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A Tensor Analogy of Yuan’s Theorem of the Alternative and Polynomial

Optimization with Sign structure ∗

Shenglong Hu † Guoyin Li ‡ Liqun Qi§

Abstract

Yuan’s theorem of the alternative is an important theoretical tool in optimization, which provides
a checkable certificate for the infeasibility of a strict inequality system involving two homogeneous
quadratic functions. In this paper, we provide a tractable extension of Yuan’s theorem of the
alternative to the symmetric tensor setting. As an application, we establish that the optimal
value of a class of nonconvex polynomial optimization problems with suitable sign structure (or
more explicitly, with essentially non-positive coefficients) can be computed by a related convex
conic programming problem, and the optimal solution of these nonconvex polynomial optimization
problems can be recovered from the corresponding solution of the convex conic programming
problem. Moreover, we obtain that this class of nonconvex polynomial optimization problems
enjoy exact sum-of-squares relaxation, and so, can be solved via a single semidefinite programming
problem.

Keywords: Alternative theorem, symmetric tensors, nonconvex polynomial optimization, sum-
of-squares relaxation, semidefinite programming.

AMS Classification: 90C26, 90C22, 15A69

1 Introduction

Alternative theorems for arbitrary finite systems of linear or convex inequalities have played key roles
in the development of optimality conditions for continuous optimization problems. Although these
theorems are generally not valid for an arbitrary finite system of (possibly nonconvex) quadratic
inequalities, recent research has established alternative theorems for quadratic systems involving two
inequalities or arbitrary inequalities involving suitable sign structure. For instance, a theorem of the
alternative of Gordan type for a strict inequality system of two homogeneous quadratic functions
has been given in [1]. This theorem is often referred as Yuan’s theorem of the alternative. This
theorem provides a checkable certificate for the infeasibility of a strict inequality system involving two
homogeneous quadratic functions, and plays an important role in the convergence analysis of the trust
region method. Recently, it was also established in [2] that this theorem of the alternative is equivalent
to another popular result called S-lemma, which is an important tool in quadratic optimization,
optimal control and robust optimization [3-6].

Because of the importance of this theorem of the alternative, researchers have attempted to extend
it to systems with more than two quadratic functions. In particular, [7,8] showed that, under a positive
definite regularity condition, Yuan’s theorem of the alternative continues to hold for an inequality
system with three homogeneous quadratic functions. They also provided examples illustrating that,
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in general, the regularity condition cannot be dropped. Moreover, [9,10] (see also [11]) established an
extension of Yuan’s theorem of the alternative to inequality systems involving finitely many quadratic
functions, under the condition that all the Hessian matrices of the quadratic functions have non-
positive off-diagonal elements (up to a nonsingular transformation). This result can be regarded as
an extension of Yuan’s theorem of the alternative as its assumption becomes superfluous in the case
when only two quadratic forms are involved (see [10, Remark 2.3]).

The purpose of this paper is to extend Yuan’s alternative theorem to symmetric tensors and to
provide an application to nonconvex polynomial optimization. Tensor (or hypermatrix) is a multilinear
generalization of the concept of matrix. Recently, Lim [12] and Qi [13] independently introduced the
concept of eigenvalues and singular values for tensors of higher order. After this, a reasonably complete
and consistent theory of eigenvalues and singular values for tensors of higher order has been developed
in the past few years, which generalizes the theory of matrix eigenvalues and singular values in various
manners and extent. Moreover, numerical study on tensors also has attracted a lot of researchers
due to its wide applications in polynomial optimization [14-19], space tensor programming [20,21],
spectral hypergraph theory [22-25], high-order Markov chain [26], signal processing [27,28] and image
science [29]. In particular, various efficient numerical schemes have been proposed to find the low
rank approximations of a tensor and the eigenvalues/eigenvectors of a tensor with specific structure
(cf. [30-37]).

The contribution of this paper are as follows:

• Firstly, we provide a tractable extension of Yuan’s theorem of the alternative (Theorem 3.1)
and homogeneous S-lemma (Corollary 3.2) to the symmetric tensor setting. We achieve this
by exploiting two important features of a special class of tensors (called essentially non-positive
tensors): hidden convexity and numerical checkability.

• Secondly, we establish that the optimal value of a class of nonconvex polynomial optimization
problems with suitable sign structure (or more explicitly, essentially nonpositive coefficients) can
be computed by a related convex conic programming problem, and the optimal solution of these
nonconvex polynomial optimization problems can be recovered from the corresponding solution
of the convex conic programming problem. Moreover, we obtain that this class of nonconvex
polynomial optimization problems enjoy exact sum-of-squares relaxation, and so, can be solved
via a semidefinite programming problem.

The organization of this paper is as follows. In Section 2, we recall some basic facts of tensors
and polynomials, and establish some basic geometric properties of positive semidefinite tensor cones.
In Section 3, we provide a tractable extension of Yuan’s theorem of the alternative and homogeneous
S-lemma to the symmetric tensor setting. In Section 4, we apply the new theorem of the alternative
to obtain exact conic programming relaxation for nonconvex polynomial optimization problems with
essentially nonpositive coefficients. We also obtain that these class of nonconvex polynomial opti-
mization problems enjoy exact sum-of-squares relaxation. Finally, we conclude this paper and present
some possible future research topics.

2 Preliminaries: Positive Semidefinite Tensors

2.1 Notations and Basic Facts

We first fix some notations and recall some basic facts of tensors and polynomials. We denote the
n-dimensional Euclidean space as Rn. For x1, x2 ∈ R

n (as column vectors), 〈x1, x2〉 denotes the inner
product between x1 and x2 and is given by 〈x1, x2〉 := xT

1 x2. Moreover, for all x ∈ R
n, the norm of x

is denoted by ‖x‖ and is given by ‖x‖ := (〈x, x〉)1/2 .
Let n ∈ N and let m be an even number. An mth-order n-dimensional tensor A consists of nm

entries in real number: A = (Ai1i2···im), Ai1i2···im ∈ R, 1 ≤ i1, i2, · · · , im ≤ n. We say a tensor A is
symmetric if the value of Ai1i2···im is invariant under any permutation of its indices {i1, i2, · · · , im}.
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When m = 2, a symmetric tensor is nothing but a symmetric matrix. Consider

Sm,n := {A : A is an mth-order n-dimensional symmetric tensor}.

Clearly, Sm,n is a vector space under the addition and multiplication defined as below: for any t ∈ R,
A = (Ai1...im)1≤i1,...,im≤n and B = (Bi1...im)1≤i1,...,im≤n

A+ B = (Ai1...im + Bi1...im)1≤i1,...,im≤n and tA = (tAi1...im)1≤i1,...,im≤n.

For each A,B ∈ Sm,n, we define the inner product by

〈A,B〉 :=
n
∑

i1,...,im=1

Ai1...imBi1...im .

The corresponding norm is defined by ‖A‖ = (〈A,A〉)1/2 =
(

n
∑

i1,...,im=1

(Ai1...im)2
)1/2

. For a vector

x ∈ R
n, we use xi to denote its ith component. Moreover, for a vector x ∈ R

n, we use x⊗m to denote
the mth-order n-dimensional symmetric rank one tensor induced by x, i.e.,

(x⊗m)i1i2...im = xi1xi2 . . . xim , ∀ i1, . . . , im ∈ {1, . . . , n}.

We now collect some basic facts on real polynomials. Recall that f : Rn → R is a (real) polynomial
if there exists a number d ∈ N such that

f(x) :=
∑

0≤|α|≤d

fαx
α,

where fα ∈ R, x = (x1, · · · , xn), x
α := xα1

1 · · ·xαn
n , αi ∈ N∪{0}, and |α| := ∑n

j=1 αj . The correspond-
ing number d is called the degree of f , and is denoted by degf . For a degree d real polynomial f on

R
n with the form f(x) =

∑

0≤|α|≤d

fαx
α, its canonical homogenization f̃ is a homogeneous polynomial

on R
n+1 with degree d given by

f̃(x, t) =
∑

0≤|α|≤d

fαx
αtd−|α|.

