3.11
(Paragon Decision Technology, the Netherlands) and KNITRO 7.0 (Zienna Optimization
LLC, USA) with its default settings. Computation errors for negative pis were avoided
by using |pis|

α instead of (pis)α. We take ρ = 0 to obtain the nominal solution, while
ρ = 0.03 for the robust solution. Solutions were obtained in less than 0.01 seconds. When
the probabilities are as expected (ρ = 0), the expected return on investment of the nominal
solution is 0.297, while for the robust solution it is 0.285. When ρ = 0.03 and the worst
case probabilities occur for the nominal solution, i.e., the probabilities that minimize the
expected return on investment for the nominal solution, the objective value drops to 0.211,
while for the robust solution it drops to 0.214. So, the solution indeed becomes more robust,
but the difference with the nominal solution is small. We verify if the decision maker could
have done better, if he knew beforehand which probability vector realizes. This done by
optimizing the nominal model (ρ = 0), while setting the probabilty estimates p̂is equal to
the worst case probabilities for the robust solution. This gives the so-called perfect hindsight
solution. The objective value is as low as 0.214. So, even though the robust objective could
deteriorate substantially, there is no other solution that performs better.

5.2 Mean-variance Optimization

We are to present an example that involves a trade-off between mean and variance. This
trade-off is commonly used in portfolio optimization, including the Modern Portfolio Theory
(MPT) founded by Markowitz (1952), where the goal is to select the right mix of assets.
In contrast to MPT, we do not impose that the expected returns on the assets and the
covariance matrix are fully known. Instead, we assume that finitely many scenarios s (in S)
for the future can be identified along with unknown probabilities of occurence ps, which are
estimated by p̂s. The return of asset i in scenario s is a constant ris, so when xi units of
money are invested in asset i, the return in scenario s is given by us =

∑

i∈I risxi (possibly
negative). The expected return and variance are given by:

E(return) :=
∑

s∈S

psus

Var(return) :=
∑

s∈S

ps (us − E(return))2 (12)

=
∑

s∈S

psu
2
s −

(

∑

s∈S

psus

)2

. (13)
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To remain in the minimization framework, the objective is to minimize the variance-to-mean
ratio (or the dispersion index). The robust optimization problem is given by:

(R-I) min
x∈R

|I|
+

,u∈R|S|

max
p∈U

∑

s∈S psu
2
s − (

∑

s∈S psus)
2

∑

s∈S psus

s.t. us =
∑

i∈I

risxi, ∀s ∈ S

∑

i∈I

xi = C

∑

s∈S

psus > 0, ∀p ∈ U .

The last two constraints ensure that C units of money are invested, and that this model
has a feasible solution only if the expected profit is positive. The numerator is convex in
us (from (12)) and concave in ps (from (13)). The denominator is clearly concave in ps

and convex in us. Moreover, the numerator is non-negative and the denominator is positive
on the feasible region. For the uncertainty region we use the modified χ2–distance as a
φ–divergence measure, which can be justified by statistical theory (Ben-Tal et al., 2013):

U0 :=

{

p ∈ R
|S|
+ :

∑

s∈S

ps = 1,
∑

s∈S

(ps − p̂s)
2

p̂s
≤ ρ

}

.

(R-I) is not one of the special cases, so we solve this problem using the general method. In
order to formulate (7) explicitly, we first derive some conjugate functions. The conjugate for
f is from Ben-Tal et al. (2015, Ex. 25).

f(p, u) :=
∑

s∈S

psu
2
s −

(

∑

s∈S

psus

)2

f∗(v, u) = sup
z

{−
z2

4
: u2

s + usz = vs, ∀s ∈ S}

g(p, u) :=
∑

s∈S

psus g∗(v, u) =







0, if vs = us, ∀s ∈ S

∞, otherwise

τi1(p) := max
s

{−ps} τ ∗
i1(v) =







0, if vs ≤ 0, ∀s ∈ S and
∑

s∈S vs ≥ −1

∞, otherwise

τi2(p) :=
∑

s∈S

ps − 1 τ ∗
i2(v) =







1, if vs = 1, ∀s ∈ S

∞, otherwise

τi3(p) := 1 −
∑

s∈S

ps τ ∗
i3(v) =







−1, if vs = −1, ∀s ∈ S

∞, otherwise

τi4(p) :=
∑

s∈S

(ps − p̂s)
2

p̂s
− ρ τ ∗

i4(v) = ρ +
∑

s∈S

p̂s

(1
4

v2
s + vs

)