A real polynomial f is called a sum-of-squares (SOS) polynomial if there exist r ∈ N and real poly-
nomials fj, j = 1, . . . , r, such that f =

∑r
j=1 f

2
j . An important property of the sum of squares

of polynomials is that checking a polynomial is sum of squares or not, is equivalent to solving a
semi-definite linear programming problem (cf. [38-40]).

Finally, we note that an mth-order n-dimensional symmetric tensor uniquely defines an mth degree
homogeneous real polynomial fA on R

n: for all x = (x1, . . . , xn)
T ∈ R

n,

fA(x) = 〈A, x⊗m〉 :=
n
∑

i1,...,im=1

Ai1i2···imxi1xi2 . . . xim .

Conversely, any mth degree homogeneous polynomial function f on R
n also uniquely corresponds a

symmetric tensor. Let n ∈ N and m be an even number. Define I(m,n) =

(

n+m− 1
n− 1

)

. It is

known that the space consists of all homogeneous polynomials on R
n with degree m is a finite dimen-

sional space with dimension I(m,n). Note that each A ∈ Sm,n uniquely corresponds a homogeneous
polynomial on R

n with degree m. It follows that dimSm,n = I(m,n).
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2.2 Positive Semidefinite Tensors and Their Associated Cones

Definition 2.1. (PSD tensor cone and SOS tensor cone) Let m be an even number and n ∈ N.
We say an mth-order n-dimensional symmetric tensor A is

(i) a positive semi-definite (PSD) tensor iff fA(x) := 〈A, x⊗m〉 ≥ 0 for all x ∈ R
n;

(ii) a sum-of-squares (SOS) tensor iff fA(x) := 〈A, x⊗m〉 is a sum-of-squares polynomial.

Moreover, we define the PSD tensor cone PSDm,n (resp. SOS tensor cone SOSm,n) to be the set
consisting of all positive semi-definite (resp. sum-of-squares) mth-order n-dimensional symmetric
tensors.

Note that any sum-of-squares polynomial must take non-negative values. So, SOSm,n ⊆ PSDm,n

for each m ∈ N and n ∈ N. It is known that [41,42] that SOSm,n = PSDm,n in one of the following
three cases: n = 1; m = 2; n = 3 and m = 4. Moreover, if m = 2, then PSDm,n and SOSm,n are
equal, and both collapse to the positive semi-definite matrix cone. On the other hand, the inclusion
SOSm,n ⊆ PSDm,n is strict in general. Indeed, let fM be the homogeneous Motzkin polynomial

fM (x) = x6
3 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3.

It is known that (cf. [43] ), fM takes non-negative value (by the Arithmetic-Geometric inequality),
and it is not a sum-of-squares polynomial. Let AM be the symmetric tensor associated to fM in the
sense that fM (x) = 〈AM , x⊗6〉. Then, we see that AM ∈ PSD6,3\SOS6,3.

Below, we identify a class of tensors with suitable sign structure such that they are sum-of-squares
whenever they are positive semidefinite.

Definition 2.2. (Essentially nonpositive/non-negative tensor) Define the index set I by

I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}.

We say an mth-order n-dimensional tensor A is

(i) essentially non-negative iff Ai1,...,im ≥ 0 for all {i1, . . . , im} /∈ I.

(ii) essentially nonpositive iff Ai1,...,im ≤ 0 for all {i1, . . . , im} /∈ I.

Define Em,n as the set consisting of all essentially nonpositive tensor, that is,

Em,n := {A ∈ Sm,n : A is essentially nonpositive}.

In the special case when the order m = 2, the definition of essentially nonpositive tensor reduces
to the notion of a Z-matrix. The class of essentially non-negative tensors was introduced in [36] (see
also [31]), and some interesting log-convexity results were discussed there. One interesting example
of essentially nonpositive tensors is the Laplacian tensor of a hypergraph, which was examined in
detail recently in [23-25]. From the definition, any tensor with non-negative entries is essentially
non-negative, while the converse may not be true in general.

For any essentially nonpositive tensor A, we establish that it is positive semi-definite if and only
if it is sum-of-squares. To do this, we first recall some definitions and a useful lemma.

Consider a homogeneous polynomial f(x) =
∑

α fαx
α with degree m (m is an even number). Let

fm,i be the coefficient associated with xm
i and

Ωf := {α := (α1, . . . , αn) ∈ (N ∪ {0})n : fα 6= 0 and α 6= mei, i = 1, . . . , n}, (1)

where ei be the vector whose ith component is one and all the other components are zero. We note
that

f(x) =
n
∑

i=1

fm,ix
m
i +

∑

α∈Ωf

fαx
α.
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Recall that 2N denotes the set consisting of all the even numbers. Define

∆f := {α = (α1, . . . , αn) ∈ Ωf : fα < 0 or α /∈ (2N ∪ {0})n}. (2)

We associate to f a new homogeneous polynomial f̂ , given by

f̂(x) =

n
∑

i=1

fm,i x
m
i −

∑

α∈∆f

|fα|xα.

We now recall the following useful lemma, which provides a test for verifying whether f is a sum of
squares polynomial or not in terms of the nonnegativity of the new homogeneous function f̂ .

Lemma 2.1. ([44, Corollary 2.8]) Let f be a homogeneous polynomial of degree m where m is an

even number. If f̂ is a polynomial which always takes non-negative values, then f is a sum-of-squares
polynomial.

We are now ready to state the fact that, any essentially nonpositive tensor is positive semi-definite
if and only if it is sum-of-squares. This fact was essentially established in [31]. For the self-containment
purpose, its proof is provided in the appendix for the reader’s convenience.

Proposition 2.1. It holds that PSDm,n ∩ Em,n = SOSm,n ∩ Em,n.

Next, we study the dual cone of PSDm,n. Recall that for a given closed and convex cone C in
Sm,n, its dual cone (or positive polar) C⊕ is defined as

C⊕ := {X ∈ Sm,n : 〈X , C〉 ≥ 0 for all C ∈ C}.

To establish the dual cone of PSDm,n, we first define a set which is the convex hull of all rank one
tensors.

Definition 2.3. Let m be an even number and n ∈ N. we define the set Um,n as the convex hull of
all mth-order n-dimensional symmetric rank one tensors, that is,

Um,n := conv{x⊗m : x ∈ R
n}.

Next, we justify that the set Um,n is indeed a closed convex cone.

Lemma 2.2. Let m be an even number and n ∈ N. Then, Um,n is a closed and convex cone with
dimension at most I(m,n).

Proof. From the definition, Um,n is a convex cone. Note that Um,n ⊆ Sm,n and Sm,n is of dimension
Im,n. So, Um,n is a convex cone with dimension at most I(m,n). To see the closeness of Um,n, we let

Ak ∈ Um,n with Ak → A. Then, for each k ∈ N, by the Carathéodory theorem, there exist xj
k ∈ R

n,
j = 1, . . . , I(m,n), such that

Ak =

I(m,n)
∑

j=1

(xj
k)

⊗m

As Ak → A, {‖Ak‖}k∈N is a bounded sequence. Note that

‖Ak‖2 ≥
I(m,n)
∑

j=1

n
∑

i1,...,im=1

[(xj
k)i1 . . . (x

j
k)im ]2 ≥

I(m,n)
∑

j=1

n
∑

i=1

[(xj
k)i]

2m.

So, {xj
k}k∈N, j = 1, . . . , I(m,n), are bounded sequences. By passing to subsequences, we can assume

that xj
k → xj , j = 1, . . . , I(m,n). Passing to the limit, we have

A =

I(m,n)
∑

j=1

(xj)⊗m ∈ Um,n.

Thus, the conclusion follows.
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We now present the duality result between the PSD cone and the rank-one tensor cone. In the
case that n = 3, Lemma 2.2 and the following result was established in [21].

Lemma 2.3. (Duality between PSD cone and rank-one tensor cone) It holds that

(Um,n)
⊕ = PSDm,n and PSD⊕

m,n = Um,n.

Proof. Let Z ∈ PSDm,n. Then, for all x ∈ R
n, 〈Z, x⊗m〉 ≥ 0. Let X ∈ Um,n. Then there exist p ∈ N

and xj ∈ R
n, j = 1, . . . , p, such that X =

∑p
j=1 x

⊗m
j . It follows that

〈X ,Z〉 = 〈
p

∑

j=1

x⊗m
j ,Z〉 =

p
∑

j=1

〈Z, x⊗m
j 〉 ≥ 0.