.
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Plugging in these formulas in (7) yields F (α) =

min w s.t. t02 − t03 + ρt04 +
∑

s∈S

p̂s

(

(v04)2
s

4t04
+ (v04)s

)

+
z2

4
≤ w (14)

(v01)s ≤ 0 (v11)s ≤ 0, ∀s ∈ S
∑

s∈S

(v01)s ≥ −t01

∑

s∈S

(v11)s ≥ −t11

u2
s + usz = usα + (v01)s + t02 − t03 + (v04)s, ∀s ∈ S (15)

t12 − t13 + ρt14 +
∑

s∈S

p̂s

(

(v14)2
s

4t14
+ (v14)s

)

< 0

us + (v11)s + t12 − t13 + (v14)s = 0, ∀s ∈ S

us =
∑

i∈I

risxi, ∀s ∈ S

∑

i∈I

xi = C

t ∈ R
2×4
+ , u ∈ R

|S|, v ∈ R
2×4, w ∈ R, x ∈ R

|I|, z ∈ R.

This problem is not convex because of the product usz in (15). Similar to Yanıkoğlu et al.
(2013, Theorem 1) the problem can be made convex by replacing t02 − t03 in (14) with
u2

s + usz − usα − (v01)s − (v04)s and omitting (15) from the problem. Constraint (14) then
becomes:
(

us +
z

2

)2

− usα − (v01)s − (v04)s + ρt04 +
∑

s′∈S

p̂s′

(

(v04)2
s′

4t04
+ (v04)s′

)

≤ w, ∀s ∈ S, (16)

which is jointly convex in all variables. In order to improve the tractability and accuracy of
computing F (α), we cast it as a conic quadratic problem. The only complicating terms are
(v04)2

s/(4t04), which can be reformulated using a standard trick. Constraint (16) is satisfied if
and only if there exists auxiliary variables ys such that the following inequalities are satisfied:

(

us +
z

2

)2

− usα − (v01)s − (v04)s + ρt04 + 2
∑

s′∈S

p̂s′ (ys′ + (v04)s′) ≤ w, ∀s ∈ S

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

(2v04)s

ys − 4t04

)∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ys + 4t04, ∀s ∈ S.

The problem (R-I) can now be solved by determining the root of F .
We perform a numerical analysis on 10 items and a generated data set of 50 scenarios.

In order to incorporate correlations, we first construct a covariance matrix AA
⊤

, where A

is a 10 ×10 matrix whose entries are uniformly and independently distributed on [−0.5, 0.5].
Then, to reflect the idea that a higher risk gives a higher expected return, a vector of expected
returns µ is constructed with a linear mapping on the variances of the items. The mapping
is constructed such that the item with the smallest variance gets an expected return of 0.01,
and the item with the largest variance gets an expected return of 0.20. Finally, the scenarios
are drawn, each from a multivariate normal distribution with the constructed mean µ and
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covariance AA
⊤

. We solve the model for ρ = 1, p̂s = 0.02 for all s, and C = 100 to obtain a
robust solution using YALMIP (Löfberg, 2012) and MOSEK (Mosek ApS, Denmark) with
their default settings. For this value of ρ, the probabilities can vary, on average, between 0
and 0.04. Additionally, we solve the same problem for ρ = 0, i.e., when ps = p̂s, to obtain a
nonrobust solution. We use bisection search on the interval determined by (8) and (9) and
stopped when the interval width was less than 10−10 . One step in bisection search takes
around 2 seconds, of which around 7% is spent by MOSEK.

The convergence of the bisection method turns out to be adequate. Let xi denote the
solution in iteration i, and let x∗ denote the final solution. The initial search interval is
[0.70, 20.09]. The solution x1, obtained from solving F ((0.70+20.09)/2), is far from optimal:
||x1 − x∗||∞ ≈ 2.2. In each three or four iterations, xi gains one extra digit of accuracy.
After 22 iterations, the accuracy has improved to ||x22 − x∗||∞ ≈ 4.1 · 10−7. The algorithm
terminates after 37 iterations, with no apparent improvement following the 22nd iteration.
Since ||x∗||2 ≈ 44.9, the error after 22 iterations is relatively small.

When ps = p̂s for all s, the mean-variance ratio of the nominal solution (which is 6.34)
is indeed lower than that of the robust solution (which is 6.45). For both solutions we
determined the worst case p̂ and the corresponding objective value. The objective of the
robust solution (which is 18.62) is slightly better than that of the nominal solution (which is
18.98). This shows that uncertainty may cause a factor three deterioration of the objective
value. Relative to this large difference, the difference between the two solutions is small. So,
the nominal solution performs quite well for this example. For the worst case probabilities
for the robust solution, we have computed the optimal portfolio as if these solutions were
known beforehand (perfect hindsight solution). The objective value equals that of the robust
solution. So, even though the robust objective could deteriorate substantially, there is no
other solution that performs better.

5.3 Data Envelopment Analysis

Data Envelopment Analysis (DEA) is a tool to estimate the efficiency of different decision
making units (DMUs), based on their inputs and outputs. DEA was originally introduced
for not-for-profit companies, e.g., schools where inputs could be number of teacher hours
and number of students per class, and outputs could be arithmetic scores and psychological
tests of student attitudes, e.g., toward the community (Charnes et al., 1978). The applica-
bility of DEA is not limited to nonprofit organizations. A reference list of more than 4,000
publications on DEA is given by Emrouznejad et al. (2008).

Let ni and no denote the number of in- and outputs, respectively. The efficiency of a
DMU is defined as the largest fraction of weighted outputs divided by weighted inputs, given
that the efficiency of the other DMUs is at most 1:

(DEA) max
u∈R

no

+
,v∈R

ni

+

u
⊤

y0

v
⊤

x0

s.t.
u

⊤
yi

v
⊤

xi

≤ 1, ∀i ∈ I,

where xi and yi are the vectors of inputs and outputs of DMU i, and u and v are the
non-negative weights.

The inputs and outputs are model parameters that have to be acquired from each DMU
and are affected by measurement errors. Especially when a single DMU represents a group

15



of smaller business units or is a pool of all activities in a certain region, and the inputs
and outputs are aggregated, errors become practically inevitable. There have been many
attempts to incorporate uncertainty in DEA. For an overview, e.g., see (Shokouhi et al.,
2014). Since our focus is on RO, we only discuss the three papers that are relevant. The first
only considers uncertain outputs (Sadjadi and Omrani, 2008). The second considers jointly
uncertain inputs and outputs (Shokouhi et al., 2010). Unfortunately, the robust counterpart
in the latter is constructed in an ad-hoc manner that results in a nonconvex formulation,
for which it is not clear whether globally optimal solutions were found. The third considers
either uncertain inputs or uncertain outputs (Wang and Wei, 2010). In the last two papers,
a simulation study is performed to quantify the improvement offered by the robust solution.
For each randomly drawn set of inputs and outputs, they compute the relative efficiencies
with the u and v obtained from the robust solution. However, in our view, when the inputs
and outputs are fully known, the relative efficiencies can only be computed by optimizing
(DEA) for those known inputs and outputs. Our results are therefore different in two ways.
First, we consider both uncertain inputs and uncertain outputs and solve the correct problem.
Second, we perform a valid simulation study to verify whether the robust solution is better
than the nominal solution.

In this section, we take the data from Shokouhi et al. (2010). In this data set there are
five DMUs, two inputs and two outputs. The in- and outputs are uncertain, but known to
reside in given intervals, given in Table 4.