Thus, PSDm,n ⊆ (Um,n)
⊕. To see the converse inclusion, let X ∈ (Um,n)

⊕. Note that x⊗m ∈ Um,n

for all x ∈ R
n. Thus, 〈X , x⊗m〉 ≥ 0 for all x ∈ R

n. This implies that X ∈ PSDm,n, and so,
(Um,n)

⊕ ⊆ PSDm,n. Therefore, we see that (Um,n)
⊕ = PSDm,n.

To see the second assertion, we take polars on both sides of (Um,n)
⊕ = PSDm,n. It then follows

from the double polar theorem in convex analysis (cf [44]) that

PSD⊕
m,n = (Um,n)

⊕⊕ = cl conv(Um,n) = Um,n,

where cl convUm,n denotes the closed and convex hull of the set Um,n, and the last equality follows
from the preceding lemma. Thus, the conclusion follows.

3 Tensor Analogy of Yuan’s Alternative Theorem

In the section, we provide an extension of Yuan’s theorem of the alternative and homogeneous S-
lemma to the symmetric tensor setting. We start with the following technical proposition on hidden
convexity which will be useful for our later analysis.

Proposition 3.1. (Hidden Convexity) Let n, p ∈ N and let m be an even number. Let Fl be
mth-order n-dimensional essentially non-positive symmetric tensors, l = 0, 1, . . . , p. Define a set
M ⊆ R

p+1 by M := {(〈F0,X〉, . . . , 〈Fp, x
⊗m〉) : x ∈ R

n}+ intRp+1
+ . Then, we have

M = {(〈F0,X〉, . . . , 〈Fp,X〉) : X ∈ Um,n}+ intRp+1
+ , (3)

and M is a convex cone. In particular, the following statements are equivalent:

(i) (∃x ∈ R
n) (〈Fl, x

⊗m〉 < 0, l = 0, 1, . . . , p);

(ii) (∃X ∈ Um,n) (〈Fl,X〉 < 0, l = 0, 1, . . . , p).

Proof. To see (3), we first note that

M = {(〈F0,X〉, . . . , 〈Fp, x
⊗m〉) : x ∈ R

n}+ intRp+1
+ ⊆ {(〈F0,X〉, . . . , 〈Fp,X〉) : X ∈ Um,n}+ intRp+1

+

always holds. To get the reverse inclusion, we let

(u0, . . . , up) ∈ {(〈F0,X〉, . . . , 〈Fp,X〉) : X ∈ Um,n}+ intRp+1
+ .

Then, there exist X ∈ Um,n such that

〈Fl,X〉 < ul, l = 0, 1, . . . , p. (4)

As X ∈ Um,n and Um,n is a closed and convex cone with dimension at most I(m,n), there exist
uj ∈ R

n such that

X =

I(m,n)
∑

j=1

(uj)⊗m. (5)
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Define x̄ ∈ R
n by

x̄ = ( m
√

X1,...,1, . . . ,
m
√

Xn,...,n) =





m

√

√

√

√

I(m,n)
∑

j=1

(uj)m1 , . . . , m

√

√

√

√

I(m,n)
∑

j=1

(uj)mn



 .

We now show that 〈Fl, x̄
⊗m〉 ≤ 〈Fl,X〉 for all l = 0, 1, . . . , p. To see this, let

I = {(i1, . . . , im) : i1 = · · · = im}.

Then, for each l = 0, 1, . . . , p, we have

〈Fl, x̄
⊗m〉 =

n
∑

i1,...,im=1

(Fl)i1...im
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mi1 . . .
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mim

= [
n
∑

i=1

(Fl)i...i
(

I(m,n)
∑

j=1

(uj)mi
)

] +
∑

(i1,...,im)/∈I

(Fl)i1...im
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mi1 . . .
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mim

= [

n
∑

i=1

(Fl)i...i Xi...i] +
∑

(i1,...,im)/∈I

(Fl)i1...im
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mi1 · · ·
m

√

√

√

√

I(m,n)
∑

j=1

(uj)mim . (6)

Recall the following generalized Hölder inequality (cf [45]): for q ∈ N and akj ≥ 0, k = 1, . . . ,m and
j = 1, . . . , q

m
∏

k=1

q
∑

j=1

akj ≥





q
∑

j=1

m

√

√

√

√

m
∏

k=1

akj





m

.

Applying this inequality with akj = (uj)mik ≥ 0 and q = I(m,n), we have

m
∏

k=1

I(m,n)
∑

j=1

(uj)mik ≥





I(m,n)
∑

j=1

m

√

√

√

√

m
∏

k=1

(uj)mik





m

=





I(m,n)
∑

j=1

m
∏

k=1

|(uj)ik |





m

.

and so,

m
∏

k=1

m

√

√

√

√

I(m,n)
∑

j=1

(uj)mik ≥
I(m,n)
∑

j=1

m
∏

k=1

(uj)ik .

As Fl are essentially non-positive, for each l = 0, 1, . . . , p, (Fl)i1...im ≤ 0 for all (i1, . . . , im) /∈ I. This
together with (6) implies that

〈Fl, x̄
⊗m〉 ≤

n
∑

i=1

(Fl)i...i Xi...i +
∑

(i1,...,im)/∈I

(Fl)i1...im

I(m,n)
∑

j=1

(uj)i1 · · · (uj)im

=

n
∑

i=1

(Fl)i...i Xi...i +
∑

(i1,...,im)/∈I

(Fl)i1...imXi1...im

= 〈Fl,X〉,

where the first equality follows from (5). Thus, from (4), we have 〈Fl, x̄
⊗m〉 < ul, l = 0, 1, . . . , p. So,

(u0, . . . , up) ∈ M = {(〈F0,X〉, . . . , 〈Fp, x
⊗m〉) : x ∈ R

n} + intRp+1
+ , and hence (3) holds. From (3),

we see that M is clearly a convex cone. Finally, the equivalence between the statements (i) and (ii)
follows immediately by (3).
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Remark 3.1. (A useful inequality) The proof of the preceding proposition gives us the following
useful inequality: Let X ∈ Um,n and F ∈ Em,n. Define x̄ = ( m

√

X1,...,1, . . . , m
√

Xn,...,n). Then, we have

〈F , x̄⊗m〉 ≤ 〈F ,X〉.

Let P = (Pij) be an n × n real matrix. Define B = PmA as an mth-order n-dimensional tensor
where its entries are given by

Bi1···im =

n
∑

j1···jm=1

Pi1j1 · · ·PimjmAj1···jm .

Lemma 3.1. For a symmetric mth-order n-dimensional tensor A and an (n× n) matrix P , we have
〈A, (PTx)⊗m〉 = 〈PmA, x⊗m〉 for all x ∈ R

n.

Proof. From the definition, we have

〈A, (P T
x)⊗m〉 =

n
∑

i1···im=1

Ai1···im(P T
x)i1 · · · (P

T
x)im =

n
∑

i1···im=1

Ai1···im(
n
∑

j1=1

Pj1i1xj1) · · · (
n
∑

jm=1

Pjmimxjm )

=
n
∑

i1···im=1

Ai1···im

n
∑

j1···jm=1

(

Pj1i1xj1 · · ·Pjmimxjm

)

=

n
∑

i1···im=1

n
∑

j1···jm=1

Ai1···im

(

Pj1i1xj1 · · ·Pjmimxjm

)

=

n
∑

j1···jm=1

n
∑

i1···im=1

Pj1i1 · · ·PjmimAi1···imxj1 · · ·xjm .

Note that

(PmA)j1···jm =

n
∑

i1···im=1

Pj1i1 · · ·PjmimAi1···im .

It follows that

〈A, (PTx)⊗m〉 =

n
∑

j1···jm=1

n
∑

i1···im=1

Pj1i1 · · ·PjmimAi1···imxj1 · · ·xjm

=

n
∑

j1···jm=1

(PmA)j1···jmxj1 · · ·xjm

= 〈PmA, x⊗m〉.

Thus the conclusion follows.

We are now ready to state the extension of Yuan’s theorem of the alternative in symmetric tensor
setting.

Theorem 3.1. (Tensor Analogy of Yuan’s Alternative Theorem) Let n, p ∈ N and let m be
an even number. Let Fl, l = 0, 1, . . . , p, be mth-order n-dimensional symmetric tensors. Suppose
that there exists a nonsingular (n × n) matrix P such that PmFl, l = 0, 1, . . . , p, are all essentially
nonpositive tensors. Then, one and exactly one of the following statements holds:

(i) (∃x ∈ R
n) (〈Fl, x

⊗m〉 < 0, l = 0, 1, . . . , p);

(ii) (∃λl ≥ 0, l = 0, 1, . . . , p,

p
∑

l=0

λl = 1) (

p
∑

l=0

λlFl ∈ SOSm,n),

where SOSm,n is the mth-order n-dimensional sum-of-squares tensor cone and x⊗m is the mth-order
n-dimensional rank-one tensor induced by x.
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Proof. [(ii) ⇒ Not(i)] Suppose that statement (ii) holds. Then, there exist λl ≥ 0, l = 0, 1, . . . , p, with
∑p

l=0 λl = 1 such that
p

∑

l=0

λlFl ∈ SOSm,n.

We now establish that (i) must fail by using the method of contradiction. Suppose that (i) holds.
Then, there exists u ∈ R

n be such that 〈Fl, u
⊗m〉 < 0, l = 0, 1, . . . , p. It follows that

0 ≤ 〈
p

∑

l=0

λlFl, u
⊗m〉 ≤ max

0≤l≤p
〈Fl, u

⊗m〉 < 0.

This is impossible, and so (i) must fail.
[Not(i) ⇒ (ii)] Suppose that (i) fails. Then, the following system has no solution:

(∃x ∈ R
n) (〈Fl, x

⊗m〉 < 0, l = 0, 1, . . . , p).

Letting x = PT y, this implies that the following system has no solution:

(∃y ∈ R
n) (〈Fl, (P

T y)⊗m〉 < 0, l = 0, 1, . . . , p).

Note from the preceding lemma that 〈Fl, (P
T y)⊗m〉 = 〈PmFl, y

⊗m〉. This together with the equiva-
lence between statements (i) and (ii) in Proposition 3.1 implies that the following system also has no
solution

(∃X ∈ Um,n)(〈PmFl,X〉 < 0, l = 0, 1, . . . , p).

This implies that (0, . . . , 0) /∈ {(〈PmF0,X〉, . . . , 〈PmFp,X〉) : X ∈ Um,n} + intRp+1
+ . As Um,n is a

convex cone, {(〈PmF0,X〉, . . . , 〈PmFp,X〉) : X ∈ Um,n} is also a convex cone, and so,

C := {(〈PmF0,X〉, . . . , 〈PmFp,X〉) : X ∈ Um,n}+ intRp+1
+

is a convex cone. Then, the standard separation theorem (cf [44, Theorem 1.1.3]) implies that there
exists (µ0, . . . , µp) ∈ R

p+1\{0} such that

0 ≤
p

∑

l=0

µlal for all (a0, a1, . . . , ap) ∈ C.

As C + intRp+1
+ ⊆ C, it follows that µl ≥ 0, l = 0, 1, . . . , p. So, (µ0, . . . , µp) ∈ R

p+1
+ \{0} and hence

∑p
l=0 µl > 0. Let λl =

µl∑p

l=0
µl

≥ 0. Then,
∑p

l=0 λl = 1 and

p
∑

l=0

λlal ≥ 0 for all (a0, a1, . . . , ap) ∈ C

In particular, this shows that, for each ǫ > 0,

p
∑

l=0

λl(〈PmFl,X〉) + ǫ =

p
∑

l=0

λl(〈PmFl,X〉+ ǫ) ≥ 0 for all X ∈ Um,n.

Let ǫ → 0. This implies that

p
∑

l=0

λl〈PmFl,X〉 ≥ 0 for all X ∈ Um,n.

In other words,
p

∑

l=0

λl P
mFl ∈ (Um,n)

⊕ = PSDm,n.
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To finish the proof, we only need to show that

p
∑

l=0

λl Fl ∈ SOSm,n. To see this, note from our assump-

tion that

p
∑

l=0

λl P
mFl ∈ Em,n. It follows that

p
∑

l=0

λl P
mFl ∈ PSDm,n ∩ Em,n. Then, Proposition 2.1

gives us that

p
∑

l=0

λl P
mFl ∈ SOSm,n. So, σ(x) := 〈∑p

l=0 λl P
mFl, x

⊗m〉 is a sum-of-squares polynomial

on R
n with degree m. This together with Lemma 3.1 implies that for all z ∈ R

n

p
∑

l=0

〈λlFl, (P
T z)⊗m〉 =

p
∑

l=0

λl〈PmFl, z
⊗m〉 = 〈

p
∑

l=0

λl P
mFl, z

⊗m〉 = σ(z).

So, for all x ∈ R
n

p
∑

l=0

〈λlFl, x
⊗m〉 = σ((PT )−1x)

is also a sum-of-squares polynomial on R
n with degree m. Thus,

p
∑

l=0

λl Fl ∈ SOSm,n, and hence the

conclusion follows.

In the matrix case, Theorem 3.1 reduces to the following theorem of the alternative presented in
[10] (see also [11]).

Corollary 3.1. (Matrix Cases) Let A0, A1, . . . , Ap, p ∈ N be symmetric (n × n) matrices. Sup-
pose that there exists a nonsingular (n× n) matrix Q such that QTA0Q,QTA1Q, . . . , QTApQ are all
matrices with non-positive off-diagonal elements. Then exactly one of the following statements holds:

(i) there exists x ∈ R
n such that xTAlx < 0, l = 0, 1, . . . , p;

(ii) (∃λl ≥ 0, l = 0, 1, . . . , p,

p
∑

l=0

λl = 1) (

p
∑

l=0

λlAl is positive semidefinite).

Proof. In the special case when m = 2 (and so, Fl = Fl are (n × n) symmetric matrices), we have
〈Fl, x

⊗m〉 = xTFlx and SOSm,n collapses to the positive semi-definite matrix cone. So, the conclusion
follows from the preceding theorem by letting the order m = 2.

We note that, in Corollary 3.1, the assumption “there exists a nonsingular (n × n) matrix Q
such that QTA0Q,QTA1Q, . . . , QTApQ are all matrices with non-positive off-diagonal elements” is
superfluous when only two quadratic functions are involved (that is, p = 1). This was explained in
[10, Remark 2.3]. In this case, Corollary 3.1 reduces to Yuan’s theorem of the alternative. Therefore,
Theorem 3.1 can be regarded as an extension of Yuan’s theorem of the alternative to the symmetric
tensor setting.

However, unlike the matrix cases, if the condition “there exists a nonsingular (n × n) matrix P
such that PmFl, l = 0, 1, . . . , p, are all essentially nonpositive tensors“ is dropped, the above tensor
analogy of Yuan’s theorem of the alternative can fail even in the case p = 1. We illustrate this fact
by the following example.

Example 3.1. Let fM be the homogeneous Motzkin polynomial, that is,

fM (x1, x2, x3) = x6
3 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3, x = (x1, x2, x3) ∈ R

3.

Let f0, f1 be polynomials with degree 6 on R
4 defined by

f0(x1, x2, x3, x4) = fM (x1, x2, x3) and f1(x1, x2, x3, x4) = x6
1 + x6

2 + x6
3 − x6

4.
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Let Fi be the symmetric tensors associated to fi, i = 1, 2, in the sense that fi(x) = 〈Fi, x
⊗6〉, for

all x ∈ R
4. As the homogeneous Motzkin polynomial always takes non-negative value, one cannot

find x ∈ R
4 such that 〈Fi, x

⊗m〉 < 0, i = 0, 1. This implies that statement (1) in Theorem 3.1 fails.
We now see that statement (2) in Theorem 3.1 also fails. Suppose on the contrary that there exist
λ0, λ1 ≥ 0 with λ0 + λ1 = 1 such that λ0F0 + λ1F1 ∈ SOS6,4. Note that f0 does not depend on x4

and f1(x1, x2, x3, x4) → −∞ as x4 → ∞ for fixed x1, x2, x3. It follows that λ1 = 0 (and so, λ0 = 1).
Hence, F0 ∈ SOS6,4. This contradicts the fact that the homogeneous Motzkin polynomial is not a
sum-of-squares polynomial. Therefore, for this example, statements (i) and (ii) in Theorem 3.1 both
fail.