In order to get in the minimization framework, the objective of (DEA) is replaced with
its reciprocal. The optimal solution of the robust counterpart of (DEA) then corresponds to
the reciprocal of the root of:

F (α) = min
u∈R

no

+
,v∈R

ni

+
,w∈R

w s.t. v
⊤

x0 − αu
⊤

y0 ≤ w, ∀(x, y) ∈ U ,

u
⊤

yi ≤ v
⊤

xi, ∀(x, y) ∈ U , ∀i ∈ I.

Following Shokouhi et al. (2010), we take the Bertsimas and Sim uncertainty region:

U = {(x, y) ∈ R
(|I|+1)×ni × R

(|I|+1)×no : xij = x̄ij + ζx
ij∆x̂ij , yij = ȳij + ζy

ij∆ŷij ,

||vec(ζx, ζy)||∞ ≤ 1, ||vec(ζx, ζy)||1 ≤ Γ},

where x̄ij and ȳij are the midpoints, ∆x̂ij and ∆ŷij are the half-widths of the uncertainty
intervals, and the vec operator stacks the columns of the matrix arguments into a single
vector. For robust LP, this set has the property that when Γ is integer, it controls the number
of uncertain elements that can deviate from their nominal values (Bertsimas and Sim, 2004).
This property also holds for a robust LFP, since F (α) is a robust LP.

The optimal weights u and v depend on the actual inputs and outputs. One may there-
fore be inclined to use Adjustable Robust Optimization (ARO) when Γ is larger than the
dimensions of xi and yi added. Consequently, u and v are replaced by functions of the
uncertain parameters. Unfortunately, even in the simple case of affine decision rules, this is
often intractable. In the constraints of F (α), u and v are multiplied with uncertain param-
eters, which yields constraints that are quadratic in the uncertain parameters. These can
currently only be solved efficiently for ellipsoidal uncertainty sets.
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Table 4: Data set for the DEA example of Section 5.3.

DMUi Input 1 Input 2 Output 1 Output 2

1 [14,15] [0.06, 0.09] [157, 161] [28, 40]
2 [4,12] [0.16, 0.35] [157, 198] [21, 29]
3 [10,17] [0.10, 0.70] [143, 159] [28, 35]
4 [12,15] [0.21, 0.48] [138, 144] [21, 22]
5 [19,22] [0.12, 0.19] [158, 181] [21, 25]

We use bisection search on the interval determined by (8) and (9) to determine the root
of F (α), and stop when the interval width is less than 10−4 (which turns out to be accurate
enough for ranking the DMUs). F (α) is computed using YALMIP and MOSEK with their
default settings, and takes a few tenths of a second on a normal desktop computer, where
MOSEK accounts for approximately 10% of that time. The time it takes to compute F (α)
turns out to be approximately constant, so independent of the remaining width of the interval
and independent of the size of the uncertainty region Γ. The root of F (α) is determined in
a few seconds.

We computed the robust efficiencies of the DMUs for Γ ranging between 0 and 4 in steps
of 0.1, since each constraint has at most four uncertain parameters. For Γ ≤ 0.2, the list
of DMUs ranked from most to least efficient, is 1, 2, 3, 5, 4. For Γ ≥ 0.3, DMUs 3 and 5
switch positions. Hence, DMU 5 is more efficient than DMU 3 when Γ ≥ 0.3. We have tried
to verify this claim by running 100 simulations, where in each simulation we uniformly drew
inputs and outputs from the uncertainty region, solved (DEA) for each set of inputs and
outputs, and ranked the DMUs based on efficiency. In 76 out of 100 simulations, DMU 3
was more efficient than DMU 5. This result advocates against the use of RO in DEA, since
it shows that for Γ = 0 (i.e., the nonrobust solution), the ranking is better than for Γ ≥ 1.
We have also performed the simulation with more extreme data, by drawing the inputs and
outputs only from the endpoints of their uncertainty intervals. This yielded similar results.
Other experiments, where we used an ellipsoidal uncertainty region instead of the Bertsimas
and Sim uncertainty region, or where we used the nominal objectives (based on x̄ and ȳ)
but kept the uncertain constraints, also yielded similar results.