As a consequence, we now provide an extension of the homogeneous S-lemma as follows.

Corollary 3.2. (Tensor Analogy of Homogeneous S-lemma) Let n, p ∈ N and let m be an
even number. Let Fl, l = 0, 1, . . . , p, be mth-order n-dimensional symmetric tensors. Suppose that
there exists a nonsingular matrix P such that PmFl, l = 0, 1, . . . , p, are all essentially nonpositive
tensors. Suppose that there exists x0 ∈ R

n such that 〈Fl, x
⊗m
0 〉 < 0, l = 1, . . . , p. Then, the following

statements are equivalent:

(i) 〈Fl, x
⊗m〉 ≤ 0, l = 1, . . . , p ⇒ 〈F0, x

⊗m〉 ≥ 0;

(ii) (∃λl ≥ 0, l = 1, . . . , p) (F0 +

p
∑

l=1

λlFl ∈ SOSm,n).

Proof. [(ii) ⇒ (i)] Suppose that statement (ii) holds. Then, there exist λl ≥ 0, l = 1, . . . , p such that

F0 +

p
∑

l=1

λlFl ∈ SOSm,n ⊆ PSDm,n.

Let x ∈ R
n such that 〈Fl, x

⊗m〉 ≤ 0, l = 1, . . . , p. Then,

0 ≤ 〈F0 +

p
∑

l=1

λlFl, x
⊗m〉 = 〈F0, x

⊗m〉+
p

∑

l=1

λl〈Fl, x
⊗m〉 ≤ 〈F0, x

⊗m〉.

Thus, (i) follows.
[(i) ⇒ (ii)] Suppose that (i) holds. Then, the following inequality system has no solution

(∃x ∈ R
n) (〈Fl, x

⊗m〉 < 0, l = 0, 1, . . . , p).

Then, the preceding alternative theorem implies that there exist λ̄l ≥ 0, l = 0, 1, . . . , p, with

p
∑

l=0

λ̄l = 1

such that
p

∑

l=0

λ̄lFl = A ∈ SOSm,n.

We now observe that λ̄0 > 0 (Otherwise, λ̄0 = 0 and so,
∑p

l=1 λ̄l = 1 and
∑p

l=1 λ̄lFl ∈ SOSm,n. This
gives us that

0 ≤ 〈
p

∑

l=1

λ̄lFl, x
⊗m
0 〉 =

p
∑

l=1

λ̄l〈Fl, x
⊗m
0 〉 ≤ max

1≤l≤p
〈Fl, x

⊗m
0 〉 < 0,

which is impossible). Let λl = λ̄l/λ̄0, l = 1, . . . , p. Then, we have

F0 +

p
∑

l=1

λlFl = (λ̄0)
−1A ∈ SOSm,n.

Thus, the conclusion follows.

Remark 3.2. Similar to the Yuan’s theorem of the alternative, in the case whenm = 2 and p = 1 (that
is, inequality system involving two homogeneous quadratic functions), the above corollary collapses
to the well-known homogeneous S-lemma (cf. [4]).
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4 Application: Polynomial Optimization with Essentially Non-

positive Coefficients

In this section, as an application of our theorem of the alternative, we establish an exact conic program-
ming relaxation result for polynomial optimization problems with essentially nonpositive coefficients.
To do this, we first introduce the definition of polynomials with essentially nonpositive coefficients.

Definition 4.1. (Polynomials with essentially nonpositive coefficients) Let f be a polynomial
on R

n with degree m. Let r = f(0) be the constant term of f and let fm,i be the coefficient associated
with xm

i . Recall that

Ωf = {α = (α1, . . . , αn) ∈ (N ∪ {0})n : fα 6= 0 and α 6= mei, i = 1, . . . , n}, (7)

where ei be the vector whose ith component is one and all the other components are zero. We note
that f can be written as

f(x) =

n
∑

i=1

fm,ix
m
i +

∑

α∈Ωf\{0}

fαx
α + r.

We say f has essentially nonpositive coefficients if fα ≤ 0 for all α ∈ Ωf\{0}.

Let n ∈ N and letm be an even number. Consider the following nonconvex polynomial optimization
problem with essentially nonpositive coefficients:

(P ) min
x∈Rn

{f0(x) : fl(x) ≤ 0, l = 1, . . . , p}.

where fl, l = 0, 1, . . . , p, are polynomials on R
n with essentially nonpositive coefficients and degree

m. We use min(P ) to denote the optimal value of problem (P). Throughout this section, we always
assume that the feasible set of (P) is nonempty.

Below, we first establish that the optimal value of problem (P) can be found by a conic program-
ming problem and the optimal solution of (P) can be recovered by a solution of the corresponding
conic programming problem. To do this, we introduce the canonical homogenization of a polynomial
and a conic programming problem as follows.

Consider the following conic programming problem

(CP ) min{〈F̃0,X〉 : 〈F̃l,X〉 ≤ 0, l = 1, . . . , p, Xn+1...n+1 = 1, X ∈ Um,n+1}.

where each F̃l, l = 0, 1, . . . , p, is the symmetric tensor associated with the canonical homogenization
of f̃l, that is, f̃l(x̃) = 〈F̃l, x̃

⊗m〉 for any x̃ = (xT , t)T ∈ R
n+1.

Lemma 4.1. Let n ∈ N and let m be an even number. Let f be a polynomial on R
n with essentially

nonpositive coefficients and degree m, and let f̃ be the canonical homogenization of f . Let F̃ be the
symmetric tensor associated with the canonical homogenization of f̃ , that is, f̃(x̃) = 〈F̃ , x̃⊗m〉 for any
x̃ = (xT , t)T ∈ R

n+1. Then, F̃ is an essentially nonpositive tensor.

Proof. For each real polynomial f with essentially nonpositive coefficients, we can decompose it as

f(x) =

n
∑

i=1

fm,ix
m
i +

∑

α∈Ωf\{0}

fα xα + r,

where r = f(0) and fα ≤ 0 for all α ∈ Ωf\{0}. Its canonical homogenization can be written as

f̃(x, t) =

n
∑

i=1

fm,ix
m
i +

∑

α∈Ωf\{0}

fα xαtm−|α| + r tm for all (xT , t)T ∈ R
n+1.
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Recall that F̃ is the symmetric tensor associated with the canonical homogenization of f̃ , that is, for
all x̃ = (xT , t)T ∈ R

n+1,

f̃(x̃) = 〈F̃ , x̃⊗m〉 =
n+1
∑

i1···im=1

F̃i1,...,im x̃i1 . . . x̃im .

Note that each m-th order (n + 1)-dimensional symmetric tensor uniquely corresponds a degree m
homogeneous polynomial on R

n+1. As fα ≤ 0 for all α ∈ Ωf\{0}, it follows that

F̃i1,...,im ≤ 0 for all (i1, . . . , im) ∈ I,

where I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n+ 1}. Therefore, F̃ is essentially nonpositive.

Theorem 4.1. (Exact Solutions via Conic Programs) Let n ∈ N and let m be an even number.
Let F̃l be the mth-order (n + 1)-dimensional symmetric tensor associated with the canonical homog-
enization of f̃l, that is, f̃l(x̃) = 〈F̃l, x̃

⊗m〉 for any x̃ = (xT , t)T ∈ R
n+1. Consider the nonconvex

polynomial optimization problem with essentially nonpositive coefficients (P) and its associated conic
relaxation problem (CP). Then, we have min(P ) = min(CP ). Moreover, for any solution X̄ of (CP),

x̄ := ( m

√

X̄1,...,1, . . . ,
m

√

X̄n,...,n) ∈ R
n

is a solution of (P).