6 Conclusions

We have shown how RO can be applied to FPs as a method to deal with uncertain data.
The method has been tested on three problems. In all three examples, we observe that
the nominal solution, which is obtained by solving the deterministic problem, is severely
affected by uncertainty. Surprisingly, this also holds for the robust solution, and in none
of the examples the robust solution offers a significant improvement; even when comparing
worst case performance.

The first question that arises, is why the nominal solution performs so well. We try
to answer this question for the mean-variance optimization problem, and note that the
explanation for the multi-item newsvendor problem is similar. For a given solution, the worst
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case for the mean is when the probability vector is a unit vector, that assigns unit weight
to the scenario with lowest return. For the variance, the worst case is when the scenarios
with the lowest and highest return each occur with probability 0.5. For a robust solution
w.r.t. the mean value, the scenario with lowest return should be optimized, whereas for the
variance, the returns in the scenarios with lowest and highest return should be close to each
other. The nominal solution simultaneously maximizes the expected value and minimizes
the variance. While not identical to the robust objective, it contains some aspects of it. For
example, the mean is a weighted sum that contains the return for the scenario with lowest
return.

The second question that arises, is why there is a realization of the uncertain param-
eters in Sections 5.1 and 5.2, for which no solution can outperform the robust solution;
even if the former is optimized as if the realization of the uncertain parameters are known
beforehand. This turns out to be due to Sion’s minimax theorem (Sion, 1958). The as-
sumptions (a)-(g) ensure that f(a0, x)/g(a0, x) is quasi-convex in x (for fixed a0), quasi-
concave in a0 (for fixed x), and continuous, that the uncertainty set is compact and convex,
and that the feasible set for x, say X, is convex. Therefore, by Sion’s minimax theorem,
maxa0∈U minx∈X f(a0, x)/g(a0, x) = minx∈X maxa0∈U f(a0, x)/g(a0, x). This no longer
holds when there is uncertainty in the constraints, since the feasible region X changes when
the values for the uncertain parameters are known.

So, the robust solution is good in the sense that it cannot be improved in the worst case,
even if the values of the uncertain parameters are known beforehand. On the other hand,
the nominal solution performs well, at least in the examples studied. It shall be interesting
to see the difference in real-life examples, especially with uncertainty in the constraints.
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A The Importance of Convexity Conditions

We provide a short example to stress the importance of the convexity/concavity conditions
on f and g. The second numerical example by Lin and Sheu (2005) is:

min
x∈Rn

max
a∈[0,1]

a2x1x2 + x2a
1 + ax3

3

5(a − 1)2x4
1 + 2x2

2 + 4ax3
s.t. 0.5 ≤ xi ≤ 5, i = 1, 2, 3.

This problem does not satisfy the convexity/concavity conditions from Section 4. Lin and
Sheu claim that x = (0.5 1.5 0.5) and a = 0 is optimal with a value of 0.21 (reported as
−0.21), but x = (0.5 5 0.5) and a = 1 is a better solution (maybe still not optimal) since
the corresponding value is 0.06.

B On the Result by Kaul et al. (1986)

This appendix shows a mistake in the paper by Kaul et al. (1986). Essentially, they formulate
the dual of:

min
α∈R+,x∈R

n

+

α s.t.
b0 + b

⊤
x

c0 + c
⊤

x
≤ α, ∀(b0, b) ∈ U1 × U2, ∀(c0, c) ∈ U3 × U4, Ax ≤ d.

Note that x is non-negative. In their Lemma 2.1, they claim that the worst case (c0, c)
does not depend on x, and is given by c∗

0 = minc0∈U3
{c0} and c∗, with components c∗

i =
minc∈U4

{ci}. This implicitly assumes that c∗ is a member of U4, which is not always true.
The mistake becomes clear in their numerical example, where they use c∗ = [4; 2], which
is not in the uncertainty set. Consequently, the proposed approach gives the wrong dual
problem and a suboptimal solution. Our results in Section 4.2 can provide the correct dual
problem under milder conditions on the uncertainty sets.
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