Proof. Let f̃l be the canonical homogenization of fl, l = 0, 1, . . . , p. Note that f̃l(x, 1) = fl(x) for all
x ∈ R

n and l = 0, 1, . . . , p. We first see that

min(P ) = min
x̃=(xT ,t)T∈Rn+1

{f̃0(x, t) : f̃l(x, t) ≤ 0, l = 1, . . . , p, t = 1}

= min
x̃=(xT ,t)T∈Rn+1

{〈F̃0, x̃
⊗m〉 : 〈F̃l, x̃

⊗m〉 ≤ 0, l = 1, . . . , p, t = 1}

≥ min{〈F̃0,X〉 : 〈F̃l,X〉 ≤ 0, l = 1, . . . , p, Xn+1,...,n+1 = 1, X ∈ Um,n+1}
= min(CP ),

where the inequality follows as {x̃⊗m : x̃ = (xT , 1)T ∈ R
n+1} ⊆ {X ∈ Um,n+1 : Xn+1,...,n+1 = 1}.

On the other hand, let X ∈ Um,n+1 with 〈F̃l,X〉 ≤ 0, l = 1, . . . , p and Xn+1,...,n+1 = 1. Define

x = ( m
√

X1,...,1, . . . , m
√

Xn,...,n) and x̃ = (xT , 1)T . As F̃l, l = 0, 1, . . . , p, are all essentially nonpositive
tensors, then Remark 3.1 implies that

fl(x) = f̃l(x̃) = 〈F̃l, x̃
⊗m〉 ≤ 〈F̃l,X〉.

This implies that, fl(x) ≤ 0 for each l = 1, . . . , p (and so, x is feasible for (P)), and f0(x) ≤ 〈F̃0,X〉.
So, min(P ) ≤ min(CP ). Thus, we see that min(P ) = min(CP ).

To see the last assertion, let X̄ be a solution of (CP) and let

x̄ := ( m

√

X̄1,...,1, . . . ,
m

√

X̄n,...,n) ∈ R
n.

Then, using similar argument as before, we have fl(x̄) ≤ 〈F̃l, X̄ 〉, l = 0, . . . , p. So, x̄ is feasible for (P)
and min(P ) = f0(x̄) ≤ min(CP ). Thus, the conclusion follows as min(P ) = min(CP ).

It is worth noting that, in general, checking the membership problem X ∈ Um,n+1 is, in general,
an NP hard problem. Thus, solving the above conic programming problem is, in general, again a
hard problem. This motivates us to examine an alternative tractable approach for solving nonconvex
polynomial optimization problem with essentially non-positive coefficients.
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Below we show that the optimal value of the nonconvex polynomial optimization problem with
essentially non-positive coefficients (P) can be computed by the following sum-of-squares program:

(SOS) max{µ : f0 +

p
∑

l=1

λlfl − µ = σ0, λl ≥ 0, l = 1, . . . , p, σ0 is SOS, degσ0 ≤ m}. .

We note that this problem can be regarded as the first level problem in the celebrated Lasserre
hierarchy approximation of the general polynomial optimization problem. Moreover, the above sum-
of-squares program can be equivalently reformulated as a semidefinite programming problem. For
details see the excellent surveys [38,39].

Theorem 4.2. (Exact Sums-of-Squares Relaxation) Let n, p ∈ N and let m be an even number.
Let fl, l = 0, 1, . . . , p, be polynomials on R

n with essentially nonpositive coefficients and degree m.
Consider the nonconvex polynomial optimization problem with essentially nonpositive coefficients (P).
Suppose that the strict feasibility condition holds, i.e., there exists x0 ∈ R

n such that fl(x0) < 0 for
all l = 1, . . . , p. Then, we have

min(P ) = max{µ : f0 +

p
∑

l=1

λlfl − µ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m},

and the maximum in the sum-of-squares problem is attained.

Proof. We first observe that

min(P ) ≥ max{µ : f0 +

p
∑

l=1

λlfl − µ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m},

always holds. To see the reverse inequality and the attainment, we can assume that min(P ) > −∞. As
the feasible set of (P) is nonempty, γ := min(P ) ∈ R. This implies that the following strict inequality
system has no solution::

x ∈ R
n, fl(x) < 0, l = 1, . . . , p and f0(x)− γ < 0.

Let f̃l be the canonical homogenization of fl, l = 0, 1, . . . , p. From the definition of canonical ho-
mogenization, f̃l(x, 1) = fl(x) for all x ∈ R

n, l = 0, 1, . . . , p. We now see that the following strict
homogeneous inequality system also has no solution:

(xT , t)T ∈ R
n+1, f̃l(x, t) < 0, l = 1, . . . , p and f̃0(x, t) − γtm < 0. (8)

Suppose on the contrary that there exists (x̄T , t̄ )T ∈ R
n+1 such that

f̃l(x̄, t̄ ) < 0, l = 1, . . . , p and f̃0(x̄, t̄)− γt̄m < 0.

If t̄ 6= 0, then we have

fl(
x̄

t̄
) = f̃l(

x̄

t̄
, 1) =

f̃l(x̄, t̄)

t̄m
< 0, l = 1, . . . , p and f0(

x̄

t̄
)− γ = f̃0(

x̄

t̄
, 1)− γ =

f̃0(x̄, t̄)− γt̄m

t̄m
< 0.

This makes contradiction. Now, if t̄ = 0, then we have

f̃l(x̄, 0) < 0, l = 1, . . . , p and f̃0(x̄, 0) < 0.
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This implies that limµ→+∞ fl(µx̄) = −∞, l = 0, 1, . . . , p, and so, for all large µ > 0,

fl(µx̄) < 0, l = 1, . . . , p and f0(µx̄) < γ.

This also makes contradiction, and hence the claim (8) follows.
Letting En+1 be the mth-order (n+ 1)-dimensional symmetric tensor such that 〈En+1, x̃

⊗m〉 = tm

for x̃ = (xT , t)T ∈ R
n+1 and noting that f̃l(x̃) = 〈F̃l, x̃

⊗m〉 for any x̃ = (xT , t)T ∈ R
n+1, (8) gives us

that the following system has no solution

〈F̃l, x̃
⊗m〉 < 0, l = 1, . . . , p and 〈F̃0 − γEn+1, x̃

⊗m〉 < 0.

Note that Fl, l = 0, 1, . . . , p, are all essentially nonpositive tensors (and so, F̃0−γEn+1 is also essentially
nonpositive). Then, Theorem 3.1 implies that there exist λl ≥ 0, l = 0, 1, . . . , p, such that

∑p
l=0 λl = 1

and

λ0(F̃0 − γEn+1) +

p
∑

l=1

λlF̃l ∈ SOSm,n+1.

This shows that

σ̃0(x, t) := 〈λ0(F̃0 − γEn+1) +

p
∑

l=1

λlF̃l, x̃
⊗m〉 = λ0(f̃0(x, t) − γtm) +

p
∑

l=1

λlf̃l(x, t) (9)

is a sum-of-squares polynomial with degree m. Letting t = 1 in (9), it follows that

λ0(f0(x)− γ) +

p
∑

l=1

λlfl(x) = σ̃0(x, 1) (10)

is a sum-of-squares polynomial with degree m. We now show that λ0 > 0. Indeed, if λ0 = 0, then
∑p

l=1 λl = 1 and
p

∑

l=1

λlfl(x) = σ̃0(x, 1) ≥ 0 for all x ∈ R
n.

Thus, the strict feasibility condition implies that λl = 0, l = 1, . . . , p. This contradicts the fact that
∑p

l=1 λl = 1, and so, λ0 > 0. Dividing λ0 on both sides of (10) shows that

f0(x)− γ +

p
∑

l=1

λl

λ0
fl(x) =

σ̃0(x, 1)

λ0
,

is a sum-of-squares polynomial with degree m, and so,

min(P ) = γ ≤ max{µ : f0 +

p
∑

l=1

λlfl − µ = σ0,

λl ≥ 0, l = 1, . . . , p,

σ0 is SOS, degσ0 ≤ m}.

Thus, the conclusion follows.

Remark 4.1. (Connection to the existing result in polynomial optimization) It is known that
the optimal value of a general nonconvex polynomial optimization problem can be approximated by a
sequence of semidefinite programming problem under the so-called Archimedean assumption. We note
that the Archimedean assumption implies the feasible set of the nonconvex polynomial optimization
problemmust be compact. This sequence of semidefinite programming problem is now often referred as
Lasserre hierarchy and becomes one of the important and popular tools in solving a general polynomial
optimization problem with compact feasible sets. For excellent survey see [37,38,46]. It is worth noting
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that, if we have some prior knowledge about a solution x∗ (say ‖x∗‖ ≤ R for some R > 0), one can
impose an additional constraint ‖x‖2 ≤ R2 and convert the problem into an optimization problem
with compact feasible set. In this case, a global solution can be found by using this big ball approach
as long as we have some prior knowledge about a solution. Moreover, there are also some other
approaches for solving polynomial optimization problems with unbounded feasible sets by exploiting
gradient ideals of the underlying problem (for example, see [48-50]).

On the other hand, Theorem 4.2 shows that the optimal value of a nonconvex polynomial optimiza-
tion problem with essentially nonpositive coefficients can be found by solving the first level problem
in the Lasserre hierarchy approximation under the strict feasibility condition. Interestingly, Theorem
4.2 allows the feasible set to be non-compact (see Example 4.3) without having prior knowledge of
the solution x∗.

As a corollary, we show that the nonconvex polynomial optimization problem with generalized lm-
type constraints enjoys exact sum-of-squares relaxation whenever the objective function has essentially
nonpositive coefficients.

Corollary 4.1. (Exact Sums-of-Squares Relaxation for generalized lm constraints) Let m be
an even number and let n ∈ N. Let f0 be a polynomial on R

n with essentially nonpositive coefficients
and degree m. Consider the following nonconvex polynomial optimization problem with generalized
lm-type constraint:

(Plm) min
x∈Rn

{f0(x) :
n
∑

i=1

aix
m
i ≤ 1},

where ai ∈ R, i = 1, . . . , n. Let f1(x) =
∑n

i=1 aix
m
i − 1. Then, we have

min(Plm ) = max{µ : f0 + λf1 − µ = σ0,

λ ≥ 0, µ ∈ R

σ0 is SOS, degσ0 ≤ m},

and the maximum in the sum-of-squares problem is attained.

Proof. Clearly, f1(0) = −1 and so, the strict feasibility condition is satisfied for (Plm). So, the
conclusion follows from the preceding theorem.

Remark 4.2. (Further links to the existing literature) Below, we compare the preceding corol-
lary with some known results in the literature.

(1) We first discuss the relationship of problem (Plm) and the positive-definiteness problem of a
symmetric tensor. Let A be a symmetric tensor and let fA(x) = 〈A, x⊗m〉. We say the tensor
A is positive definite if fA(x) > 0 for all x ∈ R

n\{0}. This is equivalent to the fact that the
optimal value of the following polynomial optimization problem is positive:

min
x∈Rn

{fA(x) :
n
∑

i=1

xm
i ≤ 1}.

Note that this is a special case of Plm with homogeneous objective function and ai = 1. So, the
preceding corollary shows that the positive definiteness of an essentially non-positive tensor can
be tested by solving a sum-of-squares programming problem. This result has been established
very recently in [31].

(2) Recently, the nonconvex polynomial optimization problem with generalized lm-type constraint
was studied in [51] and a geometric programming relaxation problem was proposed to calculate
the lower bound of the optimal value of the problem (see also [52]). It was demonstrated that
the lower bound provided by the geometric programming relaxation is a lower bound of the sum-
of-squares relaxation and can be more efficient from the computational point of view comparing
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to the sum-of-squares relaxation. At this moment, it is not clear for us whether the geometric
programming relaxation is indeed exact in the case when the objective function is a polynomial
with essentially nonpositive coefficients. This would be an interesting research question for our
further study.

Before we end this section, we provide an example verifying Theorem 4.2 and Corollary 4.1.

Example 4.1. Let f0 be a homogeneous polynomial on R
3 with degree 6 defined by

f0(x1, x2, x3) = x6
1 + x6

2 + x6
3 − (x2

1(x
4
2 + x4

3) + x2
2(x

4
1 + x4

3) + x2
3(x

4
1 + x4

2)).

Clearly f is a homogeneous polynomial with essentially non-positive coefficients. Consider the homo-
geneous polynomial optimization problem

(EP3) min
x∈R3

{f0(x) : x6
1 + x6

2 + x6
3 ≤ 1} .

Let f1(x) = x6
1 + x6

2 + x6
3 − 1. Then, the corresponding sum-of-squares relaxation is given by

(REP3) max
λ≥0,µ∈R

{µ : f0 + λf1 − µ = σ0, σ0 is SOS and degσ0 ≤ 6}

Solving the sum of squares programming problem (REP3) via YALMIP (see [53,54]) gives us that
min(REP3) = −1.

On the other hand, note that the following Robinson polynomial (cf. [41])

fR(x) = x6
1 + x6

2 + x6
3 − (x2

1(x
4
2 + x4

3) + x2
2(x

4
1 + x4

3) + x2
3(x

4
1 + x4

2)) + 3x2
1x

2
2x

2
3

is always non-negative, and fR(x) = f0(x) + 3x2
1x

2
2x

2
3. This implies that, for all (x1, x2, x3) with

x6
1 + x6

2 + x6
3 ≤ 1,

f0(x) ≥ −3x2
1x

2
2x

2
3 ≥ −3(

(x2
1)

3 + (x2
2)

3 + (x2
3)

3

3
) ≥ −1,

where the second inequality follows by the inequality of arithmetic and geometric means. Moreover,

note that (x̄1, x̄2, x̄3) = ( 6

√

1
3 ,

6

√

1
3 ,

6

√

1
3 ) satisfies x̄

6
1+x̄6

2+x̄6
3 ≤ 1 and f0(x̄) = −1. So, min(EP3) = −1.

This verifies the sum-of-squares relaxation is exact for this example.

4.1 Examples

Below, we present a few numerical examples. The first example shows that the conclusion of Theorem
4.2 can fail if a polynomial optimization problem does not have essentially nonpositive coefficients.
The second example illustrate that Theorem 4.2 can be applied to a polynomial optimization problem
with possibly non-compact feasible set.

Example 4.2. (Importance of the assumption on essentially nonpositive coefficients) Let
fM be the homogeneous Motzkin polynomial

fM (x) = x6
3 + x2

1x
4
2 + x4

1x
2
2 − 3x2

1x
2
2x

2
3.

It is clear that fM is not a polynomial with essentially nonpositive coefficients. It is known that fM is
a polynomial which takes non-negative values but is not a sum-of-squares polynomial [41]. Consider
the following polynomial optimization problem

(EP1) min
x∈R3

{fM (x) : x6
1 + x6

2 + x6
3 ≤ 1} .

Clearly, min(EP1) = 0 (as fM takes non-negative value). Let f1(x) = x6
1 + x6

2 + x6
3 − 1. The

sum-of-squares relaxation of (EP1) takes the form

(REP1) max
λ≥0,µ∈R

{µ : fM + λf1 − µ = σ0, σ0 is SOS and degσ0 ≤ 6}
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We now show that the conclusion of Theorem 4.2 fails. To see this, we suppose on the contrary that
there exist λ ≥ 0 and a sum-of-squares polynomial σ0 with degree at most 6 such that fM + λf1 = σ0.
Note that 0 ≤ σ0(0) = fM (0) + λf1(0) = −λ. This together with λ ≥ 0 implies that λ = 0, and so,
fM = σ0 which is a sum-of-squares polynomial. This contradicts the fact that fM is not a sum-of-
squares polynomial. Thus the conclusion of Theorem 4.2 fails.

Example 4.3. (An example with noncompact feasible set) Let f0 be a homogeneous polynomial
on R

3 with degree 4 defined by f0(x1, x2, x3) = x4
1+x4

2+x4
3−4x1x

3
3. Clearly, f is a homogeneous poly-

nomial with essentially non-positive coefficients. Consider the homogeneous polynomial optimization
problem

(EP2) min
x∈R3

{f0(x) : x4
1 −

1

2
x4
2 + x4

3 ≤ 1}.

Clearly, the feasible set of (EP2) is not compact. Let f1(x) = x4
1− 1

2x
4
2+x4

3−1. Then, the corresponding
sum-of-squares relaxation is given by

(REP2) max
λ≥0,µ∈R

{µ : f0 + λf1 − µ = σ0, σ0 is SOS and degσ0 ≤ 4}

Solving the sum of squares programming problem (REP2) via YALMIP (see [52,53]) gives us that
min(REP2) = −1.2795.

On the other hand, direct calculation shows that for any global minimizer of (EP2) satisfies the
following KKT condition: there exist λ ≥ 0 and (x1, x2, x3) with x4

1 − 1
2x

4
2 + x4

3 ≤ 1 such that







x3
1 − x3

3 + λx3
1 = 0,

x3
2 − λ

2x
3
2 = 0,

x3
3 − 3x1x

2
3 + λx3

3 = 0.

Solving this homogeneous polynomial equality system gives us that λ = 2 or λ = 4
√
27 − 1 and the

possible KKT points are

{(0, x2, 0) : x2 ∈ R} ∪ {(x1, 0, x3) : x3 =
4
√
3 x1, |x1| ≤ 4

√

1

4
}.

By comparing the corresponding objective function values of the KKT points, it can be verified that
the optimal value of (EP2) is 1 − 4

√
27 ≈ −1.2795. This verifies that the sum-of-squares relaxation is

exact.

5 Perspectives

Alternative theorems for arbitrary finite systems of linear or convex inequalities have played key roles
in the development of optimality conditions for continuous optimization problems. Although these
theorems are generally not valid for an arbitrary finite system of (possibly nonconvex) quadratic
inequalities, recent research has established alternative theorems for quadratic systems involving two
inequalities or arbitrary inequalities involving suitable sign structure. For instance, a theorem of the
alternative of Gordan type for a strict inequality system of two homogeneous quadratic functions has
been given in [1], where it was used in convergence analysis of trust-region algorithms. This Theorem
is often referred as Yuan’s theorem of the alternative and has closed connection with the convexity of
joint-range of homogeneous quadratic functions even though the functions may be non-convex [3,4].

On the other hand, tensor computation and optimization problems involving polynomials arise in
a wide variety of contexts, including operational research, statistics, probability, finance, computer
science, structural engineering, statistical physics, computational biology and graph theory [33,37,38].
They are however extremely challenging to solve, both in theory and practice. A fascinating feature
of this field is that it can be approached from several different directions. In addition to traditional
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techniques drawn from operational research, computer science and numerical analysis, new techniques
have recently emerged based on concepts taken from algebraic geometry, moment theory, multilinear
algebra and modern convex programming (semidefinite programming).

Due to the wide application of tensor computation and polynomial optimization, an important
research topic is to obtain a tractable extension of alternative theorem for system of homogeneous
polynomial inequalities (or equivalently inequalities involving tensors). Obtaining such a multilinear
(or tensor) version of an theorem of the alternative is extremely useful as it naturally leads to nu-
merically checkable conditions for a global minimizer of a related polynomial optimization problem.
Unfortunately, in general, this is an extreme challenging task. Two of the main obstructions are (1)
some of the nice geometric structure (such as joint-range convexity) for homogeneous quadratic func-
tions cannot be carried forward to polynomial cases, and are more challenging to exploit (2) unlike
the quadratic cases, checking the nonnegativity of a homogeneous polynomial (or equivalently the
positive semi-definiteness of a symmetric tensor) is, in general, an NP-hard problem [13,37,38].

In this paper, we provided a tractable extension of Yuan’s theorem of the alternative in the
symmetric tensor setting. We achieve this by exploiting two important features of a special class
of tensors (called essentially non-positive tensors): hidden convexity and numerical checkability. As
an immediate application, we showed that the optimal value and optimal solution of a nonconvex
polynomial optimization problem with essentially nonpositive coefficients can be found by a related
convex conic programming problem. We also established that this class of polynomial optimization
problem enjoys exact sum-of-squares relaxation.

Our results point out some useful observations and interesting further research topics. In par-
ticular, although a tensor problem (or a polynomial optimization problem) is, in general NP-hard,
we feel that it is important to exploit the special structure of the underlying problem and push the
boundary of the tractable classes of problems. This is of particular importance because (1) those
tractable classes are the problems we can efficiently solve via the current software/technology; (2)
many of the practical problems often come with some special structures (such as sign structure and
sparse structure) naturally. The results presented in this paper suggest that problems involving ten-
sors/polynomials with suitable sign structure would be a good candidate for the tractable classes. In
fact, this is not a coincidence as it was shown recently that almost the whole Perron-Frobenius theory
for non-negative matrices can be extended to tensor setting, and so, the extreme eigenvalue problem
involving tensors with non-negative entries is numerically tractable [25,29,35,36]. On the other hand,
this paper is still a preliminary study for structured tensors (or polynomial optimization with special
structures) and a lot of interesting research topics need further investigation. Below, we list some of
the topics which are particularly important from our point of view:

(a) Can one extend the results presented in this paper to a special structured tensor other than the
tensors with essentially non-positive entries? Some particularly important structured tensors
arise naturally in signal processing, stochastic process and data fitting include the Hankel ten-
sors and circulant tensors [54-56]. Can theorem of the alternatives be extended to cover these
structured tensors?

(b) As discussed in Example 4.2, our exact relaxation result can fail for a nonconvex polynomial
optimization problems if the functions involved do not have essentially nonpositive coefficients.
On the other hand, it would be of interest to see how our results can be used to provide some
approximate bounds for the optimal value of the general nonconvex polynomial optimization
problems.

(c) Finally, it would be also useful to extend the known theorem of the alternative for copositive
matrix to the symmetric tensor setting (if possible).

These will be our future research directions.
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6 Conclusion

In this paper, by exploiting the hidden convexity and numerical checkability of a special class of
tensors, we established a tractable extension of Yuan’s theorem of alternative in the symmetric tensor
setting. As an application, we showed that the solution of a polynomial optimization problem with
suitable structure can be found by solving a single semi-definite programming problem.
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Appendix

Proof of Proposition 2.1

Proof. As any sum-of-squares polynomial takes non-negative value, SOSm,n∩Em,n ⊆ PSDm,n∩Em,n

always holds. We only need to show the converse inclusion. To establish this, let A ∈ PSDm,n ∩Em,n

and consider the associated homogeneous polynomial

f(x) = 〈A, x⊗m〉 =
n
∑

i1,...,im=1

Ai1···imxi1 · · ·xim .

Then, f is a polynomial which takes non-negative value. Note that

f(x) =

n
∑

i1,...,im=1

Ai1···imxi1 · · ·xim =

n
∑

i=1

(Aii···i)x
m
i +

∑

(i1,...,im)/∈I

(Ai1···im)xi1 · · ·xim ,

where I := {(i, i, . . . , i) ∈ N
m : 1 ≤ i ≤ n}. As A is essentially nonpositive, Ai1i2···im ≤ 0 for all

(i1, . . . , im) /∈ I. Now, let f(x) =
∑n

i=1 fm,ix
m
i +

∑

α∈Ωf
fαx

α. Then, fm,i = Aii···i and fα < 0 for

all α ∈ Ωf where Ωf = {α = (α1, . . . , αn) ∈ (N ∪ {0})n : fα 6= 0 and α 6= mei, i = 1, . . . , n}, and
ei is the vector where its ith component is one and all the other components are zero. Recall that
∆f = {α = (α1, . . . , αn) ∈ Ωf : fα < 0 or α /∈ (2N ∪ {0})n}. Note that fα < 0 for all α ∈ Ωf and so,
∆f = Ωf . It follows that

f̂(x) :=

n
∑

i=1

fm,ix
m
i −

∑

α∈∆f

|fα|xα

=

n
∑

i=1

fm,ix
m
i +

∑

α∈∆f

fαx
α

=

n
∑

i=1

fm,ix
m
i +

∑

α∈Ωf

fαx
α = f(x).

So, f̂ is also a polynomial which takes non-negative value. Thus the conclusion follows by Lemma
2.1.
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